Powerful Plant Antioxidants: A New Biosustainable Approach to the Production of Rosmarinic Acid
Abstract
:1. Introduction
2. Phenolic Compounds
Rosmarinic Acid
3. Lamiaceae Members: A Rich Source of Phenolic Antioxidants
3.1. Savory (Satureja L.)
3.1.1. Satureja khuzistanica: A Chemical Factory of Rosmarinic Acid
3.1.2. Phytochemical Composition
4. Approaches to the Biotechnological Production of Rosmarinic Acid
4.1. Plant Cell Cultures for RA Production
4.2. Biotechnological Production of RA at a Bioreactor Level
4.3. Use of New Elicitors/Permeabilizing Agents
4.4. Metabolic Engineering Approaches
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peskind, E.R.; Li, G.; Shofer, J.B.; Millard, S.P.; Leverenz, J.B.; Yu, C.-E.; Raskind, M.A.; Quinn, J.F.; Galasko, D.R.; Montine, T.J. Influence of lifestyle modifications on age-related free radical injury to brain. JAMA Neurol. 2014, 71, 1150–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.-A.; Kang, S.-G.; Kim, S.-H.; Park, S.-J.; Kim, H.-N.; Song, I.-S.; Song, S.-W. Assessment of lifestyle effects on the levels of free oxygen radicals in the Korean population. Korean J. Fam. Med. 2012, 33, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. The chemistry of free radicals. Toxicol. Ind. Health 1993, 9, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, J.; Arnér, E.S. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 2001, 31, 1287–1312. [Google Scholar] [CrossRef]
- Ighodaro, O.; Akinloye, O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Stadtman, E.R.; Levine, R.L. Protein Oxidation. Ann. N. Y. Acad. Sci. 2006, 899, 191–208. [Google Scholar] [CrossRef]
- Marnett, L.J. Oxyradicals and DNA damage. Carcinogenesis 2000, 21, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Giustarini, D.; Dalle-Donne, I.; Tsikas, D.; Rossi, R. Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Crit. Rev. Clin. Lab. Sci. 2009, 46, 241–281. [Google Scholar] [CrossRef]
- Fearon, I.M.; Faux, S.P. Oxidative stress and cardiovascular disease: Novel tools give (free) radical insight. J. Mol. Cell. Cardiol. 2009, 47, 372–381. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaiserman, A.; Koliada, A.; Zayachkivska, A.; Lushchak, O. Nanodelivery of natural antioxidants: An anti-aging perspective. Front. Bioeng. Biotechnol. 2020, 7, 447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatzianagnostou, K.; Del Turco, S.; Pingitore, A.; Sabatino, L.; Vassalle, C. The Mediterranean lifestyle as a non-pharmacological and natural antioxidant for healthy aging. Antioxidants 2015, 4, 719–736. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Nakanishi, H.; Goto, N.; Otsuka, K.; Kimura, T.; Adachi, S. Antioxidative properties of ascorbic acid and acyl ascorbates in ML/W emulsion. J. Am. Oil Chem. Soc. 2010, 87, 1475–1480. [Google Scholar] [CrossRef]
- Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Krinsky, N.I. Mechanism of action of biological antioxidants. Exp. Biol. Med. 1992, 200, 248–254. [Google Scholar] [CrossRef]
- Ahmad, I.; Krishnamurthi, K.; Arif, J.; Ashquin, M.; Mahmood, N.; Athar, M.; Rahman, Q. Augmentation of chrysotile-induced oxidative stress by BHA in mice lungs. Food Chem. Toxicol. 1995, 33, 209–215. [Google Scholar] [CrossRef]
- Sarafian, T.; Kouyoumjian, S.; Tashkin, N.; Roth, M.D. Synergistic cytotoxicity of Δ9-tetrahydrocannabinol and butylated hydroxyanisole. Toxicol. Lett. 2002, 133, 171–179. [Google Scholar] [CrossRef]
- Ramana, K.V.; Reddy, A.B.M.; Majeti, N.V.R.K.; Singhal, S.S. Therapeutic potential of natural antioxidants. Oxidative Med. Cell. Longev. 2018, 2018, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Kostova, I. Synthetic and natural coumarins as antioxidants. Mini Rev. Med. Chem. 2006, 6, 365–374. [Google Scholar] [CrossRef]
- Chinou, I. Primary and secondary metabolites and their biological activity. Thin Layer Chromatogr. Drug Anal. 2008, 99, 59–76. [Google Scholar] [CrossRef]
- Pagare, S.; Bhatia, M.; Tripathi, N.; Pagare, S.; Bansal, Y.K. Secondary metabolites of plants and their role: Overview. Curr. Trends Biotechnol. Pharm. 2015, 9, 293–304. [Google Scholar]
- Verpoorte, R.; Contin, A.; Memelink, J. Biotechnology for the production of plant secondary metabolites. Phytochem. Rev. 2002, 1, 13–25. [Google Scholar] [CrossRef]
- Wilson, S.A.; Roberts, S.C. Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol. J. 2012, 10, 249–268. [Google Scholar] [CrossRef]
- Chiorcea-Paquim, A.; Enache, T.A.; Gil, E.S.; Oliveira-Brett, A.M. Natural phenolic antioxidants electrochemistry: Towards a new food science methodology. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1680–1726. [Google Scholar] [CrossRef]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant Polyphenols as Antioxidant and Antibacterial Agents for Shelf-Life Extension of Meat and Meat Products: Classification, Structures, Sources, and Action Mechanisms. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1243–1268. [Google Scholar] [CrossRef] [Green Version]
- Stojković, D.; Petrović, J.; Soković, M.; Glamočlija, J.; Kukić-Marković, J.; Petrović, S. In situantioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. J. Sci. Food Agric. 2013, 93, 3205–3208. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Gyawali, R.; Ibrahim, S.A. Natural products as antimicrobial agents. Food Control. 2014, 46, 412–429. [Google Scholar] [CrossRef]
- Malik, S.; Cusidó, R.M.; Mirjalili, M.H.; Moyano, E.; Palazón, J.; Bonfill, M. Production of the anticancer drug taxol in Taxus baccata suspension cultures: A review. Process. Biochem. 2011, 46, 23–34. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Li, T.; Li, C.; Zhou, Y.; Zhong, X. The selection and stability analysis of stable and high Taxol-producing cell lines from Taxus cuspidata. J. For. Res. 2017, 29, 65–71. [Google Scholar] [CrossRef]
- Zhao, C.; Song, G.; Fu, C.; Dong, Y.; Xu, H.; Zhang, H.; Yu, L.-J. A systematic approach to expound the variations in taxane production under different dissolved oxygen conditions in Taxus chinensis cells. Plant Cell Rep. 2015, 35, 541–559. [Google Scholar] [CrossRef] [PubMed]
- Osuna, L.; Tapia, N.; Cusidó, R.; Palazón, J.; Bonfill, M.; Zamilpa, A.; López-Upton, J.; Cruz-Sosa, F. Taxane production induced by methyl jasmonate in free and immobilized cell cultures of Mexican yew (Taxus globosa Schltdl). Acta Physiol. Plant. 2015, 37, 1–8. [Google Scholar] [CrossRef]
- Bazaldúa, C.; Cardoso-Taketa, A.; Trejo-Tapia, G.; Camacho-Diaz, B.; Arellano, J.; Ventura-Zapata, E.; Villarreal, M.L. Improving the production of podophyllotoxin in hairy roots of Hyptis suaveolens induced from regenerated plantlets. PLoS ONE 2019, 14, e0222464. [Google Scholar] [CrossRef] [PubMed]
- Nandagopal, K.; Halder, M.; Dash, B.; Nayak, S.; Jha, S. Biotechnological approaches for production of anti-cancerous compounds resveratrol, podophyllotoxin and zerumbone. Curr. Med. Chem. 2018, 25, 4693–4717. [Google Scholar] [CrossRef] [PubMed]
- Yousefzadi, M.; Sharifi, M.; Chashmi, N.A.; Behmanesh, M.; Ghassempour, A. Optimization of podophyllotoxin extraction method from Linum albumcell cultures. Pharm. Biol. 2010, 48, 1421–1425. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, M.H.; Moyano, E.; Bonfill, M.; Cusido, R.M.; Palazón, J. Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 2009, 14, 2373–2393. [Google Scholar] [CrossRef] [Green Version]
- Gandi, S.; Giri, A. Production and quantification of asiatic acid from in vitro raised shoots and callus cultures of Centella asiatica (L.) Urban. Ann. Phytomed. 2013, 2, 95–101. [Google Scholar]
- Gallego, A.; Ramirez-Estrada, K.; Vidal-Limon, H.R.; Hidalgo, D.; Lalaleo, L.; Kayani, W.K.; Cusido, R.M.; Palazón, J. Biotechnological production of centellosides in cell cultures of Centella asiatica (L.) Urban. Eng. Life Sci. 2014, 14, 633–642. [Google Scholar] [CrossRef]
- Taghizadeh, M.; Nasibi, F.; Kalantari, K.M.; Benakashani, F. Callogenesis optimization and cell suspension culture establishment of Dracocephalum polychaetum Bornm. and Dracocephalum kotschyi Boiss.: An in vitro approach for secondary metabolite production. S. Afr. J. Bot. 2020, 132, 79–86. [Google Scholar] [CrossRef]
- Sahraroo, A.; Mirjalili, M.H.; Corchete, P.; Babalar, M.; Fattahi-Moghadam, M.R.; Zarei, A. Enhancement of rosmarinic acid production by Satureja khuzistanica cell suspensions: Effects of phenylalanine and sucrose. Sabrao J. Breed. Genet. 2018, 50, 25–35. [Google Scholar]
- Sahraroo, A.; Mirjalili, M.H.; Corchete, P.; Babalar, M.; Moghadam, M.R.F. Establishment and characterization of a Satureja khuzistanica Jamzad (Lamiaceae) cell suspension culture: A new in vitro source of rosmarinic acid. Cytotechnology 2016, 68, 1415–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Döring, A.S.; Petersen, M. Production of caffeic, chlorogenic and rosmarinic acids in plants and suspension cultures of Glechoma hederacea. Phytochem. Lett. 2014, 10, cxi–cxvii. [Google Scholar] [CrossRef]
- Bakhtiar, Z.; Mirjalili, M.H.; Sonboli, A. In vitro callus induction and micropropagation of Thymus persicus (Lamiaceae), an endangered medicinal plant. Crop Breed. Appl. Biotechnol. 2016, 16, 48–54. [Google Scholar] [CrossRef]
- Soonthornkalump, S.; Nakkanong, K.; Meesawat, U. In vitro cloning via direct somatic embryogenesis and genetic stability assessment of Paphiopedilum niveum (Rchb.f.) Stein: The endangered Venus’s slipper orchid. In Vitro Cell. Dev. Biol. Anim. 2019, 55, 265–276. [Google Scholar] [CrossRef]
- Dinesh, R.; Patel, A.K.; Vibha, J.B.; Shekhawat, S.; Shekhawat, N.S. Cloning of mature pomegranate (Punica granatum) cv. Jalore seedless via in vitro shoot production and ex vitro rooting. Vegetos Int. J. Plant Res. 2019, 32, 181–189. [Google Scholar] [CrossRef]
- Bakhtiar, Z.; Mirjalili, M.H.; Sonboli, A.; Farimani, M.M.; Ayyari, M. In vitro propagation, genetic and phytochemical assessment of Thymus persicus—A medicinally important source of pentacyclic triterpenoids. Biologia 2014, 69, 594–603. [Google Scholar] [CrossRef]
- Talei, D.; Nekouei, M.K.; Mardi, M.; Kadkhodaei, S. Improving productivity of steviol glycosides in Stevia rebaudiana via induced polyploidy. J. Crop. Sci. Biotechnol. 2020, 23, 301–309. [Google Scholar] [CrossRef]
- Parsons, J.L.; Martin, S.L.; James, T.; Golenia, G.; Boudko, E.A.; Hepworth, S.R. Polyploidization for the Genetic Improvement of Cannabis sativa. Front. Plant Sci. 2019, 10, 476. [Google Scholar] [CrossRef]
- Kikowska, M.; Thiem, B.; Szopa, A.; Ekiert, H. Accumulation of valuable secondary metabolites: Phenolic acids and flavonoids in different in vitro systems of shoot cultures of the endangered plant species—Eryngium alpinum L. Plant Cell Tissue Organ Cult. 2020, 141, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Vanda, G.F.; Shabani, L.; Razavizadeh, R. Chitosan enhances rosmarinic acid production in shoot cultures of Melissa officinalis L. through the induction of methyl jasmonate. Bot. Stud. 2019, 60, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, S.; Mansinhos, I.; Rodríguez-Solana, R.; SantínE, P.; Coelho, N.; Romano, A. Elicitation improves rosmarinic acid content and antioxidant activity in Thymus lotocephalus shoot cultures. Ind. Crop. Prod. 2019, 137, 214–220. [Google Scholar] [CrossRef]
- Sahraroo, A.; Babalar, M.; Mirjalili, M.H.; Moghaddam, M.R.F.; Ebrahimi, S.N. In-vitro callus induction and rosmarinic acid quantification in callus culture of Satureja khuzistanica Jamzad (Lamiaceae). Iran. J. Pharm. Res. IJPR 2014, 13, 1447–1456. [Google Scholar] [PubMed]
- Khojasteh, A.; Mirjalili, M.H.; Palazon, J.; Eibl, R.; Cusido, R.M. Methyl jasmonate enhanced production of rosmarinic acid in cell cultures of Satureja khuzistanica in a bioreactor. Eng. Life Sci. 2016, 16, 740–749. [Google Scholar] [CrossRef]
- Yousefian, S.; Lohrasebi, T.; Farhadpour, M.; Haghbeen, K. Effect of methyl jasmonate on phenolic acids accumulation and the expression profile of their biosynthesis-related genes in Mentha spicata hairy root cultures. Plant Cell Tissue Organ Cult. 2020, 142, 285–297. [Google Scholar] [CrossRef]
- Wojciechowska, M.; Owczarek, A.; Kiss, A.K.; Grąbkowska, R.; Olszewska, M.A.; Grzegorczyk-Karolak, I. Establishment of hairy root cultures of Salvia bulleyana Diels for production of polyphenolic compounds. J. Biotechnol. 2020, 318, 10–19. [Google Scholar] [CrossRef]
- Kwon, D.Y.; Kim, Y.B.; Kim, J.K.; Park, S.U. Production of rosmarinic acid and correlated gene expression in hairy root cultures of green and purple basil (Ocimum basilicum L.). Prep. Biochem. Biotechnol. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Xing, B.; Yang, D.; Liu, L.; Han, R.; Sun, Y.; Liang, Z. Phenolic acid production is more effectively enhanced than tanshinone production by methyl jasmonate in Salvia miltiorrhiza hairy roots. Plant Cell Tissue Organ Cult. 2018, 134, 119–129. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Kiokias, S.; Proestos, C.; Oreopoulou, V. Phenolic acids of plant origin—a review on their antioxidant activity in vitro (O/W Emulsion Systems) along with their in vivo Health biochemical properties. Foods 2020, 9, 534. [Google Scholar] [CrossRef]
- Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 2015, 11, 982–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholson, R.L.; Hammerschmidt, R. Phenolic compounds and their role in disease resistance. Annu. Rev. Phytopathol. 1992, 30, 369–389. [Google Scholar] [CrossRef]
- Miadoková, E. Isoflavonoids—An overview of their biological activities and potential health benefits. Interdiscip. Toxicol. 2009, 2, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.; Abdullah, Y.; Benner, J.; Eberle, D.; Gehlen, K.; Hücherig, S.; Janiak, V.; Kim, K.H.; Sander, M.; Weitzel, C.; et al. Evolution of rosmarinic acid biosynthesis. Phytochemistry 2009, 70, 1663–1679. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M. Rosmarinic acid. Phytochemistry 2003, 62, 121–125. [Google Scholar] [CrossRef]
- Petersen, M. Rosmarinic acid: New aspects. Phytochem. Rev. 2013, 12, 207–227. [Google Scholar] [CrossRef]
- Guan, C.; Parrot, D.; Wiese, J.; Sönnichsen, F.D.; Saha, M.; Tasdemir, D.; Weinberger, F. Identification of rosmarinic acid and sulfated flavonoids as inhibitors of microfouling on the surface of eelgrass Zostera marina. Biofouling 2017, 33, 867–880. [Google Scholar] [CrossRef]
- Enerstvedt, K.H.; Lundberg, A.; Sjøtun, I.K.; Fadnes, P.; Jordheim, M. Characterization and seasonal variation of individual flavonoids in Zostera marina and Zostera noltii from Norwegian coastal waters. Biochem. Syst. Ecol. 2017, 74, 42–50. [Google Scholar] [CrossRef]
- Styshova, O.N.; Popov, A.M.; Artyukov, A.A.; Klimovich, A.A. Main constituents of polyphenol complex from seagrasses of the genus Zostera, their antidiabetic properties and mechanisms of action. Exp. Ther. Med. 2017, 13, 1651–1659. [Google Scholar] [CrossRef] [Green Version]
- Barberini, S.; Savona, M.; Raffi, D.; Leonardi, M.; Pistelli, L.; Stochmal, A.; Vainstein, A.; Pistelli, L.; Ruffoni, B. Molecular cloning of SoHPPR encoding a hydroxyphenylpyruvate reductase, and its expression in cell suspension cultures of Salvia officinalis. Plant Cell Tissue Organ Cult. 2013, 114, 131–138. [Google Scholar] [CrossRef]
- Petersen, M.; Alfermann, A.W. Two new enzymes of rosmarinic acid biosynthesis from cell cultures of Coleus blumei: Hydroxyphenylpyruvate reductase and rosmarinic acid synthase. Z. Naturforsch. C 1988, 43, 501–504. [Google Scholar] [CrossRef]
- Häusler, E.; Petersen, M.; Alfermann, A.W. Hydroxyphenylpyruvate Reductase from Cell Suspension Cultures of Coleus Blumei Benth. Z. Naturforsch. C. 1991, 46, 371–376. [Google Scholar] [CrossRef]
- Kim, K.H.; Janiak, V.; Petersen, M. Purification, cloning and functional expression of hydroxyphenylpyruvate reductase involved in rosmarinic acid biosynthesis in cell cultures of Coleus Blumei. Plant Mol. Biol. 2004, 54, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Hücherig, S.; Petersen, M. RNAi suppression and overexpression studies of hydroxyphenylpyruvate reductase (HPPR) and rosmarinic acid synthase (RAS) genes related to rosmarinic acid biosynthesis in hairy root cultures of Coleus blumei. Plant Cell Tissue Organ Cult. 2012, 113, 375–385. [Google Scholar] [CrossRef]
- Douce, R.; Joyard, J. Biosynthesis of Thylakoid Membrane Lipids. In The Molecular Biology of Cyanobacteria, 1st ed.; Ort, D.R., Yocum, C.F., Eds.; Springer: Dordrecht, The Netherlands, 1996; Volume 4, pp. 69–101. [Google Scholar]
- Timm, S.; Nunes-Nesi, A.; Pärnik, T.; Morgenthal, K.; Wienkoop, S.; Keerberg, O.; Weckwerth, W.; Kleczkowski, L.A.; Fernie, A.R.; Bauwe, H. A Cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis. Plant Cell 2008, 20, 2848–2859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, M.; Metzger, J.W. Identification of the reaction products of rosmarinic acid synthase from cell cultures of Coleus blumei by ion spray mass spectrometry and tandem mass spectrometry. Phytochem. Anal. 1993, 4, 131–134. [Google Scholar] [CrossRef]
- Petersen, M. Cytochrome P450-dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus. Phytochemistry 1997, 45, 1165–1172. [Google Scholar] [CrossRef]
- Berger, A.; Meinhard, J.; Petersen, M. Rosmarinic acid synthase is a new member of the superfamily of BAHD acyltransferases. Planta 2006, 224, 1503–1510. [Google Scholar] [CrossRef]
- Eberle, D.; Ullmann, P.; Werck-Reichhart, D.; Petersen, M. cDNA cloning and functional characterisation of CYP98A14 and NADPH: Cytochrome P450 reductase from Coleus blumei involved in rosmarinic acid biosynthesis. Plant Mol. Biol. 2008, 69, 239–253. [Google Scholar] [CrossRef]
- Bulgakov, V.P.; Inyushkina, Y.V.; Fedoreyev, S.A. Rosmarinic acid and its derivatives: Biotechnology and applications. Crit. Rev. Biotechnol. 2011, 32, 203–217. [Google Scholar] [CrossRef]
- Khojasteh, A.; Mirjalili, M.H.; Hidalgo, D.; Corchete, P.; Palazón, J. New trends in biotechnological production of rosmarinic acid. Biotechnol. Lett. 2014, 36, 2393–2406. [Google Scholar] [CrossRef] [PubMed]
- Park, S.U.; Uddin, M.R.; Xu, H.; Kim, Y.K.; Lee, S.Y. Biotechnological applications for rosmarinic acid production in plants. Afr. J. Biotechnol. 2008, 7, 4959–4965. [Google Scholar] [CrossRef]
- Pérez-Fons, L.; Garzón, M.T.; Micol, V. Relationship between the antioxidant aapacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. J. Agric. Food Chem. 2010, 58, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Panya, A.; Laguerre, M.; LeComte, J.; Villeneuve, P.; Weiss, J.; McClements, D.J.; Decker, E.A. Effects of chitosan and rosmarinate esters on the physical and oxidative stability of liposomes. J. Agric. Food Chem. 2010, 58, 5679–5684. [Google Scholar] [CrossRef] [PubMed]
- Vostálová, J.; Zdarilová, A.; Svobodová, A.R. Prunella vulgaris extract and rosmarinic acid prevent UVB-induced DNA damage and oxidative stress in HaCaT keratinocytes. Arch. Dermatol. Res. 2009, 302, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Furtado, R.A.; De Araújo, F.R.R.; Resende, F.A.; Cunha, W.R.; Tavares, D.C. Protective effect of rosmarinic acid on V79 cells evaluated by the micronucleus and comet assays. J. Appl. Toxicol. 2009, 30, 254–259. [Google Scholar] [CrossRef]
- Hamaguchi, T.; Ono, K.; Murase, A.; Yamada, M. Phenolic Compounds prevent Alzheimer’s pathology through different effects on the amyloid-β aggregation pathway. Am. J. Pathol. 2009, 175, 2557–2565. [Google Scholar] [CrossRef] [Green Version]
- Fallarini, S.; Miglio, G.; Paoletti, T.; Minassi, A.; Amoruso, A.; Bardelli, C.; Brunelleschi, S.; Lombardi, G. Clovamide and rosmarinic acid induce neuroprotective effects in in vitro models of neuronal death. Br. J. Pharmacol. 2009, 157, 1072–1084. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Lee, B.J.; Kim, J.H.; Yu, Y.S.; Kim, M.Y.; Kim, K.W. Rosmarinic acid suppresses retinal neovascularization via cell cycle arrest with increase of p21(WAF1) expression. Eur. J. Pharmacol. 2009, 615, 150–154. [Google Scholar] [CrossRef]
- Li, G.-S.; Jiang, W.-L.; Tian, J.-W.; Qu, G.-W.; Zhu, H.-B.; Fu, F.-H. In vitro and in vivo antifibrotic effects of rosmarinic acid on experimental liver fibrosis. Phytomedicine 2010, 17, 282–288. [Google Scholar] [CrossRef]
- Hur, Y.-G.; Suh, C.-H.; Kim, S.; Won, J. Rosmarinic acid induces apoptosis of activated T cells from rheumatoid arthritis patients via mitochondrial pathway. J. Clin. Immunol. 2007, 27, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Paluszczak, J.; Krajka-Kuźniak, V.; Baer-Dubowska, W. The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol. Lett. 2010, 192, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Khojasteh, A.; Metón, I.; Camino, S.; Cusido, R.M.; Eibl, R.; Palazón, J. In vitro study of the anticancer effects of biotechnological extracts of the endangered plant species Satureja khuzistanica. Int. J. Mol. Sci. 2019, 20, 2400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Judd, W.S.; Campbell, C.S.; Kellogg, E.A.; Stevens, P.F.; Donoghue, M.J. Plant systematics: A phylogenetic approach. Ecol. Med. 1999, 25, 215. [Google Scholar]
- Šilić, Č. Monographie der Gattungen Satureja L., Calamimtha Miller, Micromeria Bentham, Acinos Miller und Clinopodium L. In Der Flora Jugoslawiens; Zemaljski muzej BiH: Sarajevo, Bosnia and Herzegovina, 1979; pp. 24–117. [Google Scholar]
- Mozaffarian, V. A Dictionary of Iranian Plant Names, 1st ed.; Farhang Moaser: Tehran, Iran, 1996; pp. 190–191. [Google Scholar]
- Jamzad, Z. A new species of the genus Satureja (Labiatae) from Iran. Iran. J. Bot. 1994, 6, 215–218. [Google Scholar] [CrossRef]
- Rechinger, K.H. Satureja. In Flora desiranischen hoclandes and der umrahmenden gebirge. Akademische druk Verlagsantalt Graz Austria 1982, 150, 495–504. [Google Scholar]
- Sefidkon, F.; Jamzad, Z.; Mirza, M. Chemical variation in the essential oil of Satureja sahendica from Iran. Food Chem. 2004, 88, 325–328. [Google Scholar] [CrossRef]
- Exarchou, V.; Nenadis, N.; Tsimidou, M.Z.; Gerothanassis, I.P.; Troganis, A.; Boskou, D. Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage, and summer savory. J. Agric. Food Chem. 2002, 50, 5294–5299. [Google Scholar] [CrossRef]
- Pank, F.; Pfefferkorn, A.; Kruger, H. Evaluation of a summer savory (Satureja hortensis L.) collection with regard to morphology, precocity, yield components and essential oil and carvacrol content. Z. Arznei Gewurzpfla. 2004, 9, 72–79. [Google Scholar]
- Galambosi, B.; Galambosi, Z.; Pessala, R.; Repčák, M.; Hupila, I.; Aflatuni, A. Yield and quality of selected herb cultivars in Finland. Acta Hortic. 2002, 576, 139–149. [Google Scholar] [CrossRef]
- Piccaglia, R.; Marotti, M.; Galletti, G.C. Characterization of essential oil from a Satureja montana L. chemotype grown in northern Italy. J. Essent. Oil Res. 1991, 3, 147–152. [Google Scholar] [CrossRef]
- Tansi, S. The effects of different harvest times on essential oil content and yield of summer savory (Satureja hortensis) under Cukurova conditions. Turkish J. Field Crops 1999, 4, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Svoboda, K. Investigation of volatile oil glands of Satureja hortensis L. (summer savory) and phytochemical comparison of different varieties. Int. J. Aromather. 2003, 13, 196–202. [Google Scholar] [CrossRef]
- Selseleh, M.; Hadian, J.; Ebrahimi, S.N.; Sonboli, A.; Georgiev, M.I.; Mirjalili, M.H. Metabolic diversity and genetic association between wild populations of Verbascum songaricum (Scrophulariaceae). Ind. Crop. Prod. 2019, 137, 112–125. [Google Scholar] [CrossRef]
- Pourhosseini, S.; Hadian, J.; Sonboli, A.; Nejad Ebrahimi, S.; Mirjalili, M.H. Genetic and chemical diversity in Perovskia abrotanoides Kar. (Lamiaceae) populations based on ISSR s markers and essential oils profile. Chem. Biodivers. 2018, 15, e1700508. [Google Scholar] [CrossRef] [PubMed]
- Milos, M.; Radonic, A.; Bezic, N.; Dunkic, V. Localities and seasonal variations in the chemical composition of essential oils of Satureja montana L. and S. cuneifolia Ten. Flavour Fragr. J. 2001, 16, 157–160. [Google Scholar] [CrossRef]
- Kirimer, N.; Baser, K.H.C.; Tümen, G. Carvacrol-rich plants in Turkey. Chem. Nat. Compd. 1995, 31, 37–41. [Google Scholar] [CrossRef]
- Güllüce, M.; Sökmen, M.; Daferera, D.; Aǧar, G.; Özkan, H.; Kartal, N.; Polissiou, M.; Sökmen, A.; Şahiïn, F. In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. J. Agric. Food Chem. 2003, 51, 3958–3965. [Google Scholar] [CrossRef]
- Başer, K.H.C. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr. Pharm. Des. 2008, 14, 3106–3119. [Google Scholar] [CrossRef]
- Tepe, B.; Cilkiz, M. A pharmacological and phytochemical overview on Satureja. Pharm. Biol. 2015, 54, 375–412. [Google Scholar] [CrossRef] [Green Version]
- Soltanzadeh, H.; Açik, L.; Türk, M.; Houshmand, M.; Shahsavari, G. Antimicrobial, antioxidant, cytotoxic and apoptotic activities of Satureja khuzestanica. Gazi Med J. 2018, 29, 264–270. [Google Scholar] [CrossRef]
- Hadian, J.; Mirjalili, M.H.; Kanani, M.R.; Salehnia, A.; Ganjipoor, P. Phytochemical and morphological characterization of Satureja khuzistanica Jamzad populations from Iran. Chem. Biodivers. 2011, 8, 902–915. [Google Scholar] [CrossRef] [PubMed]
- Malmir, M.; Serrano, R.; Gohari, A.R.; Silva, O. Characterization of Satureja khuzestanica leaf as a herbal medicine. Microsc. Microanal. 2014, 20, 1425–1435. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi-Nejad, B.; Rezaei-Matehkolaei, A.; Naanaie, S.Y. Isolation and antifungal activity evaluation of Satureja khuzestanica Jamzad extract against some clinically important dermatophytes. J. Mycol. Med. 2017, 27, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Shahsavari, R.; Ehsani-Zonouz, A.; Houshmand, M.; Salehnia, A.; Ahangari, G.; Firoozrai, M. Plasma glucose lowering effect of the wild Satureja khuzistanica Jamzad essential oil in diabetic rats: Role of decreased gluconeogenesis. Pak. J. Biol. Sci. 2009, 15, 140–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amanlou, M.; Fazeli, M.; Arvin, A.; Amin, H.; Farsam, H. Antimicrobial activity of crude methanolic extract of Satureja khuzistanica. Fitoterapia 2004, 75, 768–770. [Google Scholar] [CrossRef] [PubMed]
- Haeri, S.; Minaie, B.; Amin, G.; Nikfar, S.; Khorasani, R.; Esmaily, H.; Salehnia, A.; Abdollahi, M. Effect of Satureja khuzistanica essential oil on male rat fertility. Fitoterapia 2006, 77, 495–499. [Google Scholar] [CrossRef]
- Di Pasqua, R.; Betts, G.; Hoskins, N.; Edwards, M.; Ercolini, D.; Mauriello, G. Membrane Toxicity of Antimicrobial Compounds from Essential Oils. J. Agric. Food Chem. 2007, 55, 4863–4870. [Google Scholar] [CrossRef]
- De Vincenzi, M.; Stammati, A.; Silano, M. Constituents of aromatic plants: Carvacrol. Fitoterapia 2004, 75, 801–804. [Google Scholar] [CrossRef]
- Farsam, H.; Amanlou, M.; Radpour, M.R.; Salehinia, A.N.; Shafiee, A. Composition of the essential oils of wild and cultivated Satureja khuzistanica Jamzad from Iran. Flavour Fragr. J. 2004, 19, 308–310. [Google Scholar] [CrossRef]
- Hadian, J.; Ebrahimi, S.N.; Salehi, P. Variability of morphological and phytochemical characteristics among Satureja hortensis L. accessions of Iran. Ind. Crop. Prod. 2010, 32, 62–69. [Google Scholar] [CrossRef]
- Bais, H.P.; Walker, T.S.; Schweizer, H.P.; Vivanco, J.M. Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of of sweet basil (Ocimum basilicum L.). Plant Physiol. Biochem. 2002, 40, 983–995. [Google Scholar] [CrossRef]
- Javanmardi, J.; Khalighi, A.; Kashi, A.; Bais, H.P.; Vivanco, J.M. Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. J. Agric. Food Chem. 2002, 50, 5878–5883. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Limon, H.; Sanchez-Muñoz, R.; Khojasteh, A.; Moyano, E.; Cusido, R.M.; Palazón, J. Taxus cell cultures: An effective biotechnological tool to enhance and gain new biosynthetic insights into taxane production. In Bioprocessing of Plant In Vitro Systems; Pavlov, A., Bley, T., Eds.; Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2018; pp. 295–316. [Google Scholar]
- Exposito, O.; Bonfill, M.; Moyano, E.; Onrubia, M.; Mirjalili, M.H.; Cusidó, R.M.; Palazon, J. Biotechnological production of taxol and related taxoids: Current state and prospects. Anti-Cancer Agents Med. Chem. 2009, 9, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Georgiev, M.I.; Weber, J.; Maciuk, A. Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl. Microbiol. Biotechnol. 2009, 83, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Goossens, A.; Rischer, H. Implementation of functional genomics for gene discovery in alkaloid producing plants. Phytochem. Rev. 2007, 6, 35–49. [Google Scholar] [CrossRef]
- Ochoa-Villarreal, M.; Howat, S.; Hong, S.; Jang, M.O.; Jin, Y.-W.; Lee, E.-K.; Loake, G.J. Plant cell culture strategies for the production of natural products. BMB Rep. 2016, 49, 149–158. [Google Scholar] [CrossRef]
- Nielsen, E.; Temporiti, M.E.; Cella, R. Improvement of phytochemical production by plant cells and organ culture and by genetic engineering. Plant Cell Rep. 2019, 38, 1199–1215. [Google Scholar] [CrossRef]
- Rischer, H.; Häkkinen, S.T.; Ritala, A.; Seppänen-Laakso, T.; Miralpeix, B.; Capell, T.; Christou, P.; Oksman-Caldentey, K.-M. Plant cells as pharmaceutical factories. Curr. Pharm. Des. 2013, 19, 5640–5660. [Google Scholar] [CrossRef]
- Onrubia, M.; Pollier, J.; Bossche, R.V.; Goethals, M.; Gevaert, K.; Moyano, E.; Vidal-Limon, H.; Cusido, R.M.; Palazón, J.; Goossens, A. Taximin, a conserved plant-specific peptide is involved in the modulation of plant-specialized metabolism. Plant Biotechnol. J. 2014, 12, 971–983. [Google Scholar] [CrossRef] [Green Version]
- Françoise, B.; Hossein, S.; Halimeh, H.; Zahra, N.F. Growth. Growth optimization of Zataria multiflora Boiss. tissue cultures and rosmarinic acid production improvement. Pak. J. Biol. Sci. 2007, 10, 3395–3399. [Google Scholar] [CrossRef] [PubMed]
- Fattahi, M.; Nazeri, V.; Torras-Claveria, L.; Sefidkon, F.; Cusido, R.M.; Zamani, Z.; Palazon, J. A new biotechnological source of rosmarinic acid and surface flavonoids: Hairy root cultures of Dracocephalum kotschyi Boiss. Ind. Crop. Prod. 2013, 50, 256–263. [Google Scholar] [CrossRef]
- Hippolyte, I.; Marin, B.; Baccou, J.; Jonard, R. Growth and rosmarinic acid production in cell suspension cultures of Salvia officinalis L. Plant Cell Rep. 1992, 11, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.; Meinhard, J.; Karwatzki, B.; Gertlowski, C. The biosynthesis of rosmarinic acid in suspension cultures of Coleus blumei. Plant Cell Tissue Organ Cult. 1994, 38, 171–179. [Google Scholar] [CrossRef]
- Vogelsang, K.; Schneider, B.; Petersen, M. Production of rosmarinic acid and a new rosmarinic acid 3′-O-β-D-glucoside in suspension cultures of the hornwort Anthoceros agrestis Paton. Planta 2005, 223, 369–373. [Google Scholar] [CrossRef]
- Ilieva, M.; Pavlov, A.I. Rosmarinic acid production by Lavandula vera MM cell-suspension culture. Appl. Microbiol. Biotechnol. 1997, 47, 683–688. [Google Scholar] [CrossRef]
- Su, W.W.; Lei, F. Rosmarinic acid production in perfused Anchusa officinalis culture: Effect of inoculum size. Biotechnol. Lett. 1993, 15, 1035–1038. [Google Scholar] [CrossRef]
- Su, W.W.; Lei, F.; Su, L.Y. Perfusion strategy for rosmarinic acid production by Anchusa officinalis. Biotechnol. Bioeng. 1993, 42, 884–890. [Google Scholar] [CrossRef]
- Huang, L.-D.; Van Staden, J.; Bornman, C. Salvia chamelaeagnea can be micropropagated and its callus induced to produce rosmarinic acid. S. Afr. J. Bot. 2002, 68, 177–180. [Google Scholar] [CrossRef] [Green Version]
- Karam, N.S.; Jawad, F.M.; Arikat, N.A.; Shibl, R.A. Growth and rosmarinic acid accumulation in callus, cell suspension, and root cultures of wild Salvia fruticosa. Plant Cell Tissue Organ Cult. 2003, 73, 117–121. [Google Scholar] [CrossRef]
- Xu, H.; Kim, Y.K.; Jin, X.J.; Lee, S.Y.; Park, S.U. Rosmarinic acid biosynthesis in callus and cell cultures of Agastache rugosa Kuntze. J. Med. Plants Res. 2008, 2, 237–241. [Google Scholar] [CrossRef]
- Fedoreyev, S.A.; Veselova, M.V.; Krivoschekova, O.E.; Mischenko, N.P.; Denisenko, V.A.; Dmitrienok, P.S.; Glazunov, V.P.; Bulgakov, V.P.; Tchernoded, G.K.; Zhuravlev, Y.N. Caffeic acid metabolites from Eritrichium sericeum cell cultures. Planta Med. 2005, 71, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Namdeo, A.G. Plant cell elicitation for production of secondary metabolites: A review. Pharmacogn. Rev. 2007, 1, 69–79. [Google Scholar]
- Mizukami, H.; Ogawa, T.; Ohashi, H.; Ellis, B. Induction of rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures by yeast extract. Plant Cell Rep. 1992, 11, 480–483. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, M.I.; Kuzeva, S.; Pavlov, A.I.; Kovacheva, E.; Ilieva, M. Enhanced rosmarinic acid production by Lavandula vera MM cell suspension culture through elicitation with vanadyl Sulfate. Zeitschrift für Naturforschung C 2006, 61, 241–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakkim, F.L.; Kalyani, S.; Essa, M.S.; Girija, S.; Song, H. Production of rosmarinic in Ocimum sanctum cell cultures by the influence of sucrose, phenylalanine, yeast extract, and methyl jasmonate. Int. J. Biol. Med. Res. 2011, 2, 1070–1074. [Google Scholar]
- Martinez, B.C.; Park, C.-H. Immobilization of Coleus blumei cells in a column reactor using a spray feeding system. Biotechnol. Tech. 1994, 8, 301–306. [Google Scholar] [CrossRef]
- Brodelius, P.; Deus, B.; Mosbach, K.; Zenk, M. Immobilized plant cells for the production and transportation of natural products. FEBS Lett. 1979, 103, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Szabo, E.; Thelen, A.; Petersen, M. Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei. Plant Cell Rep. 1999, 18, 485–489. [Google Scholar] [CrossRef]
- Bauer, N.; Kiseljak, D.; Jelaska, S. The effect of yeast extract and methyl jasmonate on rosmarinic acid accumulation in Coleus blumei hairy roots. Biol. Plant. 2009, 53, 650–656. [Google Scholar] [CrossRef]
- Inyushkina, Y.V.; Kiselev, K.V.; Bulgakov, V.P.; Zhuravlev, Y.N. Specific genes of cytochrome P450 monooxygenases are implicated in biosynthesis of caffeic acid metabolites in rolC-transgenic culture of Eritrichium sericeum. Biochemistry 2009, 74, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Mizukami, H.; Tabira, Y.; Ellis, B. Methyl jasmonate-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Plant Cell Rep. 1993, 12, 706–709. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Inoue, K.; Yazaki, K. Caffeic acid oligomers in Lithospermum erythrorhizon cell suspension cultures. Phytochemistry 2000, 53, 651–657. [Google Scholar] [CrossRef]
- Yamamoto, H.; Yazaki, K.; Inoue, K. Simultaneous analysis of shikimate-derived secondary metabolites in Lithospermum erythrorhizon cell suspension cultures by high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 2000, 738, 3–15. [Google Scholar] [CrossRef]
- Sumaryono, W.; Proksch, P.; Hartmann, T.; Nimtz, M.; Wray, V. Induction of rosmarinic acid accumulation in cell suspension cultures of Orthosiphon aristatus after treatment with yeast extract. Phytochemistry 1991, 30, 3267–3271. [Google Scholar] [CrossRef]
- Kim, H.K.; Oh, S.-R.; Lee, H.-K.; Huh, H. Benzothiadiazole enhances the elicitation of rosmarinic acid production in a suspension culture of Agastache rugosa O. Kuntze. Biotechnol. Lett. 2001, 23, 55–60. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, S.; Yadav, S.; Srivastava, A.; Purohit, I.; Shrivastava, N. Plant Derived Bioactive Molecules: Culture Vessels to Bioreactors. In Production of Biomass and Bioactive Compounds Using Bioreactor Technology, 1st ed.; Paek, K.Y., Murthy, H.N., Zhong, J.J., Eds.; Springer Science+Business Media: Dordrecht, The Netherlands, 2014; pp. 47–63. [Google Scholar]
- Lehmann, N.; Dittler, I.; Lämsä, M.; Ritala, A.; Rischer, H.; Eibl, D.; Oksman-Caldentey, K.-M.; Eibl, R. Disposable bioreactors for cultivation of plant cell cultures. In Production of Biomass and Bioactive Compounds Using Bioreactor Technology; Paek, K.Y., Murthy, H.N., Zhong, J.J., Eds.; Springer Science+Business Media: Dordrecht, The Netherlands, 2014; Volume 1, pp. 17–46. [Google Scholar]
- Huang, T.-K.; McDonald, K.A. Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnol. Adv. 2012, 30, 398–409. [Google Scholar] [CrossRef]
- Su, W.W.; Humphrey, A.E. Production of rosmarinic acid from perfusion culture of Anchusa officinalis in a membrane-aerated bioreactor. Biotechnol. Lett. 1991, 13, 889–892. [Google Scholar] [CrossRef]
- Su, W.W.; Lei, F.; Kao, N.P. High density cultivation of Anchusa officinalis in a stirred-tank bioreactor with in situ filtration. Appl. Microbiol. Biotechnol. 1995, 44, 293–299. [Google Scholar] [CrossRef]
- Georgiev, M.I.; Pavlov, A.; Ilieva, M. Rosmarinic acid production by Lavandula vera MM cell suspension: The effect of temperature. Biotechnol. Lett. 2004, 26, 855–856. [Google Scholar] [CrossRef]
- Pavlov, A.; Georgiev, M.I.; Panchev, I.N.; Ilieva, M.P. Optimization of Rosmarinic Acid Production by Lavandula vera MM Plant Cell Suspension in a Laboratory Bioreactor. Biotechnol. Prog. 2008, 21, 394–396. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, A.I.; Georgiev, M.I.; Ilieva, M.P. Production of rosmarinic acid by Lavandula vera MM cell suspension in bioreactor: Effect of dissolved oxygen concentration and agitation. World J. Microbiol. Biotechnol. 2005, 21, 389–392. [Google Scholar] [CrossRef]
- Aranha, H. Disposable systems. Bioprocess Int. 2004, 2, 6–16. [Google Scholar]
- Rader, R.A.; Langer, E.S. Upstream single-use bioprocessing systems future market trends and growth assessment. Bioprocess Int. 2011, 10, 12–18. [Google Scholar]
- Vanhamel, S.; Masy, C. Production of Disposable Bags: A Manufacturer’s Report. In Single-Use Technology in Biopharmaceutical Manufacture, 1st ed.; Eibl, R., Eibl, D., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 95–116. [Google Scholar]
- Kadarusman, J.; Bhatia, R.; McLaughlin, J.; Lin, W.R. Growing cholesterol-dependent NS0 myeloma cell line in the wave bioreactor system: Overcoming cholesterol-polymer interaction by using pretreated polymer or inert fluorinated ethylene propylene. Biotechnol. Prog. 2005, 21, 1341–1346. [Google Scholar] [CrossRef]
- Eibl, R.; Brändli, J.; Eibl, D. Plant cell bioreactors, in biotechnology. Encyclopedia of life support systems (EOLSS), developed under the auspices of the UNESCO. Eolss Publ. 2012, 3, 3787–3800. [Google Scholar]
- Georgiev, M.I.; Eibl, R.; Zhong, J.J. Hosting the plant cells in vitro: Recent trends in bioreactors. Appl. Microbiol. Biotechnol. 2013, 97, 3787–3800. [Google Scholar] [CrossRef]
- Weathers, P.J.; Towler, M.J.; Xu, J. Bench to batch: Advances in plant cell culture for producing useful products. Appl. Microbiol. Biotechnol. 2009, 85, 1339–1351. [Google Scholar] [CrossRef]
- Kintzios, S.; Kollias, H.; Straitouris, E.; Makri, O. Scale-up micropropagation of sweet basil (Ocimum basilicum L.) in an airlift bioreactor and accumulation of rosmarinic acid. Biotechnol. Lett. 2004, 26, 521–523. [Google Scholar] [CrossRef]
- Fei, L.; Weathers, P.J. From cells to embryos to rooted plantlets in a mist bioreactor. Plant Cell Tissue Organ Cult. 2013, 116, 37–46. [Google Scholar] [CrossRef]
- Eibl, R.; Werner, S.; Eibl, D. Bag bioreactor based on wave-induced motion: Characteristics and applications. Adv. Biochem. Eng. Biotechnol. 2009, 115, 55–87. [Google Scholar] [CrossRef]
- Eibl, R.; Werner, S.; Eibl, D. Disposable bioreactors for plant liquid cultures at Litre-scale. Eng. Life Sci. 2009, 3, 156–164. [Google Scholar] [CrossRef]
- Saenger, W. Cyclodextrin Inclusion Compounds in Research and Industry. Angew. Chem. Int. Ed. 1980, 19, 344–362. [Google Scholar] [CrossRef]
- Morales, M.; Bru, R.; García-Carmona, F.; Barceló, A.R.; Pedreño, M. Effect of dimethyl-β-cyclodextrins on resveratrol metabolism in Gamay grapevine cell cultures before and after inoculation with shape Xylophilus ampelinus. Plant Cell Tissue Organ Cult. 1998, 53, 179–187. [Google Scholar] [CrossRef]
- Bru, R.; Sellés, S.; Casado-Vela, J.; Belchí-Navarro, S.; Pedreño, M.A. Modified Cyclodextrins Are chemically defined glucan inducers of defense responses in grapevine cell cultures. J. Agric. Food Chem. 2006, 54, 65–71. [Google Scholar] [CrossRef]
- Lijavetzky, D.; Almagro, L.; Belchí-Navarro, S.; Martínez-Zapater, J.M.; Bru, R.; Pedreño, M.A. Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures. BMC Res. Notes 2008, 1, 132. [Google Scholar] [CrossRef] [Green Version]
- Zamboni, A.; Gatto, P.; Cestaro, A.; Pilati, S.; Viola, R.; Mattivi, F.; Moser, C.; Velasco, R. Grapevine cell early activation of specific responses to DIMEB, a resveratrol elicitor. BMC Genom. 2009, 10, 363. [Google Scholar] [CrossRef] [Green Version]
- Onrubia, M.; Cusidó, R.; Ramirez, K.; Hernandez-Vazquez, L.; Moyano, E.; Bonfill, M.; Palazon, J. Bioprocessing of plant in vitro systems for the mass production of pharmaceutically important metabolites: Paclitaxel and its derivatives. Curr. Med. Chem. 2013, 20, 880–891. [Google Scholar] [CrossRef]
- Ramirez-Estrada, K.; Osuna, L.; Moyano, E.; Bonfill, M.; Tapia, N.; Cusido, R.M.; Palazón, J. Changes in gene transcription and taxane production in elicited cell cultures of Taxus × media and Taxus globosa. Phytochemistry 2015, 117, 174–184. [Google Scholar] [CrossRef]
- Onrubia, M.; Moyano, E.; Bonfill, M.; Cusidó, R.M.; Goossens, A.; Palazón, J. Coronatine, a more powerful elicitor for inducing taxane biosynthesis in Taxus media cell cultures than methyl jasmonate. J. Plant Physiol. 2013, 170, 211–219. [Google Scholar] [CrossRef]
- Zhao, J.; Davis, L.; Verpoorte, R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 2005, 23, 283–333. [Google Scholar] [CrossRef] [PubMed]
- Sabater-Jara, A.B.; Tudela, L.R.; López-Pérez, A.J. In vitro culture of Taxus sp.: Strategies to increase cell growth and taxoid production. Phytochem. Rev. 2010, 9, 343–356. [Google Scholar] [CrossRef]
- Briceño, Z.; Almagro, L.; Sabater-Jara, A.B.; Calderón, A.A.; Pedreño, M.A.; Ferrer, M.A. Enhancement of phytosterols, taraxasterol and induction of extracellular pathogenesis-related proteins in cell cultures of Solanum lycopersicum cv Micro-Tom elicited with cyclodextrins and methyl jasmonate. J. Plant Physiol. 2012, 169, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Almagro, L.; Perez, A.J.L.; Pedreño, M.A. New method to enhance ajmalicine production in Catharanthus roseus cell cultures based on the use of cyclodextrins. Biotechnol. Lett. 2010, 33, 381–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabater-Jara, A.-B.; Onrubia, M.; Moyano, E.; Bonfill, M.; Palazón, J.; Pedreño, M.A.; Cusido, R.M. Synergistic effect of cyclodextrins and methyl jasmonate on taxane production in Taxus × media cell cultures. Plant Biotechnol. J. 2014, 12, 1075–1084. [Google Scholar] [CrossRef]
- Kim, Y.B.; Kim, J.K.; Uddin, R.; Xu, H.; Park, W.T.; Tuan, P.A.; Li, X.; Chung, E.; Lee, J.-H.; Park, S.U. Metabolomics Analysis and Biosynthesis of Rosmarinic Acid in Agastache rugosa Kuntze Treated with Methyl Jasmonate. PLoS ONE 2013, 8, e64199. [Google Scholar] [CrossRef] [Green Version]
- Xing, B.Y.; Dang, X.L.; Zhang, J.Y.; Wang, B.; Chen, Z.Y.; Dong, J.E. Effects of methyl jasmonate on the biosynthesis of rosmarinic acid and related enzymes in Salvia miltiorrhiza suspension cultures. Zhiwu Shengli Xuebao Plant Physiol. J. 2013, 49, 1326–1332. [Google Scholar] [CrossRef]
- Yan, Q.; Shi, M.; Ng, J.; Wu, J.Y. Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Sci. 2006, 170, 853–858. [Google Scholar] [CrossRef]
- Xiao, Y.; Gao, S.; Di, P.; Chen, J.; Chen, W.; Zhang, L. Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhizahairy root cultures. Physiol. Plant. 2009, 137, 1–9. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, Y.-P.; Wu, Y.-C.; Hua, W.; Chen, C.; Ge, Q.; Wang, Z. Pathway engineering for phenolic acid accumulations in Salvia miltiorrhiza by combinational genetic manipulation. Metab. Eng. 2014, 21, 71–80. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, L.; Gao, S.; Saechao, S.; Di, P.; Chen, J.; Chen, W. The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. PLoS ONE 2011, 6, e29713. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Hao, L.; Wang, F.; Huang, C.; Wu, S. Molecular cloning and overexpression of the tyrosine aminotransferase (TAT) gene leads to increased rosmarinic acid yield in Perilla frutescens. Plant Cell Tissue Organ Cult. 2013, 115, 69–83. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, Y.; Wang, B.; Liang, Z.; Liu, Y.; Liu, F.; Qi, Z. Selective responses of enzymes in the two parallel pathways of rosmarinic acid biosynthetic pathway to elicitors in Salvia miltiorrhiza hairy root cultures. J. Biosci. Bioeng. 2014, 117, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.; Lepiniec, L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010, 15, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Rowan, D.D.; Cao, M.; Lin-Wang, K.; Cooney, J.M.; Jensen, D.J.; Austin, P.T.; Hunt, M.B.; Norling, C.; Hellens, R.P.; Schaffer, R.J.; et al. Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana. New Phytol. 2009, 182, 102–115. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.-L.; Zeng, H.-N.; Shi, M.-Z.; Xie, D.-Y. Development of tobacco callus cultures over expressing Arabidopsis PAP1/MYB75 transcription factor and characterization of anthocyanin biosynthesis. Planta 2008, 229, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Zuluaga, D.L.; Gonzali, S.; Loreti, E.; Pucciariello, C.; Degl’Innocenti, E.; Guidi, L.; Alpi, A.; Perata, P. Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants. Funct. Plant Biol. 2008, 35, 606–618. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, Y.-P.; Wang, Z.-Z. The Arabidopsis PAP1transcription factor plays an important role in the enrichment of phenolic acids in Salvia miltiorrhiza. J. Agric. Food Chem. 2010, 58, 12168–12175. [Google Scholar] [CrossRef]
Class | Compound | Natural Source |
---|---|---|
Phenolic acids | Hydroxycinnamic acids (α-cyano-4-hydroxycinnamic, caffeic, cichoric, cinnamic, chlorogenic, diferulic, coumaric, ferulic, sinapinic acids) | burdock, hawthorn, artichoke, pear, basil, thyme, oregano, apple, aloe, echinacea, strawberries, pineapple, coffee, sunflower, blueberries, oats, rice, orange, peanut |
Hydroxycinnamoyl esters derivatives (rosmarinic, caftaric, coutaric, and fertaric acids, verbascoside) | wide range of aromatic plants, especially mint family, mullein | |
Hydroxybenzoic acids (salicylic and gallic acids) | olives, green pepper, berries | |
Flavonoids | Flavones (apigenin, luteolin, tangeritin, chrysin, 6-hydroxyflavone, orientin) | citrus, tangerine, celery, broccoli, green pepper, parsley, thyme, dandelion, perilla, carrots, |
Flavonols (quercetin, rutin, fisetin, galangin, kaempferol, myricetin, azaleatin) | wide variety of fruits and vegetables | |
Flavanones (blumeatin, butin, eriodictyol, hesperetin, hesperidin, homoeriodictyol, isosakuranetin, naringenin, naringin, pinocembrin, poncirin, sterubin) | citrus, apple, cereal grains | |
Flavanols (catechin, gallocatechin, epicatechin) | cocoa beans, grape seeds, coffee, tea leaves, apple, apricot | |
Flavononols (taxifolin) | citrus, apple | |
Isoflavonoids (genistein, daidzein) | red clover, soy beans, cereal grains | |
Anthocyanins (glycosides of cyanidin, malvidin, delphinidin, pelargonidin, peonidin, and petunidin) | red vegetables and fruits, ornamental pants, black rice, and black soybean | |
Anthocyanidins (capensinidin, cyanidin, delphinidin, europinidin, hirsutidin, pelargonidin, petunidin, cyanidin, malvidin) | grapes, blueberries, roses, purple cabbage, radishes, purple yams | |
Coumarins (coumarin, scopoletin, aesculetin, umbelliferone, aesculetin, herniarin, psoralen, imperatorin) | tonka bean, vanilla grass, sweet woodruff, sweet grass, sweet-clover, cassia, cinnamon, mullein, strawberries, black currants, apricots, cherries | |
Xanthones (mangostin and mangiferin) | mango, mangosteen | |
Quinones | Anthraquinones (emodin, rhein) | rhubarb |
Naphthoquinones (lawsone, lapachol, juglone) | henna, lapacho tree, walnut tree | |
Essential oils | thymol, carvacrol, eugenol, guaiacol, syringol | thyme, savory, oregano, clove |
Stilbenes | resveratrol, piceatannol, pterostilbene, gnetol | grapes |
Lignans | silybin, sesamol, pinoresinol, cordigol | milk thistle, sesame seeds, olive oil |
Biological Activity | Potential Usage |
---|---|
Antioxidant activity and membrane stabilization a | Protection against chemically induced chromosome breakage and primary DNA damage |
Increase of the physical and oxidative stability of liposomes a | |
Reduction of the frequency of micronuclei and the extent of DNA damage induced by doxorubicin a | |
Suppression of UVB-induced alterations to human keratinocytes a | Skin protection against UVB light |
Reduction of IFN-γ and IL-4 production by activated T cells b | Skin protection against atopic dermatitis |
Protection of neurons against insults a | Rosmarinic acid is a promising neuroprotective compound of potential use at the nutritional/pharmaceutical interface |
Cognitive-enhancing effect b | |
Prevention of the development of Alzheimer’s disease b | |
Attenuation of the degeneration of motor neurons and extension of the life span of model mice b | |
Anti-angiogenic activity against retinal neovascularization b | Treatment of retinopathy |
Inhibition of TNF-α-induced ROS generation and NF-κB activation and activation of TNF-α-induced apoptosis a | Promising for cancer prevention and treatment of a variety of human cancers that are resistant to chemotherapy |
The long-term exposure of animals to RA in the diet is sufficient for cancer chemoprevention b | |
Inhibition of bone metastasis from breast carcinomas b | |
Antifibrotic activity a,b | Drug candidate for ameliorating liver fibrosis |
Dramatic apoptotic activity on potentially pathogenic CD4+CD45RO+ effector T cells a | Treatment of rheumatoid arthritis |
Inhibition of caspase-1 activity, mitochondrial apoptotic pathway and activation of NF-κB by cisplatin a | Prevention of harmful side effects of anticancer agents in patients undergoing chemotherapy |
Plant Species | Elicitor Treatment | RA Production (% DW) | Reference |
---|---|---|---|
Coleus blumei | Fungal elicitor | 2.1 | [153] |
MeJA a | 3.3 | [153] | |
DMSO b | 2.9 | [154] | |
Eritrichium sericeum | MeJA | 5.3 | [155] |
Lithospermun erythrorhizon | MeJA | 4 | [156] |
YE c | 1.4 | [148] | |
Cuprum ions | 1.5 | [148] | |
Ortosiphon aristatus | YE | 7 | [157,158] |
Salvia miltiorriza | SA d | - | [159] |
Agastache rugosa | YE | 8 | [160] |
Satureja khuzistanica | MeJA | 25 | [54] |
Main Traits of the Culture | Microbial Cultures | Plant Cell Cultures |
---|---|---|
Size: | Small (1–10 µm) | Big (40–200 µm) |
Growth form: | Single cells and clusters | Clusters and isolated cells |
Growth rate: | Fast | Slow |
Doubling time: | Hours | Days |
Tolerance to shear stress: | Low | Moderate |
Product accumulation: | Extracellular | Intracellular |
Main traits of the process | ||
Culture medium composition: | Simple (few components) | Complex (Salts, sugars, PGRs a, etc.) |
Inoculum density: | Low | High (5–10%) |
Temperature: | 26–36 °C | 25 °C |
Aeration rate: | High | Low |
Culture period: | Days | Weeks |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khojasteh, A.; Mirjalili, M.H.; Alcalde, M.A.; Cusido, R.M.; Eibl, R.; Palazon, J. Powerful Plant Antioxidants: A New Biosustainable Approach to the Production of Rosmarinic Acid. Antioxidants 2020, 9, 1273. https://doi.org/10.3390/antiox9121273
Khojasteh A, Mirjalili MH, Alcalde MA, Cusido RM, Eibl R, Palazon J. Powerful Plant Antioxidants: A New Biosustainable Approach to the Production of Rosmarinic Acid. Antioxidants. 2020; 9(12):1273. https://doi.org/10.3390/antiox9121273
Chicago/Turabian StyleKhojasteh, Abbas, Mohammad Hossein Mirjalili, Miguel Angel Alcalde, Rosa M. Cusido, Regine Eibl, and Javier Palazon. 2020. "Powerful Plant Antioxidants: A New Biosustainable Approach to the Production of Rosmarinic Acid" Antioxidants 9, no. 12: 1273. https://doi.org/10.3390/antiox9121273
APA StyleKhojasteh, A., Mirjalili, M. H., Alcalde, M. A., Cusido, R. M., Eibl, R., & Palazon, J. (2020). Powerful Plant Antioxidants: A New Biosustainable Approach to the Production of Rosmarinic Acid. Antioxidants, 9(12), 1273. https://doi.org/10.3390/antiox9121273