A Bibliometric Review of Publications on Oxidative Stress and Chemobrain: 1990–2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Search Strategy
2.2. Data Analyses and Presentation
3. Results
3.1. Output of Research on Oxidative Stress, Chemotherapy, Cancer, and Chemobrain in the Form of Publications Has Been Increasing from 1990 to 2019
3.2. Evolution Over Time of Bibliographic Terms Occurring in Related Publications
3.3. Evolution of Oxidative Stress and Chemobrain-Related Research in Terms of Countries of Origin
3.4. Profile of the Top 5 Productive and Most Cited Authors 1990–2019
3.5. Profile of the Top 5 Productive and Most Cited Journals 1990–2019
3.6. Profile of the Top 5 Productive and Most Cited Organizations 1990–2019
4. Discussion
4.1. Trends in Oxidative Stress and Chemotherapy Research
4.2. A Changing Global Landscape of Oxidative Stress and Chemotherapy Research
4.3. Author Productivity and Citation Impact
4.4. Journal Productivity and Citation Impact
4.5. Organizational Productivity and Citation Impact
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
VEGF | Vascular endothelial growth factor |
ROS | Reactive oxygen species |
CNS | Central nervous system |
SOD | Superoxide dismutase |
NIH | National Institutes of Health |
NCI | National Cancer Institute |
CSIR | Council of Scientific Industrial Research |
UTMD | University of Texas MD |
Nrf2 | Nuclear factor erythroid-derived 2 related factor |
Keap1 | Kelch-like ECH-associated protein 1 |
DOX | Doxorubicin |
NAC | N-acetylcysteine |
NP | Nanoparticles |
ts | Topic search |
References
- Sun, G.H.; Houlton, J.J.; Moloci, N.M.; MacEachern, M.P.; Bradford, C.R.; Prince, M.E.; Jagsi, R. Prospective head and neck cancer research: A four-decade bibliometric perspective. Oncologist 2013, 18, 584–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNamee, L.M.; Ledley, F.D. Modeling timelines for translational science in cancer; the impact of technological maturation. PLoS ONE 2017, 12, e0174538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, K.; Yu, S.; Yu, M.; Sun, D.; Huang, Z.; Xing, H.; Bi, J.; Li, Z.; Li, Z.; Liu, X.; et al. Bibliometric Analysis of Tumor Immunotherapy Studies. Med. Sci. Monit. 2018, 24, 3405–3414. [Google Scholar] [CrossRef] [PubMed]
- Baş, Y.; Şenel, E. A Holistic Evaluation of Articles on PD-1 and PD-L1 Published Between 1975 and 2017: A Bibliometric Analysis. Cancer Inf. 2019, 18, 1176935119852620. [Google Scholar] [CrossRef]
- Cabral, B.P.; Fonseca, M.D.G.D.; Mota, F.B. The recent landscape of cancer research worldwide: A bibliometric and network analysis. Oncotarget 2018, 9, 30474–30484. [Google Scholar] [CrossRef]
- Moral-Munoz, J.A.; Carballo-Costa, L.; Herrera-Viedma, E.; Cobo, M.J. Production Trends, Collaboration, and Main Topics of the Integrative and Complementary Oncology Research Area: A Bibliometric Analysis. Integr. Cancer Ther. 2019, 18, 1534735419846401. [Google Scholar] [CrossRef] [Green Version]
- Stout, N.L.; Alfano, C.M.; Belter, C.W.; Nitkin, R.; Cernich, A.; Lohmann Siegel, K.; Chan, L. A Bibliometric Analysis of the Landscape of Cancer Rehabilitation Research (1992–2016). J. Natl. Cancer Inst. 2018, 110, 815–824. [Google Scholar] [CrossRef] [Green Version]
- Mulvany, F.; Ponder, B.A.J. Breast Cancer Research—The first ten years. Breast Cancer Res. 2008, 10, 103. [Google Scholar] [CrossRef]
- Glynn, R.W.; Scutaru, C.; Kerin, M.J.; Sweeney, K.J. Breast cancer research output, 1945–2008: A bibliometric and density-equalizing analysis. Breast Cancer Res. 2010, 12, R108. [Google Scholar] [CrossRef] [Green Version]
- Sweileh, W.M.; Zyoud, S.E.H.; Al-Jabi, S.W.; Sawalha, A.F. Contribution of Arab countries to breast cancer research: Comparison with non-Arab Middle Eastern countries. BMC Womens Health 2015, 15, 25. [Google Scholar] [CrossRef] [Green Version]
- Thonon, F.; Saghatchian, M.; Nerfie, A.; Delaloge, S. Tendances et évolutions de la recherche française sur le cancer du sein: Étude bibliométrique. Bull. Cancer 2015, 102, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Perez-Santos, M.; Anaya, M. Mexican Breast Cancer Research Output, 2003–2012. Asian Pac. J. Cancer Prev. 2013, 14, 5921–5923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhai, X.; Liu, C.; Wang, N.; Wang, Y. Trends of triple negative breast cancer research (2007–2015): A bibliometric study. Medicine 2016, 95, e5427. [Google Scholar] [CrossRef] [PubMed]
- Ha, R.; Chow, D.; Wynn, R. Global Trend in Breast Cancer Imaging Research 1992–2012: Bibliometric Study. Am. J. Roentgenol. 2014, 202, 696–697. [Google Scholar] [CrossRef]
- Anaya-Ruiz, M.; Perez-Santos, M. Innovation status of gene therapy for breast cancer. Asian Pac. J. Cancer Prev. 2015, 16, 4133–4136. [Google Scholar] [CrossRef] [Green Version]
- Kotepui, M.; Wannaiampikul, S.; Chupeerach, C.; Duangmano, S. A bibliometric analysis of diets and breast cancer research. Asian Pac. J. Cancer Prev. 2014, 15, 7625–7628. [Google Scholar] [CrossRef] [Green Version]
- Yeung, A.W.K.; Abdel-Daim, M.M.; Abushouk, A.I.; Kadonosono, K. A literature analysis on anti-vascular endothelial growth factor therapy (anti-VEGF) using a bibliometric approach. Naunyn Schmiedeberg’s Arch. Pharmacol. 2019, 392, 393–403. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; El-Demerdash, A.; Berindan-Neagoe, I.; Atanasov, A.G.; Ho, Y.S. Molecular Responses of Cancers by Natural Products: Modifications of Autophagy Revealed by Literature Analysis. Crit. Rev. Oncog. 2018, 23, 347–370. [Google Scholar] [CrossRef]
- Teles, R.H.G.; Moralles, H.F.; Cominetti, M.R. Global trends in nanomedicine research on triple negative breast cancer: A bibliometric analysis. Int. J. Nanomed. 2018, 13, 2321–2336. [Google Scholar] [CrossRef] [Green Version]
- Tannock, I.F.; Ahles, T.A.; Ganz, P.A.; Van Dam, F.S. Cognitive impairment associated with chemotherapy for cancer: Report of a workshop. J. Clin. Oncol. 2004, 22, 2233–2239. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 2019, 69, 363–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, M.S.U.; Ansari, J.; Spooner, D.; Hussain, S.A. Chemotherapy for breast cancer (Review). Oncol. Rep. 2010, 24, 1121–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coombes, R.C.; Bliss, J.M.; Wils, J.; Morvan, F.; Espié, M.; Amadori, D.; Gambrosier, P.; Richards, M.; Aapro, M.; Villar-Grimalt, A.; et al. Adjuvant cyclophosphamide, methotrexate, and fluorouracil versus fluorouracil, epirubicin, and cyclophosphamide chemotherapy in premenopausal women with axillary node-positive operable breast cancer: Results of a randomized trial. The International Collab. J. Clin. Oncol. 1996, 14, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Henderson, I.C.; Berry, D.A.; Demetri, G.D.; Cirrincione, C.T.; Goldstein, L.J.; Martino, S.; Ingle, J.N.; Cooper, M.R.; Hayes, D.F.; Tkaczuk, K.H.; et al. Improved outcomes from adding sequential Paclitaxel but not from escalating Doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J. Clin. Oncol. 2003, 21, 976–983. [Google Scholar] [CrossRef]
- Fisher, B.; Brown, A.M.; Dimitrov, N.V.; Poisson, R.; Redmond, C.; Margolese, R.G.; Bowman, D.; Wolmark, N.; Wickerham, D.L.; Kardinal, C.G. Two months of doxorubicin-cyclophosphamide with and without interval reinduction therapy compared with 6 months of cyclophosphamide, methotrexate, and fluorouracil in positive-node breast cancer patients with tamoxifen-nonresponsive tumors: Results from t. J. Clin. Oncol. 1990, 8, 1483–1496. [Google Scholar] [CrossRef]
- Paradiso, A.; Schittulli, F.; Cellamare, G.; Mangia, A.; Marzullo, F.; Lorusso, V.; De Lena, M. Randomized clinical trial of adjuvant fluorouracil, epirubicin, and cyclophosphamide chemotherapy for patients with fast-proliferating, node-negative breast cancer. J. Clin. Oncol. 2001, 19, 3929–3937. [Google Scholar] [CrossRef]
- Shapiro, C.L.; Recht, A. Side effects of adjuvant treatment of breast cancer. N. Engl. J. Med. 2001, 344, 1997–2008. [Google Scholar] [CrossRef]
- Partridge, A.H.; Burstein, H.J.; Winer, E.P. Side effects of chemotherapy and combined chemohormonal therapy in women with early-stage breast cancer. J. Natl. Cancer Inst. Monogr. 2001, 2001, 135–142. [Google Scholar] [CrossRef]
- Rivera, E.; Cianfrocca, M. Overview of neuropathy associated with taxanes for the treatment of metastatic breast cancer. Cancer Chemother. Pharmacol. 2015, 75, 659–670. [Google Scholar] [CrossRef] [Green Version]
- Abd El -gawad, H.; El-Sawalhi, M. Nitric oxide and oxidative stress in brain and heart of normal rats treated with doxorubicin: Role of aminoguanidine. J. Biochem. Mol. Toxicol. 2004, 18, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Oboh, G.; Akomolafe, T.L.; Adefegha, S.A.; Adetuyi, A.O. Inhibition of cyclophosphamide-induced oxidative stress in rat brain by polar and non-polar extracts of Annatto (Bixa orellana) seeds. Exp. Toxicol. Pathol. 2011, 63, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Nafees, S.; Rashid, S.; Ali, N.; Hasan, S.K.; Sultana, S. Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: Role of NFκB/MAPK pathway. Chem. Biol. Interact. 2015, 231, 98–107. [Google Scholar] [CrossRef]
- Ince, S.; Kucukkurt, I.; Demirel, H.H.; Acaroz, D.A.; Akbel, E.; Cigerci, I.H. Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats. Chemosphere 2014, 108, 197–204. [Google Scholar] [CrossRef]
- Joshi, G.; Aluise, C.D.; Cole, M.P.; Sultana, R.; Pierce, W.M.; Vore, M.; St Clair, D.K.; Butterfield, D.A. Alterations in brain antioxidant enzymes and redox proteomic identification of oxidized brain proteins induced by the anti-cancer drug adriamycin: Implications for oxidative stress-mediated chemobrain. Neuroscience 2010, 166, 796–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacourt, T.E.; Heijnen, C.J. Mechanisms of Neurotoxic Symptoms as a Result of Breast Cancer and Its Treatment: Considerations on the Contribution of Stress, Inflammation, and Cellular Bioenergetics. Curr. Breast Cancer Rep. 2017, 9, 70–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pritchard, A. Statistical Bibliography or Bibliometrics? J. Doc. 1969, 25, 348–349. [Google Scholar]
- Wallin, J.A. Bibliometric methods: Pitfalls and possibilities. Basic Clin. Pharmacol. Toxicol. 2005, 97, 261–275. [Google Scholar] [CrossRef]
- Ellegaard, O.; Wallin, J.A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [CrossRef] [Green Version]
- Waltman, L.; Van Eck, N.J.; Noyons, E.C.M. A unified approach to mapping and clustering of bibliometric networks. J. Informetr. 2010, 4, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Word Frequency Data. Available online: https://www.wordfrequency.info/free.asp (accessed on 15 January 2020).
- Yeung, A.W.K.; Tzvetkov, N.T.; El-Tawil, O.S.; Bungǎu, S.G.; Abdel-Daim, M.M.; Atanasov, A.G. Antioxidants: Scientific Literature Landscape Analysis. Oxid. Med. Cell Longev. 2019, 2019, 8278454. [Google Scholar] [CrossRef] [PubMed]
- Melgunov, V.I. Impact Factors of Scientific Journals in 1999. Available online: http://www.genebee.msu.su/journals/if99a.html (accessed on 21 January 2020).
- Impact Factor List 2009. Available online: https://www.citefactor.org/journal-impact-factor-list-2009.html (accessed on 21 January 2020).
- Science Journal Impact Factor. Available online: https://www.scijournal.org/ (accessed on 20 April 2020).
- Malavolta, M.; Bracci, M.; Santarelli, L.; Sayeed, M.A.; Pierpaoli, E.; Giacconi, R.; Costarelli, L.; Piacenza, F.; Basso, A.; Cardelli, M.; et al. Inducers of Senescence, Toxic Compounds, and Senolytics: The Multiple Faces of Nrf2-Activating Phytochemicals in Cancer Adjuvant Therapy. Mediat. Inflamm. 2018, 2018, 4159013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014, 15, 482–496. [Google Scholar] [CrossRef] [PubMed]
- Campisi, J.; Di Fagagna, F.D.A. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007, 8, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Provinciali, M.; Cardelli, M.; Marchegiani, F.; Pierpaoli, E. Impact of cellular senescence in aging and cancer. Curr. Pharm. Des. 2013, 19, 1699–1709. [Google Scholar]
- Pierpaoli, E.; Viola, V.; Pilolli, F.; Piroddi, M.; Galli, F.; Provinciali, M. Gamma- and delta-tocotrienols exert a more potent anticancer effect than alpha-tocopheryl succinate on breast cancer cell lines irrespective of HER-2/neu expression. Life Sci. 2010, 86, 668–675. [Google Scholar] [CrossRef]
- Kansanen, E.; Kuosmanen, S.M.; Leinonen, H.; Levonen, A.L. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol. 2013, 1, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q. Natural forms of vitamin E: Metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic. Biol. Med. 2014, 72, 76–90. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q. Natural Forms of Vitamin E as Effective Agents for Cancer Prevention and Therapy. Adv. Nutr. 2017, 8, 850–867. [Google Scholar] [CrossRef]
- Ahn, K.S.; Sethi, G.; Krishnan, K.; Aggarwal, B.B. Gamma-tocotrienol inhibits nuclear factor-kappaB signaling pathway through inhibition of receptor-interacting protein and TAK1 leading to suppression of antiapoptotic gene products and potentiation of apoptosis. J. Biol. Chem. 2007, 282, 809–820. [Google Scholar] [CrossRef] [Green Version]
- Paiva, S.A.; Russell, R.M. Beta-carotene and other carotenoids as antioxidants. J. Am. Coll. Nutr. 1999, 18, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Druesne-Pecollo, N.; Latino-Martel, P.; Norat, T.; Barrandon, E.; Bertrais, S.; Galan, P.; Hercberg, S. Beta-carotene supplementation and cancer risk: A systematic review and metaanalysis of randomized controlled trials. Int. J. Cancer 2010, 127, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Neuhouser, M.L. Dietary flavonoids and cancer risk: Evidence from human population studies. Nutr. Cancer 2004, 50, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Amawi, H.; Ashby, C.R., Jr.; Tiwari, A.K. Cancer chemoprevention through dietary flavonoids: What’s limiting? Chin. J. Cancer 2017, 36, 50. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.S.; Kucuk, O. Zinc in cancer prevention. Cancer Metastasis Rev. 2002, 21, 291–295. [Google Scholar] [CrossRef]
- McCubrey, J.A.; Lertpiriyapong, K.; Steelman, L.S.; Abrams, S.L.; Yang, L.V.; Murata, R.M.; Rosalen, P.L.; Scalisi, A.; Neri, L.M.; Cocco, L.; et al. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging 2017, 9, 1477–1536. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.; Wang, Z.; Xu, Y.; Zhou, P.; Cao, J.; Li, Y.; Chen, Y.; Sun, J.; Fu, L. Resveratrol prevents doxorubicin-induced cardiotoxicity in H9c2 cells through the inhibition of endoplasmic reticulum stress and the activation of the Sirt1 pathway. Int. J. Mol. Med. 2015, 36, 873–880. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Sharma, R.; McElhanon, K.; Allen, C.D.; Megyesi, J.K.; Beneš, H.; Singh, S.P. Sulforaphane protects the heart from doxorubicin-induced toxicity. Free Radic. Biol. Med. 2015, 86, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Bavarsad Shahripour, R.; Harrigan, M.R.; Alexandrov, A.V. N-acetylcysteine (NAC) in neurological disorders: Mechanisms of action and therapeutic opportunities. Brain Behav. 2014, 4, 108–122. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Del Giovane, C.; Dennert, G.; Zwahlen, M.; Brinkman, M.; Zeegers, M.P.; Horneber, M.; D’Amico, R.; Crespi, C.M. Selenium for preventing cancer. Cochrane Database Syst. Rev. 2018, 1, CD005195. [Google Scholar] [CrossRef]
- Nam, S.M.; Seo, M.; Seo, J.-S.; Rhim, H.; Nahm, S.-S.; Cho, I.-H.; Chang, B.-J.; Kim, H.-J.; Choi, S.-H.; Nah, S.-Y. Ascorbic Acid Mitigates D-galactose-Induced Brain Aging by Increasing Hippocampal Neurogenesis and Improving Memory Function. Nutrients 2019, 11, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, V.M.; Carvalho, F.; Duarte, J.A.; Bastos Mde, L.; Remiao, F. The heart as a target for xenobiotic toxicity: The cardiac susceptibility to oxidative stress. Chem. Res. Toxicol. 2013, 26, 1285–1311. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Susukida, I.; Uzuka, Y.; Kanai, H. Noninvasive early detection of anthracycline-induced cardiotoxicity in patients with hematologic malignancies using the phased tracking method. Cancer Med. 2016, 5, 2276–2285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, T.C.; Neilan, T.G.; Francis, S.; Plana, J.C.; Scherrer-Crosbie, M. Anthracycline-Induced Cardiomyopathy in Adults. Compr. Physiol. 2015, 5, 1517–1540. [Google Scholar]
- Chen, Y.; Jungsuwadee, P.; Vore, M.; Butterfield, D.A.; St Clair, D.K. Collateral damage in cancer chemotherapy: Oxidative stress in nontargeted tissues. Mol. Interv. 2007, 7, 147–156. [Google Scholar] [CrossRef]
- Dhingra, R.; Margulets, V.; Chowdhury, S.R.; Thliveris, J.; Jassal, D.; Fernyhough, P.; Dorn, G.W.; Kirshenbaum, L.A. Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling. Proc. Natl. Acad. Sci. USA. 2014, 111, E5537–E5544. [Google Scholar] [CrossRef] [Green Version]
- Balbi, C.; Costa, A.; Barile, L.; Bollini, S. Message in a Bottle: Upgrading Cardiac Repair into Rejuvenation. Cells 2020, 9, 724. [Google Scholar] [CrossRef] [Green Version]
- Belachew, S.A.; Erku, D.A.; Mekuria, A.B.; Gebresillassie, B.M. Pattern of chemotherapy-related adverse effects among adult cancer patients treated at Gondar University Referral Hospital, Ethiopia: A cross-sectional study. Drug Healthc. Patient Saf. 2016, 8, 83–90. [Google Scholar] [CrossRef] [Green Version]
- De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomed. 2008, 3, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Afzal, M.; Alharbi, K.S.; Alruwaili, N.K.; Al-Abassi, F.A.; Al-Malki, A.A.L.; Kazmi, I.; Kumar, V.; Kamal, M.A.; Nadeem, M.S.; Aslam, M.; et al. Nanomedicine in treatment of breast cancer—A challenge to conventional therapy. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Sugerman, D.T. Chemotherapy. JAMA 2013, 310, 218. [Google Scholar] [CrossRef] [Green Version]
- Higgins, M.J.; Baselga, J. Targeted therapies for breast cancer. J. Clin. Investig. 2011, 121, 3797–3803. [Google Scholar] [CrossRef] [PubMed]
Standard Competition Ranking | Country | Articles (%) |
---|---|---|
First | USA | 184 (48.4%) |
Second | Japan | 33 (8.7%) |
Third | Canada | 24 (6.3%) |
Fourth | France | 22 (5.8%) |
Fifth | England | 20 (5.3%) |
No. | Country | Citing Articles 1990–1999 | Citing Articles, % of All Countries | Citations Per Publication a |
---|---|---|---|---|
1 | USA | 6241 | 37.3 | 33.9 |
2 | China | 1251 | 7.5 | 312.8 |
3 | Japan | 1153 | 6.9 | 34.9 |
4 | Germany | 1067 | 6.4 | 59.3 |
5 | Italy | 892 | 5.3 | 44.6 |
Total of 1–5 | 10,604 | 63.3 | 40.9 | |
All countries | 16,747 | - | 44.1 |
Standard Competition Ranking | Country | Articles (%) |
---|---|---|
First | USA | 727 (39.1%) |
Second | Japan | 140 (7.5%) |
Third | China | 131 (7.0%) |
Fourth | India | 111 (6.0%) |
Fifth | South Korea | 98 (5.3%) |
No. | Country | Citing Articles 2000–2009 | Citing Articles, % of All Countries | Citations Per Publication a |
---|---|---|---|---|
1 | USA | 23,361 | 30.0 | 32.1 |
2 | China | 13,411 | 17.2 | 102.4 |
3 | Italy | 4594 | 5.9 | 60.4 |
4 | Japan | 4249 | 5.5 | 30.4 |
5 | India | 4105 | 5.3 | 37.0 |
Total of 1–5 | 49,720 | 63.9 | 26.7 | |
All countries | 77,858 | - | 41.9 |
Standard Competition Ranking | Country | Articles (%) |
---|---|---|
First | China | 1930 (29.2%) |
Second | USA | 1497 (22.6%) |
Third | India | 659 (10.0%) |
Fourth | South Korea | 479 (7.2%) |
Fifth | Italy | 291 (4.4%) |
No. | Country | Citing Articles 2010–2019 | Citing Articles, % of All Countries | Citations Per Publication a |
---|---|---|---|---|
1 | China | 1920 | 29.27 | 0.07 |
2 | USA | 1476 | 22.50 | 0.08 |
3 | India | 658 | 10.03 | 0.13 |
4 | South Korea | 474 | 7.23 | 0.12 |
5 | Italy | 286 | 4.36 | 0.06 |
Total of 1–5 | 4814 | 73.4 | 0.06 | |
All countries | 80,625 | - | 0.08 |
Standard Competition Ranking | Author | Affiliation | Publications |
---|---|---|---|
First | Hasinoff, B.B. | University of Manitoba, Winnipeg, MB, Canada | 12 |
Second | Oberley, L.W. | University of Iowa, Iowa City, Iowa | 10 |
Third | Ferrans, V.J. | National Institutes of Health, Bethesda, Maryland, USA | 6 |
Third | Gutierrez, P.L. | University of Maryland Medical School, Baltimore, Maryland, USA | 6 |
Third | Herman, E.H. | Food and Drug Administration, Laurel, Maryland, USA | 6 |
No. | Author | Citing Articles 1990–1999 | Citing Articles, % of All Authors | Citations Per Publication a |
---|---|---|---|---|
1 | Oberley, L.W. | 65 | 0.39 | 6.5 |
2 | Hasinoff, B.B. | 54 | 0.32 | 4.5 |
3 | Aggarwal, B.B. | 53 | 0.32 | 17.7 |
4 | Kang, Y.J. | 53 | 0.32 | 13.3 |
5 | Li, Y. | 52 | 0.31 | NA * |
Total of 1–5 | 277 | 1.70 | 9.6 | |
All authors | 16,744 | - | 44.1 |
Standard Competition Ranking | Author | Affiliation | Publications |
---|---|---|---|
First | Ambrosone, C.B. | Derald H. Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, New York | 18 |
Second | Oberley, L.W. | University of Iowa, Iowa City, Iowa | 17 |
Third | Spitz, D.R. | University of Iowa, Iowa City, Iowa | 16 |
Fourth | Kalyanaraman, B. | Medical College of Wisconsin, Milwaukee, WI | 13 |
Fifth | Joseph, J. | Medical College of Wisconsin, Milwaukee, WI | 12 |
No. | Author | Citing Articles 2000–2009 | Citing Articles, % of All Authors | Citations Per Publication a |
---|---|---|---|---|
1 | Zhang, Y. | 448 | 0.58 | 112.0 |
2 | Wang, Y. | 432 | 0.56 | 216.0 |
3 | Liu, Y. | 414 | 0.53 | 207.0 |
4 | Li, Y. | 366 | 0.47 | 73.2 |
5 | Zhang, L. | 332 | 0.43 | 66.4 |
Total of 1–5 | 1992 | 2.56 | 1.1 | |
All authors | 77,858 | - | 41.9 |
Standard Competition Ranking | Author | Affiliation | Publications |
---|---|---|---|
First | Zhang, Y. | University of Florida, Gainesville, FL, USA | 76 |
Second | Wang, Y. | Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia | 64 |
Third | Liu, Y. | California Pacific Medical Center, Research Institute, San Francisco, CA, USA | 62 |
Fourth | Li, Y. | Shenyang Pharmaceutical University, Shenyang, China | 56 |
Fifth | Li, J. | Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, China | 54 |
No. | Author | Citing Articles 2010–2019 | Citing Articles, % of All Authors | Citations Per Publication a |
---|---|---|---|---|
1 | Zhang, Y. | 914 | 1.13 | 12.03 |
2 | Wang, Y. | 810 | 1.01 | 12.66 |
3 | Liu, Y. | 766 | 0.95 | 12.35 |
4 | Li, Y. | 713 | 0.88 | 12.73 |
5 | Wang, J. | 670 | 0.83 | 17.63 |
Total of 1–5 | 3873 | 4.80 | 0.59 | |
All authors | 80,625 | - | 12.29 |
Standard Competition Ranking | Journal | Total (%) | IF (1999) |
---|---|---|---|
First | Biochemical Pharmacology | 19 (5%) | 2.755 |
Second | Cancer Research | 15 (3.9%) | 8.614 |
Third | Free Radical Biology and Medicine | 12 (3.2%) | 4.079 |
Fourth | Archives of Biochemistry and Biophysics | 10 (2.6%) | 2.386 |
Fourth | Chemical Research in Toxicology | 10 (2.6%) | 3.47 |
No. | Journal | Citing Articles 1990–1999 | Citing Articles, % of All Journals | Citations Per Publication a |
---|---|---|---|---|
1 | Journal of Biological Chemistry | 363 | 2.2 | 36.3 |
2 | Free Radical Biology and Medicine | 353 | 2.1 | 29.4 |
3 | Cancer Research | 263 | 1.6 | 17.5 |
4 | PLoS One | 155 | 0.9 | NA * |
5 | Anticancer Research | 153 | 0.9 | 17.0 |
Total of 1–5 | 1287 | 7.7 | 28.0 | |
All Journals | 16,744 | - | 44.1 |
Standard Competition Ranking | Journal | Total (%) | IF (2009) |
---|---|---|---|
First | Cancer Research | 78 (4.2%) | 7.543 |
Second | Journal of Biological Chemistry | 64 (3.4%) | 5.328 |
Third | Free Radical Biology and Medicine | 54 (2.9%) | 6.081 |
Fourth | International Journal of Cancer | 33 (1.8%) | 4.722 |
Fifth | Oncogene | 25 (1.3%) | 7.135 |
No. | Journal | Citing Articles 2000–2009 | Citing Articles, % of All Journals | Citations Per Publication a |
---|---|---|---|---|
1 | PLoS One | 1664 | 2.14 | 416.0 |
2 | Free Radical Biology and Medicine | 984 | 1.26 | 18.2 |
3 | Journal of Biological Chemistry | 860 | 1.11 | 13.4 |
4 | Cancer Research | 644 | 0.83 | 8.3 |
5 | Oncotarget | 582 | 0.75 | NA * |
Total of 1–5 | 4734 | 6.08 | 23.7 | |
All Journals | 77,858 | - | 41.9 |
Standard Competition Ranking | Journal | Total (%) | IF (2018/2019) |
---|---|---|---|
First | PLoS One | 198 (3.0%) | 2.9 |
Second | Oncotarget | 148 (2.2%) | 3.7 |
Third | Scientific Reports | 117 (1.8%) | 4.1 |
Fourth | Free Radical Biology and Medicine | 107 (1.6%) | 5.5 |
Fifth | International Journal of Molecular Sciences | 85 (1.3%) | 4.2 |
No. | Journal | Citing Articles 2010–2019 | Citing Articles, % of All Journals | Citations Per Publication a |
---|---|---|---|---|
1 | PLoS One | 1563 | 1.94 | 7.89 |
2 | Oncotarget | 1412 | 1.75 | 9.54 |
3 | Scientific Reports | 1360 | 1.69 | 11.62 |
4 | International Journal of Molecular Sciences | 1181 | 1.47 | 13.89 |
5 | Molecules | 714 | 0.89 | 19.30 |
Total of 1–5 | 6230 | 7.73 | 0.95 | |
All Journals | 80,625 | - | 12.29 |
Standard Competition Ranking | Organizations | Articles (%) |
---|---|---|
First | National Institutes of Health (NIH), USA | 24 (6.3%) |
Second | University of Texas System | 16 (4.2%) |
Third | NIH National Cancer Institute (NCI) | 14 (3.7%) |
Third | University of Manitoba, Canada | 14 (3.7%) |
Fourth | University of Minnesota System | 12 (3.2%) |
No. | Institution | Citing Articles 1990–1999 | Citing Articles, % of All Institutions | Citations Per Publication a |
---|---|---|---|---|
1 | University of Texas System | 461 | 2.8 | 28.8 |
2 | National Institutes of Health (NIH) | 422 | 2.5 | 17.6 |
3 | University of California System | 414 | 2.5 | 51.8 |
4 | Institut National De La Sante et de la Recherche Medicale Inserm | 277 | 1.7 | 55.4 |
5 | Harvard University | 249 | 1.5 | 62.3 |
Total of 1–5 | 1823 | 10.9 | 32.0 | |
All Institutions | 16,744 | - | 44.1 |
Standard Competition Ranking | Organizations | Articles (%) |
---|---|---|
First | National Institutes of Health (NIH), USA | 73 (3.9%) |
Second | NIH National Cancer Institute (NCI) | 51 (2.7%) |
Third | University of Texas System | 49 (2.6%) |
Fourth | University of California System | 42 (2.3%) |
Fifth | University of Iowa | 40 (2.2%) |
No. | Institution | Citing Articles 2000–2009 | Citing Articles, % of All Institutions | Citations Per Publication a |
---|---|---|---|---|
1 | University of Texas System | 2020 | 2.59 | 41.22 |
2 | University of California System | 1693 | 2.17 | 40.31 |
3 | National Institutes of Health (NIH), USA | 1491 | 1.92 | 20.42 |
4 | Harvard University | 1339 | 1.72 | 44.63 |
5 | Institut National De La Sante et de la Recherche Medicale Inserm | 1204 | 1.55 | 44.59 |
Total of 1–5 | 7747 | 9.95 | 4.17 | |
All Institutions | 77,858 | - | 41.88 |
Standard Competition Ranking | Organizations | Articles (%) |
---|---|---|
First | Chinese Academy of Sciences | 159 (2.4%) |
Second | University of Texas System | 142 (2.1%) |
Third | Council of Scientific Industrial Research CSIR India | 124 (1.9%) |
Fourth | Shanghai Jiao Tong University | 86 (1.3%) |
Fifth | UTMD Anderson Cancer Center | 85 (1.3%) |
No. | Institution | Citing Articles 2010–2019 | Citing Articles, % of All Institutions | Citations Per Publication a |
---|---|---|---|---|
1 | Chinese Academy of Sciences | 2332 | 2.89 | 14.76 |
2 | University of Texas System | 1449 | 1.80 | 10.50 |
3 | Harvard University | 1270 | 1.58 | 17.40 |
4 | University of California System | 1235 | 1.53 | 17.64 |
5 | Shanghai Jiao Tong University | 1058 | 1.31 | 12.30 |
Total of 1–5 | 7344 | 9.11 | 1.12 | |
All Institutions | 80,625 | - | 12.29 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McElroy, T.; Allen, A.R. A Bibliometric Review of Publications on Oxidative Stress and Chemobrain: 1990–2019. Antioxidants 2020, 9, 439. https://doi.org/10.3390/antiox9050439
McElroy T, Allen AR. A Bibliometric Review of Publications on Oxidative Stress and Chemobrain: 1990–2019. Antioxidants. 2020; 9(5):439. https://doi.org/10.3390/antiox9050439
Chicago/Turabian StyleMcElroy, Taylor, and Antiño R. Allen. 2020. "A Bibliometric Review of Publications on Oxidative Stress and Chemobrain: 1990–2019" Antioxidants 9, no. 5: 439. https://doi.org/10.3390/antiox9050439
APA StyleMcElroy, T., & Allen, A. R. (2020). A Bibliometric Review of Publications on Oxidative Stress and Chemobrain: 1990–2019. Antioxidants, 9(5), 439. https://doi.org/10.3390/antiox9050439