Retinal Nerve Fiber Layer Thickness and Oxidative Stress Parameters in Migraine Patients without Aura: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Retinal Fiber Layer Thickness Assessment by Optical Coherence Tomography
2.2. Oxidative Stress Parameters
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Migraine and Oxidant/Antioxidant Balance Assessment
4.2. Migraine and RNFL Thickness Assessment
4.3. Correlation Between Oxidant/Antioxidant Balance and RNFL Thickness
4.4. Study Limitation and Perspectives
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stovner, L.J.; Hagen, K.; Jensen, R.; Katsarava, Z.; Lipton, R.; Scher, A.; Steiner, T.; Zwart, J.A. The global burden of headache: A documentation of headache prevalence and disability worldwide. Cephalalgia 2007, 27, 193–210. [Google Scholar] [CrossRef] [PubMed]
- Ferroni, P.; Barbanti, P.; Della-Morte, D.; Palmirotta, R.; Jirillo, E.; Guadagni, F. Redox mechanisms in migraine: Novel therapeutics and dietary interventions. Antioxid. Redox Signal. 2018, 28, 1144–1183. [Google Scholar] [CrossRef]
- Bulboacă, A.; Dogaru, G.; Blidaru, M.; Bulboaca, A.C.; Stănescu, I. Evaluation of oxidative stress in migraine patients with visual aura—the experience of an Rehabilitation Hospital. Balneo Res. J. 2018, 9, 303–308. [Google Scholar] [CrossRef]
- Martin, H.; Sanchez del Rio, M.; de Silanes, C.L.; Alvarez-Linera, J.; Hernandez, J.A.; Pareja, J.A. Photoreactivity of the occipital cortex measured by functional magnetic resonance imaging-blood oxygenation level dependent in migraine patients and healthy volunteers: Pathophysiological implications. Headache 2011, 51, 1520–1528. [Google Scholar] [CrossRef] [PubMed]
- Denuelle, M.; Boulloche, N.; Payoux, P.; Fabre, N.; Trotter, Y.; Geraud, G. A PET study of photophobia during spontaneous migraine attacks. Neurology 2011, 76, 213–218. [Google Scholar] [CrossRef]
- Huang, J.; Zong, X.; Wilkins, A.; Jenkins, B.; Bozoki, A.; Cao, Y. fMRI evidence that precision ophthalmic tints reduce cortical hyperactivation in migraine. Cephalalgia 2011, 31, 925–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borkum, J.M. Migraine triggers and oxidative stress: A narrative review and synthesis. Headache 2016, 56, 12–35. [Google Scholar] [CrossRef]
- Förster, A.; Wenz, H.; Kerl, H.U.; Brockmann, M.A.; Groden, C. Perfusion patterns in migraine with aura. Cephalalgia 2014, 34, 870–876. [Google Scholar] [CrossRef]
- Ekinci, M.; Ceylan, E.; Cağatay, H.H.; Keleş, S.; Hüseyinoğlu, N.; Tanyildiz, B.; Cakici, O.; Kartal, B. Retinal nerve fiber layer, ganglion cell layer and choroid thinning in migraine with aura. BMC Ophthalmol. 2014, 14, 75. [Google Scholar] [CrossRef] [Green Version]
- Reggio, E.; Chisari, C.G.; Ferrigno, G.; Keleş, S.; Hüseyinoğlu, N.; Tanyildiz, B.; Cakici, O.; Kartal, B. Migraine causes retinal and choroidal structural changes: Evaluation with ocular coherence tomography. J. Neurol. 2017, 264, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Sacco, S.; Ricci, S.; Carolei, A. Migraine and vascular diseases: A review of the evidence and potential implications for management. Cephalalgia 2012, 32, 785–795. [Google Scholar] [CrossRef]
- Larrosa-Campo, D.; Ramón-Carbajo, C.; Para-Prieto, M.; Calleja-Puerta, S.; Cernuda-Morollón, E.; Pascual, J. Migraine as a vascular risk factor. Rev. Neurol. 2012, 55, 349–358. [Google Scholar] [PubMed]
- Bulboacă, A.E.; Blidaru, M.; Dogaru, G.; Bulboacă, A.; Stănescu, I.C. The effect of nitro-oxidative stress on platelet aggregability in migraine patients in a Rehabilitation Hospital—A pilot study. Balneo Res. J. 2018, 9, 385–389. [Google Scholar] [CrossRef]
- Bulboacă, A.E.; Bolboacă, S.D.; Stănescu, I.C.; Sfrângeu, C.A.; Porfire, A.; Tefas, L.; Bulboacă, A.C. The effect of intravenous administration of liposomal curcumin in addition to sumatriptan treatment in an experimental migraine model in rats. Int. J. Nanomed. 2018, 13, 3093–3103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukacs, M.; Tajti, J.; Fulop, F.; Toldi, J.; Edvinsson, L.; Vecsei, L. Migraine, neurogenic inflammation, drug development—Pharmacochemical aspects. Curr. Med. Chem. 2017, 24, 3649–3665. [Google Scholar] [CrossRef]
- Yücel, M.; Kotan, D.; Gurol Çiftçi, G.; Çiftçi, I.H.; Cikriklar, H.I. Serum levels of endocan, claudin-5 and cytokines in migraine. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 930–936. [Google Scholar]
- Aguggia, M.; Saracco, M.G.; Cavallini, M.; Bussone, G.; Cortelli, P. Sensitization and pain. Neurol. Sci. 2013, 34, S37–S40. [Google Scholar] [CrossRef] [Green Version]
- Friedman, D.I. The eye and headache. Continuum 2015, 21, 1109–1117. [Google Scholar] [CrossRef]
- Russo, A.; Tessitore, A.; Tedeschi, G. Migraine and trigeminal system-I can feel it coming. Curr. Pain Headache Rep. 2013, 17, 367. [Google Scholar] [CrossRef]
- Shayestagul, N.A.; Christensen, C.E.; Amin, F.M.; Ashina, S.; Ashina, M. Measurement of blood flow velocity in the middle cerebral artery during spontaneous migraine attacks: A systematic review. Headache 2017, 57, 852–861. [Google Scholar] [CrossRef]
- Feng, Y.F.; Guo, H.; Huang, J.H.; Yu, J.G.; Yuan, F. Retinal nerve fiber layer thickness changes in migraine: A meta-analysis of case-control studies. Curr. Eye. Res. 2016, 41, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Verroiopoulos, G.V.; Nitoda, E.; Ladas, I.D.; Brouzas, D.; Antonakaki, D.; Moschos, M.M. Ophthalmological assessment of OCT and electrophysiological changes in migraine patients. J. Clin. Neurophysiol. 2016, 33, 431–442. [Google Scholar] [CrossRef]
- Ascaso, F.J.; Marco, S.; Mateo, J.; Martínez, M.; Esteban, O.; Grzybowski, A. Optical coherence tomography in patients with chronic migraine: Literature review and update. Front Neurol. 2017, 8, 684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costello, F.; Burton, J.M. Retinal imaging with optical coherence tomography: A biomarker in multiple sclerosis? Eye Brain 2018, 10, 47–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, L.P.; Lopes, L.C.; Costa-Cunha, L.V.; Costa, C.F.; Pires, L.A.; Almeida, A.L.; Monteiro, M.L. Macular thickness measurements with frequency domain-OCT for quantification of retinal neural loss and its correlation with cognitive impairment in Alzheimer’s disease. PLoS ONE 2016, 11, e0153830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doustar, J.; Torbati, T.; Black, K.L.; Koronyo, Y.; Koronyo-Hamaoui, M. Optical coherence tomography in Alzheimer’s disease and other neurodegenerative diseases. Front. Neurol. 2017, 8, 701. [Google Scholar] [CrossRef]
- Costello, F. Optical coherence tomography in neuro-ophthalmology. Neurol. Clin. 2017, 35, 153–163. [Google Scholar] [CrossRef]
- Rebolleda, G.; Diez-Alvarez, L.; Casado, A.; Sánchez-Sánchez, C.; de Dompablo, E.; González-López, J.J.; Muñoz-Negrete, F.J. OCT: New perspectives in neuro-ophthalmology. Saudi J. Ophthalmol. 2015, 29, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.Y.; Yang, J.H.; Han, J.S.; Kim, D.G. Analysis of the retinal nerve fiber layer thickness in Alzheimer disease and mild cognitive impairment. Korean J. Ophthalmol. 2017, 31, 548–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamirel, C.; Newman, N.; Biousse, V. The use of optical coherence tomography in neurology. Rev. Neurol. Dis. 2009, 6, E105–E120. [Google Scholar]
- Cankaya, C.; Tecellioglu, M. Foveal thickness alterations in patients with migraine. Med. Arch. 2016, 70, 123–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simsek, I.B.; Aygun, D.; Yildiz, S. Retinal nerve fiber layer thickness in migraine patients with or without aura. Neuroophthalmology 2014, 39, 17–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karalezli, A.; Simsek, C.; Celik, G.; Eroglu, F.C. Evaluation of choroidal thickness using spectral-domain optical coherence tomography in migraine patients during acute migraine attacks: A comparative study. Eye Lond. 2014, 28, 1477–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorkhabi, R.; Mostafaei, S.; Ahoor, M.; Talebi, M. Evaluation of retinal nerve fiber layer thickness in migraine. Iran J. Neurol. 2013, 12, 51–55. [Google Scholar]
- Headache Classification Subcommittee of the International Headache Society. The international classification of headache disorders: 2nd ed. Cephalalgia: Int. J. Headache 2004, 24 (Suppl. 1), 9–160. [Google Scholar] [CrossRef]
- Stewart, W.F.; Lipton, R.B.; Dowson, A.J.; Sawyer, J. Development and testing of the Migraine Disability Assessment (MIDAS) Questionnaire to assess headache-related disability. Neurology 2001, 56, S20–S28. [Google Scholar] [CrossRef]
- Chan, A.; Duker, J.S.; Ko, T.H.; Fujimoto, J.G.; Schuman, J.S. Normal macular thickness measurements in Healthy eyes using stratus optical coherence tomography. Arch. Ophthalmol. 2006, 124, 193–198. [Google Scholar] [CrossRef]
- Erel, O. A new automated colorimetric method for measuring total oxidative status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Giustarini, D.; Rossi, R.; Milzani, A.; Dalle-Donne, I. Nitrite and nitrate measurement by Griess reagent in human plasma: Evaluation of interferences and standardization. Methods Enzymol. 2008, 440, 361–380. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [PubMed]
- Yagl, K. Assay for blood plasma and serum peroxides. Methods Enzymol. 1984, 105, 28–31. [Google Scholar]
- Jäntschi, L.; Bolboacă, S.D. Exact probabilities and confidence limits for binomial samples: Applied to the difference between two proportions. Sci. World J. 2010, 10, 865–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May, A.; Schulte, L.H. Chronic migraine: Risk factors, mechanisms and treatment. Nat. Rev. Neurol. 2016, 12, 455–464. [Google Scholar] [CrossRef]
- Chai, N.C.; Peterlin, B.L.; Calhoun, A.H. Migraine and estrogen. Curr. Opin. Neurol. 2014, 27, 315–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vetvik, K.G.; MacGregor, E.A. Sex differences in the epidemiology, clinical features, and pathophysiology of migraine. Lancet Neurol. 2017, 16, 76–87. [Google Scholar] [CrossRef]
- Kander, M.C.; Cui, Y.; Liu, Z. Gender difference in oxidative stress: A new look at the mechanisms for cardiovascular diseases. J. Cell. Mol. Med. 2017, 21, 1024–1032. [Google Scholar] [CrossRef]
- Tuncel, D.; Tolun, F.I.; Gokce, M.; Imrek, S.; Ekerbiçer, H. Oxidative stress in migraine with and without aura. Biol. Trace Elem. Res. 2008, 126, 92–97. [Google Scholar] [CrossRef]
- Borkum, J.M. Harnessing migraines for neural regeneration. Neural. Regen. Res. 2018, 13, 609–615. [Google Scholar] [CrossRef]
- Kozai, D.; Ogawa, N.; Mori, Y. Redox regulation of transient receptor potential channels. Antioxid. Redox Signal. 2014, 21, 971–986. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, S.; Takahashi, N.; Mori, Y. TRPs as chemosensors (ROS, RNS, RCS, gasotransmitters). Handb. Exp. Pharmacol. 2014, 223, 767–794. [Google Scholar] [CrossRef] [PubMed]
- Benemei, S.; Fusi, C.; Trevisan, G.; Geppetti, P. The TRPA1 channel in migraine mechanism and treatment. Br. J. Pharmacol. 2014, 171, 2552–2567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Michaelis, E.K. Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci. 2010, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- Carrì, M.T.; Valle, C.; Bozzo, F.; Cozzolino, M. Oxidative stress and mitochondrial damage: Importance in non-SOD1 ALS. Front. Cell. Neurosci. 2015, 9, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulte, L.H.; May, A. The migraine generator revisited: Continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain 2016, 139, 1987–1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, T.H.; Protsenko, E.; Cheng, Y.C.; Loggia, M.L.; Coppola, G.; Chen, W.T. Neural Plasticity in Common Forms of Chronic Headaches. Neural Plast. 2015, 2015, 205985. [Google Scholar] [CrossRef] [Green Version]
- Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012, 33, 829–837. [Google Scholar] [CrossRef] [Green Version]
- Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric oxide synthases: Structure, function and inhibition. Biochem J. 2001, 357, 593–615. [Google Scholar] [CrossRef]
- Radi, R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. PNAS 2018, 115, 5839–5848. [Google Scholar] [CrossRef] [Green Version]
- Mueller, C.F.; Laude, K.; McNally, J.S.; Harrison, D.G. Redox mechanisms in blood vessels. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 274–278. [Google Scholar] [CrossRef] [Green Version]
- Mosek, A.; Novak, V.; Opfer-Gehrking, T.L.; Swanson, J.W.; Low, P.A. Autonomic dysfunction in migraineurs. Headache 1999, 39, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Pourshoghi, A.; Danesh, A.; Tabby, D.S.; Grothusen, J.; Pourrezaei, K. Cerebral reactivity in migraine patients measured with functional near-infrared spectroscopy. Eur. J. Med. Res. 2015, 20, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamel, E. Serotonin and migraine: Biology and clinical implications. Cephalalgia 2007, 27, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Borkum, J.M. The migraine attack as a homeostatic, neuroprotective response to brain oxidative stress: Preliminary evidence for a theory. Headache 2018, 58, 118–135. [Google Scholar] [CrossRef]
- Goadsby, P.J. Pathophysiology of migraine. Ann. Indian Acad. Neurol. 2012, 15, S15–S22. [Google Scholar] [CrossRef]
- Shichiri, M. The role of lipid peroxidation in neurological disorders. J. Clin. Biochem. Nutr. 2014, 54, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Yigit, M.; Sogut, O.; Tataroglu, Ö.; Yamanoglu, A.; Yigit, E.; Güler, E.M.; Ozer, O.F.; Kocyigit, A. Oxidative/antioxidative status, lymphocyte DNA damage, and urotensin-2 receptor level in patients with migraine attacks. Neuropsychiatr. Dis. Treat. 2018, 14, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Geyik, S.; Altunısık, E.; Neyal, A.M.; Taysi, S. Oxidative stress and DNA damage in patients with migraine. J. Headache Pain 2016, 17, 10. [Google Scholar] [CrossRef] [Green Version]
- Guillaumet-Adkins, A.; Yañez, Y.; Peris-Diaz, M.D.; Calabria, I.; Palanca-Ballester, C.; Sandoval, J. Epigenetics and oxidative stress in aging. Oxid. Med. Cell Longev. 2017, 2017, 9175806. [Google Scholar] [CrossRef]
- Alp, R.; Selek, S.; Alp, S.I.; Taşkin, A.; Koçyiğit, A. Oxidative and antioxidative balance in patients of migraine. Eur. Rev. Med. Pharmacol. Sci. 2010, 14, 877–882. [Google Scholar]
- Neyal, M.; Yimenicioglu, F.; Aydeniz, A.; Taskin, A.; Saglam, S.; Cekmen, M.; Neyal, A.; Gursoy, S.; Erel, O.; Balat, A. Plasma nitrite levels, total antioxidant status, total oxidant status, and oxidative stress index in patients with tension-type headache and fibromyalgia. Clin. Neurol. Neurosurg. 2013, 115, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Vurucu, S.; Karaoglu, A.; Paksu, M.S.; Yesilyurt, O.; Oz, O.; Unay, B.; Akin, R. Relationship between oxidative stress and chronic daily headache in children. Hum. Exp. Toxicol. 2013, 32, 113–119. [Google Scholar] [CrossRef]
- Neri, M.; Frustaci, A.; Milic, M.; Valdiglesias, V.; Fini, M.; Bonassi, S.; Barbanti, P. A meta-analysis of biomarkers related to oxidative stress and nitric oxide pathway in migraine. Cephalalgia 2015, 35, 931–937. [Google Scholar] [CrossRef]
- Aytac, B.; Coskun, O.; Alioglu, B.; Durak, Z.E.; Büber, S.; Tapçi, E.; Ocal, R.; Inan, L.E.; Durak, İ.; Yoldaş, T.K. Decreased antioxidant status in migraine patients with brain white matter hyperintensities. Neurol. Sci. 2014, 35, 1925–1929. [Google Scholar] [CrossRef] [PubMed]
- Erol, I.; Alehan, F.; Aldemir, D.; Ersin Ogus. Increased vulnerability to oxidative stress in pediatric migraine patients. Pediatr. Neurol. 2010, 43, 21–24. [Google Scholar] [CrossRef]
- Martinez, A.; Proupim, N.; Sanchez, M. Retinal nerve fiber layer thickness measurement using optical coherence tomography in migraine patients. Br. J. Ophthalmol. 2008, 92, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Colak, H.N.; Kantarci, F.A.; Tatar, M.G.; Eryilmaz, M.; Uslu, H.; Goker, H.; Yildirim, A.; Gurler, B. Retinal nerve fiber layer, ganglion cell complex, and choroidal thickness in migraine. Arq. Bras. Oftalmol. 2016, 79, 78–81. [Google Scholar] [CrossRef] [Green Version]
- Demircan, S.; Atas, M.; Arik, Y.S.; Ulusoy, M.D.; Yuvacı, İ.; Arifoğlu, H.B.; Başkan, B.; Zararsız, G. The impact of migraine on posterior ocular structures. J. Ophthalmol. 2015, 2015, 868967. [Google Scholar] [CrossRef]
- Simsek, I.B. Retinal nerve fiber layer thickness of migraine patients with or without white matter lesions. Neuroophthalmology 2016, 41, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Abdellatif, M.K.; Fouad, M.M. Effect of duration and severity of migraine on retinal nerve fiber layer, ganglion cell layer, and choroidal thickness. Eur. J. Ophthalmol. 2018, 28, 714–721. [Google Scholar] [CrossRef]
- Tunç, A.; Güngen, B.D.; Evliyaoğlu, F.; Aras, Y.G.; Tekeşin, A.K. Evaluation of retinal nerve fiber layer, ganglion cell layer and macular changes in patients with migraine. Acta Neurol. Belg. 2017, 117, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Gunes, A.; Karadag, A.S.; Yazgan, S.; Celik, H.U.; Simsek, A. Evaluation of retinal nerve fiber layer, ganglion cell layer and choroidal thickness with optical coherence tomography in migraine patients: A case-control study. Clin. Exp. Optom. 2018, 101, 109–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaca, E.E.; Koçer, E.B.; Özdek, Ş.; Akçam, H.T.; Ercan, M.B. Choroidal thickness measurements in migraine patients during attack-free period. Neurol. Sci. 2016, 37, 81–88. [Google Scholar] [CrossRef] [PubMed]
Migraine Group (n = 41) | Control Group (n = 36) | t-Stat. (p) | |
---|---|---|---|
NOx (µmol/L) | 28.3 (<0.001) | ||
Mean (SD) | 43.0 (3.1) | 26.4 (1.8) | |
(Min to Max) | 36.0–49.0 | 23.0–30.0 | |
MDA (nmol/L) | 57.8 (<0.001) | ||
Mean (SD) | 6.2 (0.3) | 2.6 (0.2) | |
(Min to Max) | 5.8–6.9 | ||
TOS (µmol H2O2/L) | 70.6 (<0.001) | ||
Mean (SD) | 34.4 (1.6) | 13.4 (0.9) | |
(Min to Max) | 30.0–37.0 | 11.4–15.1 | |
Catalase (U/ml) | −50.2 (<0.001) | ||
Mean (SD) | 34.5 (2.3) | 68.4 (3.6) | |
(Min to Max) | 31.0–40.7 | 60.7–74.2 | |
TAC (mmol trolox/L) | −14.5 (<0.001) | ||
Mean (SD) | 1.0 (0.2) | 1.8 (0.3) | |
(Min to Max) | 0.6–1.4 | 1.1–2.5 |
Migraine Group (n = 41) | Control Group (n = 36) | t-Stat. (p) | |
---|---|---|---|
Right Eye Quadrants | |||
Superior | 103.0 (5.9) | 118.3 (5.7) | −11.5 (<0.001) |
Temporal | 58.0 (6.4) | 80.8 (5.2) | −16.9 (<0.001) |
Inferior | 110.1 (5.4) | 122.2 (4.1) | −10.9 (<0.001) |
Nasal | 78.1 (3.8) | 81.1 (4.6) | −3.00 (0.003) |
Left Eye Quadrants | |||
Superior | 109.9 (7.1) | 118.1 (5.3) | −5.7 (<0.001) |
Temporal | 59.4 (2.8) | 76.9 (2.5) | −28.4 (<0.001) |
Inferior | 116.6 (4.6) | 120.5 (4.4) | −3.8 (0.001) |
Nasal * | 80.0 (79.0–85.0) | 85.0 (80.0–88.3) | −2.5 (0.010) |
Migraine Group (n = 41) | Control Group (n = 36) | t-Stat. (p) | |
---|---|---|---|
Right eye quadrants | |||
Fovea | 251.5 (9.9) | 270.2 (6.8) | −9.6 (<0.001) |
Inner ring | |||
Superior | 277.9 (9.5) | 283.0 (7.8) | −2.6 (0.012) |
Temporal | 230.0 (9.6) | 283.2 (6.5) | −28.1 (<0.001) |
Inferior | 260.1 (7.0) | 267.3 (6.1) | −4.8 (<0.001) |
Nasal | 282.6 (11.3) | 290.9 (9.2) | −3.5 (0.001) |
Outer ring | |||
Superior | 236.9 (6.8) | 241.7 (6.5) | −3.1 (0.003) |
Temporal | 216.2 (5.1) | 239.3 (4.6) | −20.7 (<0.001) |
Inferior | 262.2 (8.1) | 264.3 (9.2) | −1.0 (0.313) |
Nasal | 272.1 (9.1) | 278.1 (8.7) | −3.0 (0.004) |
Macular volume | 8.3 (0.5) | 8.7 (0.6) | −3.8 (<0.001) |
Left eye quadrants | |||
Fovea | 247.4 (7.9) | 284.4 (11.2) | −16.9 (<0.001) |
Inner ring | |||
Superior | 271.0 (8.6) | 279.2 (11.3) | −3.6 (0.001) |
Temporal | 224.0 (9.6) | 278.3 (11.3) | −22.7 (<0.001) |
Inferior | 263.5 (9.2) | 267.6 (10.0) | −1.8 (0.071) |
Nasal | 281.1 (10.8) | 289.3 (11.8) | −3.2 (0.002) |
Outer ring | |||
Superior | 244.0 (8.5) | 247.2 (8.8) | −1.7 (0.102) |
Temporal | 218.2 (13.0) | 242.6 (9.1) | −9.4 (<0.001) |
Inferior | 259.2 (6.7) | 263.3 (10.2) | −2.1 (0.039) |
Nasal | 267.1 (10.4) | 273.0 (11.5) | −2.4 (0.021) |
Macular volume | 7.8 (0.6) | 8.7 (0.4) | −7.4 (<0.001) |
Characteristics | r (p) |
---|---|
Peripapillary thickness (µm) | |
MDA & Peripapillary RNFL thickness-S-LE | 0.31 (0.048) |
TOS & Peripapillary RNFL thickness-T-LE | 0.41 (0.009) |
Catalase & Peripapillary RNFL thickness-N-LE | 0.41 (0.007) |
TAC & Peripapillary RNFL thickness-S-LE | −0.34 (0.029) |
Macular thickness (µm) | |
Catalase & Fovea-LE | 0.31 (0.044) |
NOx & Macular RNFL thickness-InnerRing-I-RE | 0.39 (0.013) |
MDA & Macular RNFL thickness-InnerRing-T-LE | −0.37 (0.017) |
Catalase & Macular RNFL thickness-InnerRing-T-RE | −0.38 (0.014) |
Catalase & Macular RNFL thickness-InnerRing-T-LE | −0.39 (0.012) |
TAC & Macular RNFL thickness-InnerRing-N-LE | 0.40 (0.010) |
NOx & Macular RNFL thickness OuterRing-I-RE | 0.34 (0.028) |
TOS & Macular RNFL thickness OuterRing-S-RE | 0.39 (0.011) |
TAC & Macular RNFL thickness OuterRing-N-RE | −0.34 (0.031) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulboacă, A.E.; Stănescu, I.C.; Bolboacă, S.D.; Bulboacă, A.C.; Bodizs, G.I.; Nicula, C.A. Retinal Nerve Fiber Layer Thickness and Oxidative Stress Parameters in Migraine Patients without Aura: A Pilot Study. Antioxidants 2020, 9, 494. https://doi.org/10.3390/antiox9060494
Bulboacă AE, Stănescu IC, Bolboacă SD, Bulboacă AC, Bodizs GI, Nicula CA. Retinal Nerve Fiber Layer Thickness and Oxidative Stress Parameters in Migraine Patients without Aura: A Pilot Study. Antioxidants. 2020; 9(6):494. https://doi.org/10.3390/antiox9060494
Chicago/Turabian StyleBulboacă, Adriana Elena, Ioana C. Stănescu, Sorana D. Bolboacă, Angelo C. Bulboacă, Gyorgy I. Bodizs, and Cristina A. Nicula. 2020. "Retinal Nerve Fiber Layer Thickness and Oxidative Stress Parameters in Migraine Patients without Aura: A Pilot Study" Antioxidants 9, no. 6: 494. https://doi.org/10.3390/antiox9060494
APA StyleBulboacă, A. E., Stănescu, I. C., Bolboacă, S. D., Bulboacă, A. C., Bodizs, G. I., & Nicula, C. A. (2020). Retinal Nerve Fiber Layer Thickness and Oxidative Stress Parameters in Migraine Patients without Aura: A Pilot Study. Antioxidants, 9(6), 494. https://doi.org/10.3390/antiox9060494