Effect of Grafting on the Production, Physico-Chemical Characteristics and Nutritional Quality of Fruit from Pepper Landraces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Soil-Field Experiment
2.3. Fruit Yield and Quality Assessment
2.4. Fruit Dry Material and Pulp Thickness
2.5. Fruit Color Index Determination
2.6. Titratable Acidity
2.7. Total Phenolic Analysis and Antioxidant Capacity Measurements
2.8. Ascorbic Acid Concentration
2.9. Chlorophyll and Carotenoids Concentration
2.10. Lycopene Concentration
2.11. Volatiles Organic Compound Analysis
2.12. Statistical Analysis
3. Results
3.1. Fruit Yield
3.2. Fruit Physico-Chemical Characteristics
3.3. Nutraceutical Compounds and Antioxidant Capacity
3.4. Volatile Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Food and Agriculture Organization Faostat. Food and Agriculture Data; Food and Agriculture Organization: Rome, Italy, 2018; Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 1 April 2020).
- Bosland, P.W.; Votava, E.J. Peppers: Vegetables and Spice Capsicums. Crop Production Science in Horticulture 12; CAB International Publishing: Wallingford, UK, 2000. [Google Scholar]
- Kumar, R.; Dwivedi, N.; Singh, R.K.; Kumar, S.; Rai, V.P.; Singh, M. A review on molecular characterization of pepper for capsaicin and oleoresin. Int. J. Plant Breed. Genet. 2011, 5, 99–110. [Google Scholar] [CrossRef]
- Lanteri, S.; Acquadro, A.; Quagliotti, L.; Portis, E. RAPD and AFLP assessment of genetic variation in a landrace of pepper (Capsicum annuum L.), grown in North-West Italy. Genet. Resour. Crop Evol. 2003, 50, 723–735. [Google Scholar] [CrossRef]
- Gonzalez-Cebrino, F.; Lozano, M.; Ayuso, M.C.; Bernalte, M.J.; Vidal-Aragon, M.C.; Gonzalez-Gomez, D. Characterization of traditional tomato varieties grown in organic conditions. Span. J. Agric. Res. 2011, 9, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Votava, E.J.; Baral, J.B.; Bosland, P.W. Genetic diversity of chile (Capsicum annuum var. annuum L.) landraces from Northern New Mexico Colorado, and Mexico. Econ. Bot. 2005, 59, 8–17. [Google Scholar] [CrossRef]
- Rivera, A.; Monteagudo, A.B.; Igartua, E.; Taboada, A.; García-Ulloa, A.; Pomar, F.; Riveiro-Leira, M.; Silvar, C. Assessing genetic and phenotypic diversity in pepper (Capsicum annuum L.) landraces from North-West Spain. Sci. Hortic. 2016, 203, 1–11. [Google Scholar] [CrossRef] [Green Version]
- González-Pérez, S.; Garcés-Claver, A.; Mallor, C.; de Miera, L.E.S.; Fayos, O.; Pomar, F.; Merino, F.; Silvar, C. New insights into Capsicum spp. relatedness and the diversification process of Capsicum annuum in Spain. PLoS ONE 2014, 9, e116276. [Google Scholar] [CrossRef] [Green Version]
- Crosby, K.M. Pepper. In Vegetables II. Handbook of Plant Breeding; Prohens, J., Nuez, F., Eds.; Springer: New York, NY, USA, 2008; Volume 2, pp. 221–248. [Google Scholar]
- Kyriacou, M.C.; Rouphael, Y.; Colla, G.; Zrenner, R.; Schwarz, D. Vegetable grafting: The implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Front. Plant Sci. 2017, 8, 741. [Google Scholar] [CrossRef]
- King, S.R.; Davis, A.R.; Zhang, X.; Crosby, K. Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Sci. Hortic. 2010, 127, 106–111. [Google Scholar] [CrossRef]
- Lee, J.M.; Kubota, C.; Tsao, S.J.; Bie, Z.; Echevarria, P.H.; Morra, L.; Oda, M. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hortic. 2010, 127, 93–105. [Google Scholar] [CrossRef]
- Penella, C.; Nebauer, S.G.; Quiñones, A.; San Bautista, A.; López-Galarza, S.; Calatayud, A. Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant Sci. 2015, 230, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Leal-Fernández, C.; Godoy-Hernández, H.; Núñez-Colín, C.A.; Anaya-López, J.L.; Villalobos-Reyes, S.; Castellanos, J.Z. Morphological response and fruit yield of sweet pepper (Capsicum annuum L.) grafted onto different commercial rootstocks. Biol. Agric. Hortic. 2013, 29, 1–11. [Google Scholar] [CrossRef]
- Doñas-Uclés, F.; Jiménez-Luna, M.; Góngora-Corral, J.A.; Pérez-Madrid, D.; Verde-Fernández, D.; Camacho-Ferre, F. Influence of three rootstocks on yield and commercial quality of “Italian Sweet” pepper. Ciênc. Agrotec. 2014, 38, 538–545. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Cardarelli, M.; Temperini, O.; Rea, E.; Salerno, A.; Pierandrei, F. Influence of grafting on yield and fruit quality of pepper (Capsicum annuum L.) grown under greenhouse conditions. Acta Hortic. 2008, 782, 359–363. [Google Scholar] [CrossRef]
- López-Marín, J.; Gálvez, A.; del Amor, F.M.; Albacete, A.; Fernández, J.A.; Egea-Gilabert, C.; Pérez-Alfocea, A. Selecting vegetative/generative/dwarfing rootstocks for improving fruit yield and quality in water stressed sweet peppers. Sci. Hortic. 2017, 214, 9–17. [Google Scholar] [CrossRef]
- Chávez-Mendoza, C.; Sánchez, E.; Carvajal-Millán, E.; Munõz-Márquez, E.; Guevara-Aguillar, A. Characterization of the nutraceutical quality and antioxidant activity in bell pepper in response to grafting. Molecules 2013, 18, 15689–15703. [Google Scholar] [CrossRef]
- Sánchez-Torres, P.; Raigón, M.D.; Gammoudi, N.; Gisbert, C. Effects of grafting combinations on the nutritional composition of pepper fruit. Fruits 2016, 71, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Whitfield, F.B.; Last, J.H. Vegetables. In Volatile Compunds in Foods and Beverages; Maarse, H., Ed.; Marcle Dekker: New York, NY, USA, 1991; pp. 203–281. [Google Scholar]
- Eggink, P.M.; Maliepaard, C.; Tikunov, Y.; Haanstra, J.P.W.; Bovy, A.G.; Visser, R.G.F. A taste of sweet pepper: Volatile and non-volatile chemical composition of fresh sweet pepper (Capsicum annuum) in relation to sensory evaluation of taste. Food Chem. 2012, 132, 301–310. [Google Scholar] [CrossRef]
- Lama, K.; Alkalai-Tuvia, S.; Perzelan, Y.; Fallik, E. Nutritional qualities and aroma volatiles of harvested red pepper fruits stored at suboptimal temperatures. Sci. Hortic. 2016, 213, 42–48. [Google Scholar] [CrossRef]
- Alissa, E.M.; Ferns, G.A. Dietary fruits and vegetables and cardiovascular diseases risk. Crit. Rev. Food Sci. Nutr. 2017, 57, 1950–1962. [Google Scholar] [CrossRef] [Green Version]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Boffetta, P. Health risk factors associated with meat, fruit and vegetable consumption in cohort studies: A comprehensive meta-analysis. PLoS ONE 2017, 12, e0183787. [Google Scholar] [CrossRef]
- Diplock, A.; Charuleux, J.; Crozier-Willi, G.; Kok, F.; Rice-Evans, C.; Roberfroid, M.; Stahl, W.; Viña-Ribes, J. Functional food science and defence against reactive oxidative species. Br. J. Nutr. 1998, 80, S77–S112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casañas, F.; Simó, J.; Casals, J.; Prohens, J. Toward an evolved concept of landrace. Front. Plant Sci. 2017, 8, 145. [Google Scholar] [CrossRef] [Green Version]
- Howard, L.R.; Talcott, S.T.; Brenes, C.H.; Villalon, B. Changes in phytochemical and antioxidant activity of selected pepper landraces (Caspicum species) as influenced by maturity. J. Agric. Food Chem. 2000, 48, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Chen, L.; Sun, L.; Cao, J. Bioactive characteristics and antioxidant activities of nine peppers. J. Funct. Foods 2012, 4, 331–338. [Google Scholar] [CrossRef]
- Rouphael, Y.; Schwarz, D.; Krumbein, A.; Colla, G. Impact of grafting on product quality of fruit vegetables. Sci. Hortic. 2010, 127, 172–179. [Google Scholar] [CrossRef]
- Chávez-Mendoza, C.; Sánchez, E.; Munõz-Márquez, E.; Sida-Arreola, J.P.; Flores-Cordova, M.A. Bioactive compounds and antioxidant activity in different grafted varieties of bell pepper. Antioxidants 2015, 4, 427–446. [Google Scholar] [CrossRef] [Green Version]
- López-Serrano, L.; Canet-Sanchis, G.; Vuletin Selak, G.; Penella, C.; San Bautista, A.; López-Galarza, S.; Calatayud, A. Physiological characterization of a pepper hybrid rootstock designed to cope with salinity stress. Plant Physiol. Biochem. 2020, 148, 207–219. [Google Scholar] [CrossRef]
- Calatayud, A.; Penella, C.; San Bautista, A.; López-Galarza, S. Comportamiento agronómico en condiciones salinas de plantas de pimiento injertadas sobre un nuevo patrón. Agric. Vergel 2016, 395, 251–254. [Google Scholar]
- Penella, C.; Nebauer, S.G.; San Bautista, A.; López-Galarza, S.; Calatayud, A. Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: Physiological responses. J. Plant Physiol. 2014, 171, 842–851. [Google Scholar] [CrossRef]
- Maroto, J.V. Horticultura Herbácea Especial, 5th ed.; Mundi-Prensa: Madrid, Spain, 2002. [Google Scholar]
- IVIA (Instituto Valenciano de Investigaciones Agrarias). Cálculo de Necesidades de Riego. Available online: http://riegos.ivia.es/calculo-de-necesidades-de-riego (accessed on 1 April 2020).
- Koncsek, A.; Horváth, Z.H.; Véha, A.; Daood, H.G.; Helyes, L. Colour evolution of conventionally and organically cultivated Hungarian red spice paprika varieties. Anal. Tech. Szeged. 2016, 10, 6–15. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Kampfenkel, K.; Van Montagu, M.; Inze, D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 1995, 225, 165–167. [Google Scholar] [CrossRef]
- Porra, R.J.; Thompson, W.A.; Kriedemann, P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 1989, 975, 384–394. [Google Scholar] [CrossRef]
- Adejo, G.O.; Agbali, F.A.; Otokpa, O.S. Antioxidant, total lycopene, ascorbic acid and microbial load estimation in powdered tomato varieties sold in Dutsin-Ma market. OALiB J. 2015, 2, 1–7. [Google Scholar] [CrossRef]
- Serra, A.; Buccioni, A.; Rodriguez-Estrada, M.T.; Conte, G.; Cappucci, A.; Mele, M. Fatty acid composition, oxidation status and volatile organic compounds in “Colonnata” lard from Large White or Cinta Senese pigs as affected by curing time. Meat Sci. 2014, 97, 504–512. [Google Scholar] [CrossRef]
- Povolo, M.; Contarini, G.; Mele, M.; Secchiari, P.I.E.R. Study on the influence of pasture on volatile fraction of ewes’ dairy products by solid-phase microextraction and gas chromatography-mass spectrometry. J. Dairy Sci. 2007, 90, 556–569. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.J.; Umano, K.; Shibamoto, T.; Lee, K.G. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem. 2005, 91, 131–137. [Google Scholar] [CrossRef]
- Conte, G.; Dimauro, C.; Serra, A.; Macciotta, N.P.P.; Mele, M. A canonical discriminant analysis to study the association between milk fatty acids of ruminal origin and milk fat depression in dairy cows. J. Dairy Sci. 2018, 101, 6497–6510. [Google Scholar] [CrossRef] [Green Version]
- De Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D.L. The Mahalanobis distance. Chemom. Intell. Lab. Syst. 2000, 50, 1–18. [Google Scholar] [CrossRef]
- Mardia, K.V. Assessment of multinormality and robustness of Hotelling’s T2 test. J. R. Stat. Soc. C Appl. 1975, 24, 163–171. [Google Scholar] [CrossRef]
- Mardia, K.V.; Bookstein, F.L.; Moreton, I.J. Statistical assessment of bilateral symmetry of shapes. Biometrika 2000, 87, 285–300. [Google Scholar] [CrossRef]
- Schwarz, D.; Rouphael, Y.; Colla, G.; Venema, J.H. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Sci. Hortic. 2010, 127, 162–171. [Google Scholar] [CrossRef]
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front. Plant Sci. 2017, 8, 1130. [Google Scholar] [CrossRef] [Green Version]
- Gaion, L.A.; Braz, L.T.; Carvalho, R.F. Grafting in vegetable crops: A great technique for agriculture. Int. J. Veg. Sci. 2018, 24, 85–102. [Google Scholar] [CrossRef]
- Fullana-Pericàs, M.; Conesa, M.À.; Pérez-Alfocea, F.; Galmés, J. The influence of grafting on crops’ photosynthetic performance. Plant Sci. 2019. [Google Scholar] [CrossRef]
- Labrie, C.W.; Sijtsema, S.J.; Snoek, H.M.; Raaijmakers, I.; Aramyan, L.H. Flavour and nutrition of fruits and vegetables create added value to consumers. Acta Hortic. 2020, 1277, 425–432. [Google Scholar] [CrossRef]
- Dillard, C.J.; German, J.B. Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agric. 2000, 80, 1744–1756. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Willcox, J.K.; Ash, S.L.; Catignani, G.L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 2004, 44, 275–295. [Google Scholar] [CrossRef] [PubMed]
- Shlisky, J.; Bloom, D.E.; Beaudreault, A.R.; Tucker, K.L.; Keller, H.H.; Freund-Levi, Y.; Fielding, R.A.; Cheng, F.W.; Jensen, G.L.; Wu, D.; et al. Nutritional considerations for healthy aging and reduction in age-related chronic disease. Adv. Nutr. 2017, 8, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aidoo, M.K.; Sherman, T.; Lazarovitch, N.; Fait, A.; Rachmilevitch, S. Physiology and metabolism of grafted bell pepper in response to low root-zone temperature. Funct. Plant Biol. 2019, 46, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Johkan, M.; Mitukuri, K.; Yamasaki, S.; Mori, G.; Oda, M. Causes of defoliation and low survival rate of grafted sweet pepper plants. Sci. Hortic. 2009, 119, 103–107. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, E.; del Mar Rubio-Wilhelmi, M.; Blasco, B.; Leyva, R.; Romero, L.; Ruiz, J.M. Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under water stress. Plant Sci. 2012, 188, 89–96. [Google Scholar] [CrossRef]
- Pulgar, G.; Villora, G.; Moreno, D.A.; Romero, L. Improving the mineral nutrition in grafted watermelon plants: Nitrogen metabolism. Biol. Plant. 2000, 43, 607–609. [Google Scholar] [CrossRef]
- Leonardi, C.; Giuffrida, F. Variation of plant growth and macronutrient uptake in grafted tomatoes and eggplants on three different rootstocks. Eur. J. Hortic. Sci. 2006, 71, 97–101. [Google Scholar]
- Vrcek, I.V.; Samobor, V.; Bojic, M.; Saric, M.M.; Vukobratovic, M.; Erhatic, R.; Horvat, D.; Matotan, Z. The effect of grafting on the antioxidant properties of tomato (Solanum lycopersicum L.). Span. J. Agric. Res. 2011, 3, 844–851. [Google Scholar] [CrossRef]
- López-Marín, J.; González, A.; Pérez-Alfocea, F.; Egea-Gilabert, C.; Fernandez, J.A. Grafting is an efficient alternative to shading screens to alleviate thermal stress in greenhouse-grown sweet pepper. Sci. Hortic. 2013, 149, 39–46. [Google Scholar] [CrossRef]
- Blanco-Ríos, A.K.; Medina-Juárez, L.Á.; González-Agular, G.A.; Gámez-Meza, N. Antioxidant activity of the phenolic and oil fractions of different sweet bell pepper. J. Mex. Chem. Soc. 2013, 57, 137–143. [Google Scholar]
- Lee, Y.; Howard, L.R.; Villalón, B. Flavonoids and antioxidant activity of fresh pepper (Capsicum annuum) cultivars. J. Food Sci. 1995, 60, 473–476. [Google Scholar] [CrossRef]
- San Bautista, A.; Calatayud, A.; Nebauer, S.G.; Pascual, B.; Maroto, J.V.; López-Galarza, S. Effects of simple and double grafting melon plants on mineral absorption, photosynthesis, biomass and yield. Sci. Hortic. 2011, 130, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Kelkel, M.; Schumacher, M.; Dicato, M.; Diederich, M. Antioxidant and anti-proliferative properties of lycopene. Free Radic. Res. 2011, 45, 925–940. [Google Scholar] [CrossRef] [PubMed]
- Guil-Guerrero, J.L.; Martínez-Guirado, C.; del Mar Rebolloso-Fuentes, M.; Carrique-Pérez, A. Nutrient composition and antioxidant activity of 10 pepper (Capsicum annuum) varieties. Eur. Food Res. Technol. 2006, 224, 1–9. [Google Scholar] [CrossRef]
- Edge, R.; McGarvey, D.J.; Truscott, T.G. The carotenoids as anti-oxidants—A review. J. Photochem. Photobiol. B Biol. 1997, 41, 189–200. [Google Scholar] [CrossRef]
- Minguez-Mosquera, M.I.; Hornero-Mendez, D. Separation and quantification of the carotenoid pigments in red peppers (Caspicum annuum L.), paprika, and oleoresin by reversed-phase HPLC. J. Agric. Food Chem. 1993, 41, 1616–1620. [Google Scholar] [CrossRef]
- Marín, A.; Ferreres, F.; Tomás-Barberán, F.A.; Gil, M.I. Characterization and quantification of antioxidant constituents of sweet pepper (Capsicum annuum L.). J. Agric. Food Chem. 2004, 52, 3861–3869. [Google Scholar] [CrossRef]
- Qaryouti, M.M.; Qawasmi, W.; Hamdan, H.; Edwan, M. Tomato fruit and quality as affected by grafting and growing system. Acta Hortic. 2007, 741, 199–206. [Google Scholar] [CrossRef]
- Mazida, M.M.; Salleh, M.M.; Osman, H. Analysis of volatile aroma compounds of fresh chilli (Capsicum annuum) during stages of maturity using solid phase microextraction (SPME). J. Food Compos. Anal. 2005, 18, 427–437. [Google Scholar] [CrossRef]
- Holt, R.U. Mechanisms effecting analysis of volatile flavour components by solid phase microextraction and gas chromatography. J. Chromatogr. A 2001, 937, 107–114. [Google Scholar] [CrossRef]
- Luning, P.A.; Carey, A.T.; Roozen, J.P.; Wichers, H.J. Characterization and occurrence of lipoxygenase in Bell Peppers at different ripening stages in relation to the formation of volatile flavor compounds. J. Agric. Food Chem. 1995, 43, 1493–1500. [Google Scholar] [CrossRef]
- Korkmaz, A.; Hayaloglu, A.A.; Atasoy, A.F. Evaluation of the volatile compounds of fresh ripened Capsicum annuum and its spice pepper (dried red pepper flakes and isot). LWT-Food Sci. Technol. 2017, 84, 842–850. [Google Scholar] [CrossRef]
- Moreno, E.; Fita, A.; González-Mas, M.C.; Rodríguez-Burruezo, A. HS-SPME study of the volatile fraction of Capsicum accessions and hybrids in different parts of the fruit. Sci. Hortic. 2012, 135, 87–97. [Google Scholar] [CrossRef]
- Turkez, H.; Togar, B.; Di Stefano, A.; Taspınar, N.; Sozio, P. Protective effects of cyclosativene on H2O2-induced injury in cultured rat primary cerebral cortex cells. Cytotechnology 2015, 67, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Luning, O.A.; de Rijk, T.; Wichers, H.J.; Roozen, J.P. Gas chromatography, mass spectrometry, and sniffing port analyses of volatile compounds of fresh bell peppers (Caspicum annuum) at different ripening stages. J. Agric. Food Chem. 1994, 42, 977–983. [Google Scholar] [CrossRef]
Dry Weight (%) | Hue angle (H) | Chroma (C) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Green | Red | Green | Red | Green | Red | |||||||
Grafting (G) | ||||||||||||
Grafted (G) | 6.45 | 9.12 | a | 110.9 | 31.3 | b | 21.7 | 32.0 | ||||
Ungrafted (U) | 6.31 | 8.58 | b | 111.7 | 33.9 | a | 21.9 | 30.0 | ||||
Landrace (L) | ||||||||||||
“Cuerno” C) | 6.46 | 8.17 | b | 112.1 | 30.0 | b | 22.7 | 32.1 | ||||
“Sueca” (S) | 6.44 | 9.97 | a | 110.4 | 30.4 | b | 22.0 | 29.8 | ||||
“Valencia” (V) | 6.24 | 8.41 | b | 111.5 | 37.4 | a | 20.8 | 31.1 | ||||
G*L | ||||||||||||
CG | 6.66 | 8.09 | d | 111.1 | 30.3 | 22.7 | 31.2 | |||||
SG | 6.43 | 10.4 | a | 110.0 | 29.2 | 21.0 | 29.0 | |||||
VG | 6.26 | 8.89 | c | 111.7 | 34.3 | 21.4 | 35.8 | |||||
CU | 6.26 | 8.26 | d | 113.2 | 29.8 | 22.6 | 33.0 | |||||
SU | 6.45 | 9.55 | b | 110.7 | 31.6 | 23.0 | 30.6 | |||||
VU | 6.22 | 7.92 | d | 111.3 | 40.5 | 20.2 | 26.5 | |||||
ANOVA (df) | % Sum of the squares | |||||||||||
G (1) | 3.59 | ns | 8.76 | ** | 4.80 | ns | 9.42 | * | 0.11 | ns | 5.00 | ns |
L (2) | 7.03 | ns | 74.9 | ** | 16.2 | ns | 59.9 | ** | 6.63 | ns | 4.29 | ns |
G*L (2) | 6.60 | ns | 7.57 | * | 7.83 | ns | 9.65 | ns | 5.03 | ns | 33.0 | ns |
Residuals (12) | 82.8 | 8.76 | 71.2 | 21.0 | 88.2 | 57.8 | ||||||
SD. (+) | 0.41 | 0.33 | 1.87 | 2.46 | 3.42 | 4.21 |
Phytochemicals | GREEN UG PLANTS | GREEN G PLANTS | GREEN FRUITS | RED UG PLANTS | RED G PLANTS | RED FRUITS |
---|---|---|---|---|---|---|
Phenols | ** r = 0.85 | ** r = 0.77 | *** r = 0.83 | ns | * r = 0.71 | * r = 0.53 |
Total chlorophylls | ns | ns | ns | ns | ns | ns |
Carotenoids | ns | ns | ns | ns | ns | ns |
Lycopene | ns | ns | * r = −0.57 | * r = 0.68 | ** r = −0.78 | *** r = 0.81 |
Ascorbic acid | ns | ns | ns | ns | * r = 0.65 | ** r = 0.56 |
Phytochemicals | GREEN CUERNO | GREEN VALENCIA | GREEN SUECA | RED CUERNO | RED VALENCIA | RED SUECA |
---|---|---|---|---|---|---|
Phenols | ns | ns | *** r = 0.96 | ** r = 0.91 | ns | ns |
Total chlorophylls | ns | ns | ns | ns | ns | ns |
Carotenoids | ns | ** r = 0.85 | ns | ns | ns | ** r = 0.85 |
Lycopene | ns | * r = −0.83 | ns | ** r = 0.97 | ns | ns |
Ascorbic acid | ns | ns | ns | ns | ns | ns |
Ripening Level | SEM | p Value | Landrace | SEM | p Value | ||||
---|---|---|---|---|---|---|---|---|---|
Green | Red | “Cuerno” | “Sueca” | “Valencia” | |||||
acids | |||||||||
hexanoic acid | 0.40 | 0.23 | 0.09 | ns | 0.54 | 0.15 | 0.26 | 0.11 | ns |
2-ethylhexanoic acid | 0.40 | 0.25 | 0.10 | ns | 0.46 | 0.12 | 0.37 | 0.12 | ns |
n-dodecanoic acid | 1.33 | 0.59 | 0.18 | ** | 1.34 | 0.79 | 0.74 | 0.22 | ns |
octanoic acid | 1.17 | 0.54 | 0.12 | *** | 0.97 | 0.66 | 0.95 | 0.14 | ns |
nonanoic acid | 3.17 | 1.69 | 0.37 | ** | 2.99 | 1.58 | 2.71 | 0.45 | ns |
decanoic acid | 0.23 | 0.21 | 0.07 | ns | 0.22 | 0.14 | 0.30 | 0.09 | ns |
alcohols | |||||||||
ethanol | 2.43 | 0.31 | 0.32 | *** | 2.64A | 1.03B | 0.43B | 0.39 | ** |
2-octen-1-ol (E) | 6.10 | 0.41 | 0.48 | *** | 3.02 | 3.38 | 3.37 | 0.59 | ns |
cis -3 nonel -1- ol | 7.42 | 0.08 | 1.44 | *** | 3.73 | 6.09 | 1.43 | 1.76 | ns |
aldehydes | |||||||||
acetic aldheyde | 0.56 | 0.04 | 0.05 | *** | 0.36 | 0.29 | 0.25 | 0.06 | ns |
pentanal | 0.25 | 0.09 | 0.04 | * | 0.09 | 0.27 | 0.15 | 0.05 | ns |
hexanal | 2.39 | 0.79 | 0.22 | *** | 1.37 | 1.78 | 1.61 | 0.27 | ns |
(Z)-4-heptenal | 2.20 | 0.28 | 0.17 | *** | 1.06 | 1.32 | 1.35 | 0.21 | ns |
nonanal | 2.15 | 0.59 | 0.19 | *** | 1.76 | 1.15 | 1.19 | 0.24 | ns |
nonenal | 24.30 | 0.72 | 4.41 | *** | 18.05a | 17.47a | 2.01b | 5.40 | * |
nonadien 2-(trans)-6-(CIS)-al | 7.84 | 2.09 | 1.27 | ** | 6.41 | 5.14 | 3.34 | 1.56 | ns |
(2E,4E)-2,4-decadienal | 1.49 | 0.07 | 0.12 | *** | 0.83 | 0.76 | 0.75 | 0.15 | ns |
alkanes | |||||||||
2-2, dimethyldecane | 0.86 | 0.23 | 0.11 | *** | 0.41 | 0.70 | 0.53 | 0.13 | ns |
n-dodecane | 0.54 | 0.39 | 0.14 | ns | 0.28 | 0.54 | 0.57 | 0.17 | ns |
3-methyltridecane | 0.13 | 0.01 | 0.06 | ns | 0.00 | 0.19 | 0.02 | 0.07 | ns |
1-cyclopropylpentane | 1.18 | 0.27 | 0.11 | *** | 0.71 | 0.72 | 0.76 | 0.13 | ns |
ketones | |||||||||
1-penten-3-one | 1.23 | 0.59 | 0.16 | ** | 0.89 | 1.14 | 0.71 | 0.20 | ns |
4-methyl 2-pentanone | 0.03 | 0.01 | 0.01 | ns | 0.01 | 0.00 | 0.05 | 0.02 | ns |
2-heptanone | 0.70 | 0.37 | 0.10 | * | 0.31b | 0.50b | 0.80a | 0.12 | * |
cis-tagetone | 3.23 | 0.23 | 2.00 | ns | 5.15 | 0.04 | 0.00 | 2.78 | ns |
5,5-dimethyl-1,3-dithian-2-one | 6.70 | 2.21 | 0.68 | ** | 1.52b | 5.66a | 6.20a | 0.83 | *** |
terpenes | |||||||||
2-propenyldiene-1-cyclobutene | 0.04 | 0.79 | 0.11 | *** | 0.07B | 0.45B | 0.73A | 0.14 | ** |
3-carene | 75.05 | 0.13 | 12.61 | *** | 26.45 | 39.96 | 46.35 | 15.45 | ns |
beta-trans-ocimene | 0.11 | 0.05 | 0.05 | ns | 0.05 | 0.12 | 0.07 | 0.06 | ns |
7-methyl-1-octene | 0.60 | 0.09 | 0.07 | *** | 0.44 | 0.28 | 0.31 | 0.09 | ns |
Allo-ocimene | 1.66 | 0.03 | 0.28 | *** | 0.55 | 0.92 | 1.06 | 0.34 | ns |
copaene | 11.95 | 2.69 | 2.10 | * | 7.93 | 10.18 | 3.86 | 2.57 | ns |
cyclosativene | 1.46 | 0.48 | 0.25 | * | 1.12 | 1.22 | 0.57 | 0.31 | ns |
β-linalool | 5.70 | 1.50 | 0.62 | *** | 1.44b | 3.79a | 5.55a | 0.76 | ** |
α-santalene | 0.62 | 0.05 | 0.11 | *** | 0.57a | 0.35a | 0.09b | 0.13 | * |
α-Bergamotene | 9.53 | 0.57 | 1.69 | *** | 7.74 | 5.08 | 2.34 | 2.06 | ns |
β-farnesene | 2.28 | 0.39 | 0.34 | *** | 1.99 | 1.16 | 0.86 | 0.42 | ns |
esters | |||||||||
0.34 | 0.16 | 0.07 | ns | 0.40 | 0.20 | 0.14 | 0.09 | ns | |
n-octyl formate | 0.00 | 0.04 | 0.02 | ns | 0.05 | 0.00 | 0.01 | 0.03 | ns |
methyl salicylate | 24.80 | 4.83 | 4.28 | ** | 12.50 | 21.41 | 10.54 | 5.24 | ns |
ethyl salicylate | 1.69 | 0.09 | 0.33 | ** | 1.72a | 0.93a | 0.02b | 0.41 | * |
ethyl hexadecanoate | 0.50 | 0.07 | 0.11 | ** | 0.49 | 0.15 | 0.23 | 0.13 | ns |
aromatic hydrocarbons | |||||||||
o-xylene | 0.03 | 0.01 | 0.01 | ns | 0.01 | 0.02 | 0.03 | 0.01 | ns |
mesithylene | 0.05 | 0.11 | 0.03 | ns | 0.05 | 0.13 | 0.06 | 0.04 | ns |
2,4,6-trimethylanisole | 1.92 | 0.09 | 0.28 | *** | 0.80 | 1.48 | 0.74 | 0.34 | ns |
furans | 0.29 | 0.12 | 0.04 | ** | 0.16 | 0.22 | 0.24 | 0.04 | ns |
furan,2,3-dihydro-4-methyl | 0.70 | 0.37 | 0.10 | * | 0.31b | 0.50b | 0.80a | 0.12 | * |
2-pentylfuran | 3.19 | 0.32 | 0.39 | *** | 1.24 | 2.02 | 2.00 | 0.48 | ns |
miscellaneous component | |||||||||
nitrogen oxide | 1.00 | 0.34 | 0.14 | ** | 0.51 | 0.69 | 0.81 | 0.17 | ns |
N-methylpyrrole | 0.40 | 0.32 | 0.07 | ns | 0.38 | 0.41 | 0.29 | 0.09 | ns |
2-Isobutyl-3-methoxypyrazine | 37.11 | 3.07 | 3.15 | *** | 18.84 | 23.01 | 18.42 | 3.86 | ns |
carbon disulfide | 0.41 | 0.42 | 0.12 | ns | 0.42 | 0.49 | 0.35 | 0.12 | ns |
Canonical_1 | Canonical_2 | |
---|---|---|
Green Peppers | ||
4-methyl-2,3-dihydrofuran | −0.09 | 0.84 |
N-methylpyrrole | 0.18 | 0.54 |
allo-ocimene | −0.40 | 0.47 |
nonanal | 0.27 | 0.34 |
2,4,6-trimethylanisole | −0.03 | 0.64 |
cyclosativene | 0.49 | 0.80 |
methyl salicylate | 0.19 | 0.54 |
octanoic acid | 0.04 | 0.57 |
nonanoic acid | 0.23 | 0.32 |
ethyl hexadecanoate | 0.26 | 0.45 |
Variance explained (%) | 91.59 | 6.59 |
Cumulative variance (%) | 91.59 | 98.18 |
Red peppers | ||
carbon disulfide | −0.083 | |
ethanol | −0.739 | |
pentanal | −0.155 | |
2-propenyldiene-1-cyclobutene | 0.789 | |
2-heptanone | 0.429 | |
7-methyl,1-octene | 0.270 | |
2-Isobutyl-3-methoxypyrazine | 0.392 | |
beta-linalool | 0.501 | |
5,5-dimethyl-1,3-dithian-2-one | 0.392 | |
salicylic acid methyl ester | 0.506 | |
Variance explained (%) | 96.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gisbert-Mullor, R.; Ceccanti, C.; Gara Padilla, Y.; López-Galarza, S.; Calatayud, Á.; Conte, G.; Guidi, L. Effect of Grafting on the Production, Physico-Chemical Characteristics and Nutritional Quality of Fruit from Pepper Landraces. Antioxidants 2020, 9, 501. https://doi.org/10.3390/antiox9060501
Gisbert-Mullor R, Ceccanti C, Gara Padilla Y, López-Galarza S, Calatayud Á, Conte G, Guidi L. Effect of Grafting on the Production, Physico-Chemical Characteristics and Nutritional Quality of Fruit from Pepper Landraces. Antioxidants. 2020; 9(6):501. https://doi.org/10.3390/antiox9060501
Chicago/Turabian StyleGisbert-Mullor, Ramón, Costanza Ceccanti, Yaiza Gara Padilla, Salvador López-Galarza, Ángeles Calatayud, Giuseppe Conte, and Lucia Guidi. 2020. "Effect of Grafting on the Production, Physico-Chemical Characteristics and Nutritional Quality of Fruit from Pepper Landraces" Antioxidants 9, no. 6: 501. https://doi.org/10.3390/antiox9060501
APA StyleGisbert-Mullor, R., Ceccanti, C., Gara Padilla, Y., López-Galarza, S., Calatayud, Á., Conte, G., & Guidi, L. (2020). Effect of Grafting on the Production, Physico-Chemical Characteristics and Nutritional Quality of Fruit from Pepper Landraces. Antioxidants, 9(6), 501. https://doi.org/10.3390/antiox9060501