Mapping Potential Vaccine Candidates Predicted by VaxiJen for Different Viral Pathogens between 2017–2021—A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stage (i): Identifying the Research Question
2.2. Stage (ii): Identifying the Relevant Studies
2.3. Stage (iii): Study Selection
2.4. Stage (iv): Charting the Data
2.5. Stage (v): Collating, Summarizing and Reporting the Results
2.6. Ethics and Permission
3. Results
3.1. Search Results
3.2. Quantitative Overview of Articles Included in This Scoping Review
3.2.1. Analysis of Publications by Year of Publication
3.2.2. Analysis of Publications by Pathogen
3.3. What Has Been Reported in the Literature Regarding Potential Vaccine Candidates Predicted by VaxiJen for Different Viral Pathogens between 2017 and 2021?
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. The Global Eradication of Smallpox: Final Report of the Global Commission for the Certification of Smallpox Eradication, Geneva, December 1979; World Health Organization: Geneva, Switzerland, 1980. [Google Scholar]
- Morens, D.M.; Fauci, A.S. Emerging pandemic diseases: How we got to COVID-19. Cell 2020, 182, 1077–1092. [Google Scholar] [CrossRef] [PubMed]
- Ehreth, J. The global value of vaccination. Vaccine 2003, 21, 596–600. [Google Scholar] [CrossRef]
- Koff, W.C.; Burton, D.R.; Johnson, P.R.; Walker, B.D.; King, C.R.; Nabel, G.J.; Ahmed, R.; Bhan, M.K.; Plotkin, S.A. Accelerating next-generation vaccine development for global disease prevention. Science 2013, 340, 1232910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rappuoli, R.; Del Giudice, G. Identification of vaccine targets. In Vaccines: From Concept to Clinic; CRC Press: Boca Raton, FL, USA, 1999; pp. 1–17. [Google Scholar]
- Rappuoli, R. Reverse vaccinology. Curr. Opin. Microbiol. 2000, 3, 445–450. [Google Scholar] [CrossRef]
- Pizza, M.; Scarlato, V.; Masignani, V.; Giuliani, M.M.; Arico, B.; Comanducci, M.; Jennings, G.T.; Baldi, L.; Bartolini, E.; Capecchi, B. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 2000, 287, 1816–1820. [Google Scholar] [CrossRef]
- Ladhani, S.N.; Andrews, N.; Parikh, S.R.; Campbell, H.; White, J.; Edelstein, M.; Bai, X.; Lucidarme, J.; Borrow, R.; Ramsay, M.E. Vaccination of infants with meningococcal group B vaccine (4CMenB) in England. N. Engl. J. Med. 2020, 382, 309–317. [Google Scholar] [CrossRef]
- Azzari, C.; Moriondo, M.; Nieddu, F.; Guarnieri, V.; Lodi, L.; Canessa, C.; Indolfi, G.; Giovannini, M.; Napoletano, G.; Russo, F. Effectiveness and impact of the 4CMenB vaccine against group B meningococcal disease in two Italian regions using different vaccination schedules: A five-year retrospective observational study (2014–2018). Vaccines 2020, 8, 469. [Google Scholar] [CrossRef]
- Rappuoli, R.; De Gregorio, E.; Del Giudice, G.; Phogat, S.; Pecetta, S.; Pizza, M.; Hanon, E. Vaccinology in the post−COVID-19 era. Proc. Natl. Acad. Sci. USA 2021, 118, e2020368118. [Google Scholar] [CrossRef]
- Hekele, A.; Bertholet, S.; Archer, J.; Gibson, D.G.; Palladino, G.; Brito, L.A.; Otten, G.R.; Brazzoli, M.; Buccato, S.; Bonci, A. Rapidly produced SAM® vaccine against H7N9 influenza is immunogenic in mice. Emerg. Microbes Infect. 2013, 2, 1–7. [Google Scholar] [CrossRef]
- Dalsass, M.; Brozzi, A.; Medini, D.; Rappuoli, R. Comparison of open-source reverse vaccinology programs for bacterial vaccine antigen discovery. Front. Immunol. 2019, 10, 113. [Google Scholar] [CrossRef]
- Rahman, M.S.; Rahman, M.K.; Saha, S.; Kaykobad, M.; Rahman, M.S. Antigenic: An improved prediction model of protective antigens. Artif. Intell. Med. 2019, 94, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Magnan, C.N.; Zeller, M.; Kayala, M.A.; Vigil, A.; Randall, A.; Felgner, P.L.; Baldi, P. High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics 2010, 26, 2936–2943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, E.; Wang, H.; Wong, M.U.; Seetharaman, M.; Valdez, N.; He, Y. Vaxign-ML: Supervised machine learning reverse vaccinology model for improved prediction of bacterial protective antigens. Bioinformatics 2020, 36, 3185–3191. [Google Scholar] [CrossRef]
- Vivona, S.; Gardy, J.L.; Ramachandran, S.; Brinkman, F.S.; Raghava, G.P.; Flower, D.R.; Filippini, F. Computer-aided biotechnology: From immuno-informatics to reverse vaccinology. Trends Biotechnol. 2008, 26, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Tomar, N.; De, R.K. Immunoinformatics: A brief review. Immunoinformatics 2014, 1184, 23–55. [Google Scholar]
- Zaharieva, N.; Dimitrov, I.; Flower, D.; Doytchinova, I. Immunogenicity prediction by VaxiJen: A ten year overview. J. Proteom. Bioinform. 2017, 10, 298–310. [Google Scholar]
- Doytchinova, I.A.; Flower, D.R. VaxiJen. Available online: http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html (accessed on 11 March 2022).
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Doytchinova, I.A.; Flower, D.R. Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccine J. 2008, 1, 22–26. [Google Scholar] [CrossRef]
- Foroutan, M.; Ghaffarifar, F.; Sharifi, Z.; Dalimi, A. Vaccination with a novel multi-epitope ROP8 DNA vaccine against acute Toxoplasma gondii infection induces strong B and T cell responses in mice. Comp. Immunol. Microbiol. Infect. Dis. 2020, 69, 101413. [Google Scholar] [CrossRef]
- Majidiani, H.; Dalimi, A.; Ghaffarifar, F.; Pirestani, M. Multi-epitope vaccine expressed in Leishmania tarentolae confers protective immunity to Toxoplasma gondii in BALB/c mice. Microb. Pathog. 2021, 155, 104925. [Google Scholar] [CrossRef]
- Gupta, S.; Mohan, S.; Somani, V.K.; Aggarwal, S.; Bhatnagar, R. Simultaneous immunization with Omp25 and L7/L12 provides protection against brucellosis in mice. Pathogens 2020, 9, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munn, Z.; Peters, M.D.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. BMC Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Levac, D.; Colquhoun, H.; O’Brien, K.K. Scoping studies: Advancing the methodology. Implement. Sci. 2010, 5, 69. [Google Scholar] [CrossRef] [Green Version]
- Peters, M.D.J.; Godfrey, C.M.; McInerney, P.; Soares, C.B.; Khalil, H.; Parker, D. The Joanna Briggs Institute Reviewers’ Manual 2015: Methodology for JBI Scoping Reviews; The Joanna Briggs Institute: Adelaide, Australia, 2015. [Google Scholar]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- National Center for Biotechnology Information (NCBI). PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 13 November 2021).
- Elsevier. Scopus. Available online: https://www.scopus.com/ (accessed on 11 March 2022).
- Clarivate Analytics. Web of Science. Available online: https://www.webofknowledge.com/ (accessed on 13 November 2021).
- EBSCO Information Services. EBSCOhost. Available online: https://www.ebsco.com/products/ebscohost-research-platform (accessed on 13 November 2021).
- Power, B.E. ProQuest. Available online: https://www.proquest.com/ (accessed on 13 November 2021).
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan. Available online: https://rayyan.qcri.org/ (accessed on 13 November 2021).
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. BMC Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [Green Version]
- McKeown, S.; Mir, Z.M. Considerations for conducting systematic reviews: Evaluating the performance of different methods for de-duplicating references. Syst. Rev. 2021, 10, 38. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Abdelmageed, M.I.; Abdelmoneim, A.H.; Mustafa, M.I.; Elfadol, N.M.; Murshed, N.S.; Shantier, S.W.; Makhawi, A.M. Design of a Multiepitope-Based Peptide Vaccine against the e Protein of Human COVID-19: An Immunoinformatics Approach. BioMed Res. Int. 2020, 2020, 2683286. [Google Scholar] [CrossRef] [PubMed]
- Abraham, P.K.; Srihansa, T.; Krupanidhi, S.; Ayyagari, V.; Venkateswarulu, T. Design of multi-epitope vaccine candidate against SARS-CoV-2: A in-silico study. J. Biomol. Struct. Dyn. 2021, 39, 3793–3801. [Google Scholar] [CrossRef] [PubMed]
- Ahammad, I.; Lira, S.S. Designing a novel mRNA vaccine against SARS-CoV-2: An immunoinformatics approach. Int. J. Biol. Macromol. 2020, 162, 820–837. [Google Scholar] [CrossRef] [PubMed]
- Akhand, M.R.N.; Azim, K.F.; Hoque, S.F.; Moli, M.A.; Joy, B.D.; Akter, H.; Afif, I.K.; Ahmed, N.; Hasan, M. Genome based evolutionary lineage of SARS-CoV-2 towards the development of novel chimeric vaccine. Infect. Genet. Evol. 2020, 85, 104517. [Google Scholar] [CrossRef] [PubMed]
- Anand, R.; Biswal, S.; Bhatt, R.; Tiwary, B. Computational perspectives revealed prospective vaccine candidates from five structural proteins of novel SARS corona virus 2019 (SARS-CoV-2). PeerJ 2020, 8, e9855. [Google Scholar] [CrossRef]
- Ashik, A.I.; Hasan, M.; Tasnim, A.T.; Chowdhury, M.B.; Hossain, T.; Ahmed, S. An immunoinformatics study on the spike protein of SARS-CoV-2 revealing potential epitopes as vaccine candidates. Heliyon 2020, 6, e04865. [Google Scholar] [CrossRef]
- Banerjee, A.; Santra, D.; Maiti, S. Energetics and IC50 based epitope screening in SARS CoV-2 (COVID 19) spike protein by immunoinformatic analysis implicating for a suitable vaccine development. J. Transl. Med. 2020, 18, 281. [Google Scholar] [CrossRef]
- Banerjee, S.; Majumder, K.; Gutierrez, G.J.; Gupta, D.; Mittal, B. Immuno-Informatics Approach for Multi-Epitope Vaccine Designing against SARS-CoV-2; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2020. [Google Scholar]
- Baruah, V.; Bose, S. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J. Med. Virol. 2020, 92, 495–500. [Google Scholar] [CrossRef] [Green Version]
- Behbahani, M. In Silico Design of Novel Multi-Epitope Recombinant Vaccine Based on Coronavirus Surface Glycoprotein; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2020. [Google Scholar]
- Behmard, E.; Soleymani, B.; Najafi, A.; Barzegari, E. Immunoinformatic Design of a COVID-19 Subunit Vaccine Using Entire Structural Immunogenic Epitopes of SARS-CoV-2; Research Square: Durham, UK, 2020. [Google Scholar]
- Bhattacharya, M.; Sharma, A.R.; Mallick, B.; Sharma, G.; Lee, S.-S.; Chakraborty, C. Immunoinformatics approach to understand molecular interaction between multi-epitopic regions of SARS-CoV-2 spike-protein with TLR4/MD-2 complex. Infect. Genet. Evol. 2020, 85, 104587. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Sharma, A.R.; Patra, P.; Ghosh, P.; Sharma, G.; Patra, B.C.; Lee, S.-S.; Chakraborty, C. Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach. J. Med. Virol. 2020, 92, 618–631. [Google Scholar] [CrossRef] [Green Version]
- Can, H.; Köseoğlu, A.E.; Erkunt, A.S.; Mervenur, G.; Döşkaya, M.; Karakavuk, M.; Yüksel, G.A.; Ün, C. In silico discovery of antigenic proteins and epitopes of SARS-CoV-2 for the development of a vaccine or a diagnostic approach for COVID-19. Sci. Rep. 2020, 10, 22387. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Z.; Tang, L.-L.; Yu, X.-L.; Zhou, J.; Chang, Y.-F.; Wu, X. Bioinformatics analysis of epitope-based vaccine design against the novel SARS-CoV-2. Infect. Dis. Poverty 2020, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Chukwudozie, O.S.; Chukwuanukwu, R.C.; Iroanya, O.O.; Eze, D.M.; Duru, V.C.; Dele-Alimi, T.O.; Kehinde, B.D.; Bankole, T.T.; Obi, P.C.; Okinedo, E.U.; et al. Attenuated Subcomponent Vaccine Design Targeting the SARS-CoV-2 Nucleocapsid Phosphoprotein RNA Binding Domain: In Silico Analysis. J. Immunol. Res. 2020, 2020, 2837670. [Google Scholar] [CrossRef] [PubMed]
- Corral-Lugo, A.; López-Siles, M.; López, D.; McConnell, M.J.; Martin-Galiano, A.J. Identification and Analysis of Unstructured, Linear B-Cell Epitopes in SARS-CoV-2 Virion Proteins for Vaccine Development. Vaccines 2020, 8, 397. [Google Scholar] [CrossRef]
- Crooke, S.N.; Ovsyannikova, I.G.; Kennedy, R.B.; Poland, G.A. Immunoinformatic identification of B cell and T cell epitopes in the SARS-CoV-2 proteome. Sci. Rep. 2020, 10, 14179. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, H.; Zhuang, S.; Feng, X.; Fang, Y.; Tang, H.; Dai, R.; Tang, L.; Liu, J.; Ma, T.; et al. Immunodominant regions prediction of nucleocapsid protein for SARS-CoV-2 early diagnosis: A bioinformatics and immunoinformatics study. Pathog. Glob. Health 2020, 114, 463–470. [Google Scholar] [CrossRef]
- Dong, R.; Chu, Z.; Yu, F.; Zha, Y. Contriving Multi-Epitope Subunit of Vaccine for COVID-19: Immunoinformatics Approaches. Front. Immunol. 2020, 11, 1784. [Google Scholar] [CrossRef]
- Gupta, A.K.; Khan, M.S.; Choudhury, S.; Mukhopadhyay, A.; Rastogi, A.; Thakur, A.; Kumari, P.; Kaur, M.; Saini, C.; Sapehia, V.; et al. CoronaVR: A Computational Resource and Analysis of Epitopes and Therapeutics for Severe Acute Respiratory Syndrome Coronavirus-2. Front. Microbiol. 2020, 11, 1858. [Google Scholar] [CrossRef]
- Dar, H.A.; Waheed, Y.; Najmi, M.H.; Ismail, S.; Hetta, H.F.; Ali, A.; Khalid, M.; Diotti, R.A. Multiepitope Subunit Vaccine Design against COVID-19 Based on the Spike Protein of SARS-CoV-2: An In Silico Analysis. J. Immunol. Res. 2020, 2020, 8893483. [Google Scholar] [CrossRef]
- Hasan, M.; Shihab, M.M.R.; Islam, M.A. Prediction of b-cell and t-cell epitopes in the spike glycoprotein of SARS-CoV-2 in bangladesh: An in-silico approach. J. Adv. Biotechnol. Exp. Ther. 2020, 3, 49–56. [Google Scholar] [CrossRef]
- Hasanain, A.O.; Ahjel, S.W.; Humadi, S.S. Towards the Design of Multiepitope-Based Peptide Vaccine Candidate against SARS-CoV-2; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2020. [Google Scholar]
- He, J.; Huang, F.; Zhang, J.; Chen, Q.; Zheng, Z.; Zhou, Q.; Chen, D.; Jiao, L.; Chen, J. Vaccine design based on 16 epitopes of SARS-CoV-2 spike protein. J. Med. Virol. 2020, 93, 2115–2131. [Google Scholar] [CrossRef] [PubMed]
- Herrera, L.R.M. Immuno informatics approach in designing a novel vaccine using epitopes from all the structural proteins of SARS-CoV-2. Biomed. Pharmacol. J. 2020, 13, 1845–1862. [Google Scholar] [CrossRef]
- Ismail, S.; Ahmad, S.; Azam, S.S. Immunoinformatics characterization of SARS-CoV-2 spike glycoprotein for prioritization of epitope based multivalent peptide vaccine. J. Mol. Liq. 2020, 314, 113612. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Shankar, U.; Majee, P.; Kumar, A. Scrutinizing the SARS-CoV-2 Protein Information for the Designing an Effective Vaccine Encompassing Both the T-Cell and B-Cell Epitopes; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2020. [Google Scholar]
- Jakhar, R.; Kaushik, S.; Gakhar, S.K. 3CL hydrolase-based multiepitope peptide vaccine against SARS-CoV-2 using immunoinformatics. J. Med. Virol. 2020, 92, 2114–2123. [Google Scholar] [CrossRef] [PubMed]
- Jakhar, R.; Gakhar, S.K.; Detolla, L. An Immunoinformatics Study to Predict Epitopes in the Envelope Protein of SARS-CoV-2. Can. J. Infect. Dis. Med. Microbiol. 2020, 2020, 7079356. [Google Scholar] [CrossRef]
- Joshi, A.; Joshi, B.C.; Mannan, M.A.-U.; Kaushik, V. Epitope based vaccine prediction for SARS-COV-2 by deploying immuno-informatics approach. Inform. Med. Unlocked 2020, 19, 100338. [Google Scholar] [CrossRef]
- Kar, T.; Narsaria, U.; Basak, S.; Debashrito, D.; Castiglione, F.; Mueller, D.M.; Srivastava, A.P. A candidate multi-epitope vaccine against SARS-CoV-2. Sci. Rep. 2020, 10, 10895. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, P.; Saumya, K.U.; Kapuganti, S.K.; Bhardwaj, T.; Giri, R. Exploring the SARS-CoV-2 structural proteins for multi-epitope vaccine development: An in-silico approach. Expert Rev. Vaccines 2020, 19, 887–898. [Google Scholar] [CrossRef]
- Kumar, N.; Sood, D.; Chandra, R. Design and optimization of a subunit vaccine targeting COVID-19 molecular shreds using an immunoinformatics framework. RSC Adv. 2020, 10, 35856–35872. [Google Scholar] [CrossRef]
- Lin, L.; Ting, S.; Yufei, H.; Wendong, L.; Yubo, F.; Jing, Z. Epitope-based peptide vaccines predicted against novel coronavirus disease caused by SARS-CoV-2. Virus Res. 2020, 288, 198082. [Google Scholar] [CrossRef]
- Mahapatra, S.R.; Sahoo, S.; Dehury, B.; Raina, V.; Patro, S.; Misra, N.; Suar, M. Designing an efficient multi-epitope vaccine displaying interactions with diverse HLA molecules for an efficient humoral and cellular immune response to prevent COVID-19 infection. Expert Rev. Vaccines 2020, 19, 871–885. [Google Scholar] [CrossRef] [PubMed]
- Marchan, J. Conserved HLA binding peptides from five non-structural proteins of SARS-CoV-2—An in silico glance. Hum. Immunol. 2020, 81, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Martínez, L.; Malaina, I.; Salcines, D.; Terán, H.; Alegre, S.; Fuente, I.D.L.; Lopez, E.G.; Vinyals, G.O.; Álvarez, C. First Computational Design of COVID-19 Coronavirus Vaccine Using Lambda Superstrings; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2020. [Google Scholar]
- Martin, W.R.; Cheng, F. A rational design of a multi-epitope vaccine against SARS-CoV-2 which accounts for the glycan shield of the spike glycoprotein. J. Biomol. Struct. Dyn. 2021, 40, 7099–7113. [Google Scholar] [CrossRef]
- Mitra, D.; Pandey, J.; Jain, A.; Swaroop, S. In silico design of multi-epitope-based peptide vaccine against SARS-CoV-2 using its spike protein. J. Biomol. Struct. Dyn. 2020, 40, 5189–5202. [Google Scholar] [CrossRef] [PubMed]
- Tahir Ul Qamar, M.; Shahid, F.; Aslam, S.; Ashfaq, U.A.; Aslam, S.; Fatima, I.; Fareed, M.M.; Zohaib, A.; Chen, L.L. Reverse vaccinology assisted designing of multiepitope-based subunit vaccine against SARS-CoV-2. Infect. Dis. Poverty 2020, 9, 132. [Google Scholar] [CrossRef]
- Tahir Ul Qamar, M.; Rehman, A.; Ashfaq, U.A.; Qasim, M.; Zhu, X.; Fatima, I.; Shahid, F.; Chen, L.-L. Designing of a Next Generation Multiepitope Based Vaccine (MEV) against SARS-COV-2: Immunoinformatics and In Silico Approaches; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2020. [Google Scholar]
- Mukherjee, S.; Tworowski, D.; Detroja, R.; Mukherjee, S.B.; Frenkel-Morgenstern, M. Immunoinformatics and structural analysis for identification of immunodominant epitopes in SARS-CoV-2 as potential vaccine targets. Vaccines 2020, 8, 290. [Google Scholar] [CrossRef]
- Naz, A.; Shahid, F.; Butt, T.T.; Awan, F.M.; Ali, A.; Malik, A. Designing Multi-Epitope Vaccines to Combat Emerging Coronavirus Disease 2019 (COVID-19) by Employing Immuno-Informatics Approach. Front. Immunol. 2020, 11, 1663. [Google Scholar] [CrossRef]
- Oladipo, E.K.; Ajayi, A.F.; Ariyo, O.E.; Onile, S.O.; Jimah, E.M.; Ezediuno, L.O.; Adebayo, O.I.; Adebayo, E.T.; Odeyemi, A.N.; Oyeleke, M.O.; et al. Exploration of surface glycoprotein to design multi-epitope vaccine for the prevention of Covid-19. Inform. Med. Unlocked 2020, 21, 100438. [Google Scholar] [CrossRef]
- Panda, P.K.; Arul, M.N.; Patel, P.; Verma, S.K.; Luo, W.; Rubahn, H.-G.; Mishra, Y.K.; Suar, M.; Ahuja, R. Structure-based drug designing and immunoinformatics approach for SARS-CoV-2. Sci. Adv. 2020, 6, eabb8097. [Google Scholar] [CrossRef]
- Rahman, M.S.; Hoque, M.N.; Islam, M.R.; Akter, S.; Rubayet-Ul-Alam, A.S.M.; Siddique, M.A.; Saha, O.; Rahaman, M.M.; Sultana, M.; Hossain, M.A. Epitope-Based Chimeric Peptide Vaccine Design against S, M and E Proteins of SARS-CoV-2 Etiologic Agent of Global Pandemic COVID-19: An In Silico Approach; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2020. [Google Scholar]
- Rahman, N.; Ali, F.; Basharat, Z.; Shehroz, M.; Khan, M.K.; Jeandet, P.; Nepovimova, E.; Kuca, K.; Khan, H. Vaccine Design from the Ensemble of Surface Glycoprotein Epitopes of SARS-CoV-2: An Immunoinformatics Approach. Vaccines 2020, 8, 423. [Google Scholar] [CrossRef]
- Rakib, A.; Sami, S.A.; Mimi, N.J.; Chowdhury, M.M.; Eva, T.A.; Nainu, F.; Paul, A.; Shahriar, A.; Tareq, A.M.; Emon, N.U.; et al. Immunoinformatics-guided design of an epitope-based vaccine against severe acute respiratory syndrome coronavirus 2 spike glycoprotein. Comput. Biol. Med. 2020, 124, 103967. [Google Scholar] [CrossRef] [PubMed]
- Rakib, A.; Sami, S.A.; Islam, M.A.; Ahmed, S.; Faiz, F.B.; Khanam, B.H.; Marma, K.K.S.; Rahman, M.; Uddin, M.M.N.; Nainu, F.; et al. Epitope-Based Immunoinformatics Approach on Nucleocapsid Protein of Severe Acute Respiratory Syndrome-Coronavirus-2. Molecules 2020, 25, 5088. [Google Scholar] [CrossRef] [PubMed]
- Rehman, H.M.; Mirza, M.U.; Ahmad, M.A.; Saleem, M.; Froeyen, M.; Ahmad, S.; Gul, R.; Alghamdi, H.A.; Aslam, M.S.; Sajjad, M.; et al. A putative prophylactic solution for COVID-19: Development of novel multiepitope vaccine candidate against sars-cov-2 by comprehensive immunoinformatic and molecular modelling approach. Biology 2020, 9, 296. [Google Scholar] [CrossRef] [PubMed]
- Samad, A.; Ahammad, F.; Nain, Z.; Alam, R.; Imon, R.R.; Hasan, M.; Rahman, M.S. Designing a multi-epitope vaccine against SARS-CoV-2: An immunoinformatics approach. J. Biomol. Struct. Dyn. 2020, 40, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Sanami, S.; Zandi, M.; Pourhossein, B.; Mobini, G.-R.; Safaei, M.; Abed, A.; Arvejeh, P.M.; Chermahini, F.A.; Alizadeh, M. Design of a multi-epitope vaccine against SARS-CoV-2 using immunoinformatics approach. Int. J. Biol. Macromol. 2020, 164, 871–883. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, B.; Ullah, M.A.; Araf, Y.; Rahman, M.S. Engineering a novel subunit vaccine against SARS-CoV-2 by exploring immunoinformatics approach. Inform. Med. Unlocked 2020, 21, 100478. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, B.; Ullah, M.A.; Johora, F.T.; Taniya, M.A.; Araf, Y. The Essential Facts of Wuhan Novel Coronavirus Outbreak in China and Epitope-Based Vaccine Designing against COVID-19; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2020. [Google Scholar]
- Singh, A.; Mukesh, T.; Sharma, L.K.; Kailash, C. Designing a multi-epitope peptide based vaccine against SARS-CoV-2. Sci. Rep. 2020, 10, 16219. [Google Scholar] [CrossRef]
- Srivastava, S.; Verma, S.; Kamthania, M.; Agarwal, D.; Saxena, A.K.; Kolbe, M.; Singh, S.; Kotnis, A.; Rathi, B.; Nayar, S.A.; et al. Computationally validated SARS-CoV-2 CTL and HTL Multi-Patch vaccines, designed by reverse epitomics approach, show potential to cover large ethnically distributed human population worldwide. J. Biomol. Struct. Dyn. 2020, 40, 2369–2388. [Google Scholar] [CrossRef]
- Zaheer, T.; Waseem, M.; Waqar, W.; Dar, H.A.; Shehroz, M.; Naz, K.; Ishaq, Z.; Tahir, A.; Ullah, N.; Bakhtiar, S.M.; et al. Anti-COVID-19 multi-epitope vaccine designs employing global viral genome sequences. PeerJ 2020, 8, e9541. [Google Scholar] [CrossRef]
- Wang, D.; Mai, J.; Zhou, W.; Yu, W.; Zhan, Y.; Wang, N.; Epstein, N.D.; Yang, Y. Immunoinformatic analysis of T-and B-cell epitopes for SARS-CoV-2 vaccine design. Vaccines 2020, 8, 355. [Google Scholar] [CrossRef]
- Yadav, P.; Potdar, V.; Choudhary, M.; Nyayanit, D.; Agrawal, M.; Jadhav, S.; Majumdar, T.; Shete-Aich, A.; Basu, A.; Abraham, P.; et al. Full-genome sequences of the first two SARS-CoV-2 viruses from India. Indian J. Med. Res. 2020, 151, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, Z.; Rafiei, A.; Yazdani, M.; Valadan, R. Design an Efficient Multi-Epitope Peptide Vaccine Candidate Against SARS-CoV-2: An in silico Analysis. Infect. Drug Resist. 2020, 13, 3007–3022. [Google Scholar] [CrossRef] [PubMed]
- Adam, K.M. Immunoinformatics approach for multi-epitope vaccine design against structural proteins and ORF1a polyprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Trop. Dis. Travel Med. Vaccines 2021, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Waheed, Y.; Ismail, S.; Abbasi, S.W.; Najmi, M.H. A computational study to disclose potential drugs and vaccine ensemble for COVID-19 conundrum. J. Mol. Liq. 2021, 324, 114734. [Google Scholar] [CrossRef]
- Akbay, B.; Abidi, S.H.; Ibrahim, M.A.A.; Mukhatayev, Z.; Ali, S. Multi-Subunit SARS-CoV-2 Vaccine Design Using Evolutionarily Conserved T- and B- Cell Epitopes. Vaccines 2021, 9, 702. [Google Scholar] [CrossRef]
- Akhtar, N.; Joshi, A.; Singh, B.; Kaushik, V. Immuno-informatics quest against COVID-19/SARS-CoV-2: Determin-ing putative T-cell epitopes for vaccine prediction. Infect. Disord. Drug Targets 2021, 21, 541–552. [Google Scholar]
- Al Zamane, S.; Nobel, F.A.; Jebin, R.A.; Amin, M.B.; Somadder, P.D.; Antora, N.J.; Hossain, M.I.; Islam, M.J.; Ahmed, K.; Moni, M.A. Development of an in silico multi-epitope vaccine against SARS-COV-2 by précised immune-informatics approaches. Inform. Med. Unlocked 2021, 27, 100781. [Google Scholar] [CrossRef]
- Almofti, Y.A.; Abd-elrahman, K.A.; Eltilib, E.E.M. Vaccinomic approach for novel multi epitopes vaccine against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). BMC Immunol. 2021, 22, 22. [Google Scholar] [CrossRef]
- Bashir, Z.; Ahmad, S.U.; Kiani, B.H.; Jan, Z.; Khan, N.; Khan, U.; Haq, I.; Zahir, F.; Qadus, A.; Mahmood, T. Immunoinformatics approaches to explore B and T cell epitope-based vaccine designing for SARS-CoV-2 Virus. Pak. J. Pharm. Sci. 2021, 34, 345–352. [Google Scholar]
- Bhatnager, R.; Bhasin, M.; Arora, J.; Dang, A.S. Epitope based peptide vaccine against SARS-COV2: An immune-informatics approach. J. Biomol. Struct. Dyn. 2021, 39, 5690–5705. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Banerjee, A.; Ray, S. Development of new vaccine target against SARS-CoV2 using envelope (E) protein: An evolutionary, molecular modeling and docking based study. Int. J. Biol. Macromol. 2021, 172, 74–81. [Google Scholar] [CrossRef]
- Chauhan, V.; Rungta, T.; Rawat, M.; Goyal, K.; Gupta, Y.; Singh, M.P. Excavating SARS-coronavirus 2 genome for epitope-based subunit vaccine synthesis using immunoinformatics approach. J. Cell. Physiol. 2020, 236, 1131–1147. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ruan, P.; Wang, L.; Nie, X.; Ma, X.; Tan, Y. T and B cell Epitope analysis of SARS-CoV-2 S protein based on immunoinformatics and experimental research. J. Cell. Mol. Med. 2021, 25, 1274–1289. [Google Scholar] [CrossRef] [PubMed]
- Chukwudozie, O.S.; Gray, C.M.; Fagbayi, T.A.; Chukwuanukwu, R.C.; Oyebanji, V.O.; Bankole, T.T.; Adewole, R.A.; Daniel, E.M. Immuno-informatics design of a multimeric epitope peptide based vaccine targeting SARS-CoV-2 spike glycoprotein. PLoS ONE 2021, 16, e0248061. [Google Scholar] [CrossRef] [PubMed]
- Cuspoca, A.F.; Díaz, L.L.; Acosta, A.F.; Peñaloza, M.K.; Méndez, Y.R.; Clavijo, D.C.; Reyes, J.Y. An immunoinformatics approach for sars-cov-2 in latam populations and multi-epitope vaccine candidate directed towards the world’s population. Vaccines 2021, 9, 581. [Google Scholar] [CrossRef]
- Dariushnejad, H.; Ghorbanzadeh, V.; Akbari, S.; Hashemzadeh, P. Designing a Multi-epitope Peptide Vaccine Against COVID-19 Variants Utilizing In-silico Tools. Iran. J. Med. Microbiol. 2021, 15, 592–605. [Google Scholar] [CrossRef]
- Enayatkhani, M.; Hasaniazad, M.; Faezi, S.; Gouklani, H.; Davoodian, P.; Ahmadi, N.; Einakian, M.A.; Karmostaji, A.; Ahmadi, K. Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study. J. Biomol. Struct. Dyn. 2021, 39, 2857–2872. [Google Scholar] [CrossRef] [Green Version]
- Ezaj, M.M.A.; Junaid, M.; Akter, Y.; Nahrin, A.; Siddika, A.; Afrose, S.S.; Nayeem, S.M.A.; Haque, M.S.; Moni, M.A.; Hosen, S.M.Z. Whole proteome screening and identification of potential epitopes of SARS-CoV-2 for vaccine design-an immunoinformatic, molecular docking and molecular dynamics simulation accelerated robust strategy. J. Biomol. Struct. Dyn. 2021, 40, 6477–6502. [Google Scholar] [CrossRef]
- Fatoba, A.J.; Maharaj, L.; Adeleke, V.T.; Okpeku, M.; Adeniyi, A.A.; Adeleke, M.A. Immunoinformatics prediction of overlapping CD8+ T-cell, IFN-γ and IL-4 inducer CD4+ T-cell and linear B-cell epitopes based vaccines against COVID-19 (SARS-CoV-2). Vaccine 2021, 39, 1111–1121. [Google Scholar] [CrossRef]
- Fereshteh, S.; Sepehr, A.; Rahimirad, N.; Sanikhani, R.; Badmasti, F. In silico evaluation of surface-exposed proteins of severe acute respiratory syndrome coronavirus 2 to propose a multi-epitope vaccine candidate. Health Biotechnol. Biopharma 2021, 4, 51–72. [Google Scholar]
- Ferreira, C.S.; Martins, Y.C.; Souza, R.C.; Vasconcelos, A.T.R. EpiCurator: An immunoinformatic workflow to predict and prioritize SARS-CoV-2 epitopes. PeerJ 2021, 9, e12548. [Google Scholar] [CrossRef]
- Ghosh, N.; Sharma, N.; Saha, I. Immunogenicity and antigenicity based T-cell and B-cell epitopes identification from conserved regions of 10664 SARS-CoV-2 genomes. Infect. Genet. Evol. 2021, 92, 104823. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, N.; Sharma, N.; Saha, I.; Saha, S. Genome-wide analysis of Indian SARS-CoV-2 genomes to identify T-cell and B-cell epitopes from conserved regions based on immunogenicity and antigenicity. Int. Immunopharmacol. 2021, 91, 107276. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.Y.; Liu, I.J.; Lin, H.T.; Wang, M.J.; Chang, Y.L.; Lin, S.C.; Liao, M.Y.; Hsu, W.C.; Lin, Y.L.; Liao, J.C.; et al. Identification of COVID-19 B-cell epitopes with phage-displayed peptide library. J. Biomed. Sci. 2021, 28, 43. [Google Scholar] [CrossRef] [PubMed]
- Hafidzhah, M.A.; Wijaya, R.M.; Probojati, R.T.; Kharisma, V.D.; Ansori, A.N.M.; Parikesit, A.A. Potential vaccine targets for COVID-19 and phylogenetic analysis based on the nucleocapsid phosphoprotein of Indonesian SARS-CoV-2 isolates. Indones. J. Pharm. 2021, 32, 328–337. [Google Scholar]
- Hisham, Y.; Ashhab, Y.; Hwang, S.-H.; Kim, D.-E. Identification of highly conserved sars-cov-2 antigenic epitopes with wide coverage using reverse vaccinology approach. Viruses 2021, 13, 787. [Google Scholar] [CrossRef]
- Jain, R.; Jain, A.; Verma, S. Prediction of Epitope based Peptides for Vaccine Development from Complete Proteome of Novel Corona Virus (SARS-COV-2) Using Immunoinformatics. Int. J. Pept. Res. Ther. 2021, 27, 1729–1740. [Google Scholar] [CrossRef]
- Jawalagatti, V.; Kirthika, P.; Park, J.-Y.; Hewawaduge, C.; Lee, J.H. Highly feasible immunoprotective multicistronic SARS-CoV-2 vaccine candidate blending novel eukaryotic expression and Salmonella bactofection. J. Adv. Res. 2021, 36, 211–222. [Google Scholar] [CrossRef]
- Jena, M.; Kumar, V.; Kancharla, S.; Kolli, P. Reverse vaccinology approach towards the in-silico multiepitope vaccine development against SARS-CoV-2. F1000Research 2021, 10, 44. [Google Scholar]
- Khan, A.; Khan, S.; Saleem, S.; Nizam-Uddin, N.; Mohammad, A.; Khan, T.; Ahmad, S.; Arshad, M.; Ali, S.S.; Suleman, M.; et al. Immunogenomics guided design of immunomodulatory multi-epitope subunit vaccine against the SARS-CoV-2 new variants, and its validation through in silico cloning and immune simulation. Comput. Biol. Med. 2021, 133, 104420. [Google Scholar] [CrossRef]
- Kumar, N.; Nikita, A.; Anchala, K.; Damini, S.; Sonam, G.; Prajapati, V.K.; Chandra, R.; Abhinav, G. Cytotoxic T-lymphocyte elicited vaccine against SARS-CoV-2 employing immunoinformatics framework. Sci. Rep. 2021, 11, 7653. [Google Scholar] [CrossRef]
- Montes-Grajales, D.; Olivero-Verbe, J. Bioinformatics prediction of sars-cov-2 epitopes as vaccine candidates for the colombian population. Vaccines 2021, 9, 797. [Google Scholar] [CrossRef] [PubMed]
- Moura, R.R.D.; Agrelli, A.; Santos-Silva, C.A.; Silva, N.; Assunção, B.R.; Brandão, L.; Benko-Iseppon, A.M.; Crovella, S. Immunoinformatic approach to assess SARS-CoV-2 protein S epitopes recognised by the most frequent MHC-I alleles in the Brazilian population. J. Clin. Pathol. 2021, 74, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Haider, A.; Rehman, A.; Qasim, M.; Umar, A.; Sufyan, M.; Hafiza, N.A.; Mir, A.; Razzaq, R.; Rasool, D.; et al. Immunoinformatics and Molecular Docking Studies Predicted Potential Multiepitope-Based Peptide Vaccine and Novel Compounds against Novel SARS-CoV-2 through Virtual Screening. BioMed Res. Int. 2021, 2021, 1596834. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Tehreem, S.; Arshad, S.; Bukhari, S.A.; Shabbir, M.A.; Essa, R.; Ali, N.; Zaib, S.; Khan, A.; Al-Harrasi, A.; et al. Design of a novel multiple epitope-based vaccine: An immunoinformatics approach to combat SARS-CoV-2 strains. J. Infect. Public Health 2021, 14, 938–946. [Google Scholar] [CrossRef]
- Oso, B.J.; Olaoye, I.F.; Ogidi, C.O. In silico Design of a Vaccine Candidate for SAR S-CoV-2 Based on Multiple T-cell and B-cell Epitopes. Arch. Razi Inst. 2021, 76, 1141–1151. [Google Scholar]
- Paul, D.; Pyne, N.; Paul, S. Mutation profile of SARS-CoV-2 spike protein and identification of potential multiple epitopes within spike protein for vaccine development against SARS-CoV-2. VirusDisease 2021, 32, 703–726. [Google Scholar] [CrossRef]
- Pourseif, M.M.; Parvizpour, S.; Jafari, B.; Dehghani, J.; Naghili, B.; Omidi, Y. A domain-based vaccine construct against SARS-CoV-2, the causative agent of COVID-19 pandemic: Development of self-amplifying mRNA and peptide vaccines. BioImpacts BI 2021, 11, 65. [Google Scholar] [CrossRef]
- Rantam, F.A.; Kharisma, V.D.; Sumartono, C.; Nugraha, J.; Wijaya, A.Y.; Susilowati, H.; Kuncorojakti, S.; Nugraha, A.P. Molecular docking and dynamic simulation of conserved B cell epitope of SARS-CoV-2 glycoprotein Indonesian isolates: An immunoinformatic approach. F1000Research 2021, 10, 813. [Google Scholar] [CrossRef]
- Ravindran, R.; Gunasekaran, S.; Easwaran, M.; Lulu, S.; Unni, P.A.; Vino, S.; Doble, M. Immunoinformatic Approach to Design a Vaccine against SARS-CoV-2 Membrane Glycoprotein; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2021. [Google Scholar]
- Rehman, Z.; Fahim, A.; Bhatti, M.F. Scouting the receptor-binding domain of SARS coronavirus 2: A comprehensive immunoinformatics inquisition. Future Virol. 2021, 16, 117–132. [Google Scholar] [CrossRef]
- Rencilin, C.F.; Rosy, J.C.; Mohan, M.; Coico, R.; Sundar, K. Identification of SARS-CoV-2 CTL epitopes for development of a multivalent subunit vaccine for COVID-19. Infect. Genet. Evol. 2021, 89, 104712. [Google Scholar] [CrossRef]
- Rouka, E.; Gourgoulianis, K.I.; Zarogiannis, S.G. In silico investigation of the viroporin E as a vaccine target against SARS-CoV-2. Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 320, L1057–L1063. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.S.; Tonmoy, M.I.Q.; Fariha, A.; Hami, I.; Afif, I.K.; Munim, M.A.; Alam, M.R.; Hossain, M.S. Multi-epitope based peptide vaccine design using three structural proteins (S, e, and m) of SARS-CoV-2: An in silico approach. J. Appl. Biotechnol. Rep. 2021, 8, 146–154. [Google Scholar]
- Saba, A.A.; Adiba, M.; Saha, P.; Hosen, M.I.; Chakraborty, S.; Nabi, A.H.M.N. An in-depth in silico and immunoinformatics approach for designing a potential multi-epitope construct for the effective development of vaccine to combat against SARS-CoV-2 encompassing variants of concern and interest. Comput. Biol. Med. 2021, 136, 104703. [Google Scholar] [CrossRef] [PubMed]
- Sadat, S.M.; Aghadadeghi, M.R.; Yousefi, M.; Khodaei, A.; Larijani, M.S.; Bahramali, G. Bioinformatics analysis of SARS-CoV-2 to approach an effective vaccine candidate against COVID-19. Mol. Biotechnol. 2021, 63, 389–409. [Google Scholar] [CrossRef] [PubMed]
- Saha, R.; Ghosh, P.; Burra, V.L.S.P. Designing a next generation multi-epitope based peptide vaccine candidate against SARS-CoV-2 using computational approaches. 3 Biotech 2021, 11, 47. [Google Scholar] [CrossRef]
- Sanami, S.; Alizadeh, M.; Nosrati, M.; Dehkordi, K.A.; Azadegan-Dehkordi, F.; Tahmasebian, S.; Nosrati, H.; Arjmand, M.-H.; Ghasemi-Dehnoo, M.; Rafiei, A.; et al. Exploring SARS-CoV-2 structural proteins to design a multi-epitope vaccine using immunoinformatics approach: An in silico study. Comput. Biol. Med. 2021, 133, 104390. [Google Scholar] [CrossRef]
- Moghri, S.A.H.M.H.; Ranjbar, M.; Hassannia, H.; Khakdan, F. Designing a Novel Multi-Epitope Vaccine against SARS-CoV-2; Implication for Viral Binds and Fusion Inhibition through Inducing Neutralizing Antibodies; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2021. [Google Scholar]
- Singh, J.; Malik, D.; Raina, A. Immuno-informatics approach for B-cell and T-cell epitope based peptide vaccine design against novel COVID-19 virus. Vaccine 2021, 39, 1087–1095. [Google Scholar] [CrossRef]
- Singh, P.; Tripathi, M.K.; Shrivastava, R. In silico identification of linear B-cell epitope in Coronavirus 2019 (SARS-CoV-2) surface glycoprotein: A prospective towards peptide vaccine. Minerva Biotechnol. Biomol. Res. 2021, 33, 29–35. [Google Scholar] [CrossRef]
- Solanki, V.; Tiwari, M.; Tiwari, V. Immunoinformatic approach to design a multiepitope vaccine targeting non-mutational hotspot regions of structural and non-structural proteins of the SARS-CoV-2. PeerJ 2021, 9, e11126. [Google Scholar] [CrossRef]
- Srivastava, V.K.; Kaushik, S.; Bhargava, G.; Jain, A.; Saxena, J.; Jyoti, A. A Bioinformatics Approach for the Prediction of Immunogenic Properties and Structure of the SARS-CoV-2 B.1.617.1 Variant Spike Protein. BioMed Res. Int. 2021, 2021, 7251119. [Google Scholar]
- Susithra Priyadarshni, M.; Isaac Kirubakaran, S.; Harish, M.C. In silico approach to design a multi-epitopic vaccine candidate targeting the non-mutational immunogenic regions in envelope protein and surface glycoprotein of SARS-CoV-2. J. Biomol. Struct. Dyn. 2021, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Uttamrao, P.P.; Sathyaseelan, C.; Patro, L.P.P.; Rathinavelan, T. Revelation of Potent Epitopes Present in Unannotated ORF Antigens of SARS-CoV-2 for Epitope-Based Polyvalent Vaccine Design Using Immunoinformatics Approach. Front. Immunol. 2021, 12, 692937. [Google Scholar] [CrossRef] [PubMed]
- Vakili, B.; Bagheri, A.; Negahdaripour, M. Deep survey for designing a vaccine against SARS-CoV-2 and its new mutations. Biologia 2021, 76, 3465–3476. [Google Scholar] [CrossRef] [PubMed]
- Vivekanandam, R.; Rajagopalan, K.; Jeevanandam, M.; Ganesan, H.; Jagannathan, V.; Selvan Christyraj, J.D.; Kalimuthu, K.; Selvan Christyraj, J.R.S.; Mohan, M. Designing of cytotoxic T lymphocyte-based multi-epitope vaccine against SARS-CoV2: A reverse vaccinology approach. J. Biomol. Struct. Dyn. 2021, 1–16. [Google Scholar] [CrossRef]
- Yahaya, A.A.; Sanusi, S.; Malo, F.U. Computer-assisted multi-epitopes T-cell subunit Covid-19 vaccine design. Biomed. Biotechnol. Res. J. 2021, 5, 27–34. [Google Scholar]
- Yang, Z.; Bogdan, P.; Nazarian, S. An in silico deep learning approach to multi-epitope vaccine design: A SARS-CoV-2 case study. Sci. Rep. 2021, 11, 3238. [Google Scholar] [CrossRef]
- Yashvardhini, N.; Kumar, A.; Jha, D.K. Immunoinformatics Identification of B-and T-Cell Epitopes in the RNA-Dependent RNA Polymerase of SARS-CoV-2. Can. J. Infect. Dis. Med. Microbiol. 2021, 2021, 6627141. [Google Scholar] [CrossRef]
- Devi, Y.D.; Goswami, H.B.; Konwar, S.; Doley, C.; Dolley, A.; Devi, A.; Chongtham, C.; Dowerah, D.; Biswa, V.; Jamir, L.; et al. Immunoinformatics mapping of potential epitopes in SARS-CoV-2 structural proteins. PLoS ONE 2021, 16, e0258645. [Google Scholar] [CrossRef]
- Zhuang, S.; Tang, L.; Dai, Y.; Feng, X.; Fang, Y.; Tang, H.; Jiang, P.; Wu, X.; Fang, H.; Chen, H. Bioinformatic prediction of immunodominant regions in spike protein for early diagnosis of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). PeerJ 2021, 9, e11232. [Google Scholar] [CrossRef]
- Palanisamy, N.; Lennerstrand, J. Computational Prediction of Usutu Virus E Protein B Cell and T Cell Epitopes for Potential Vaccine Development. Scand. J. Immunol. 2017, 85, 350–364. [Google Scholar] [CrossRef] [Green Version]
- Satyam, R.; Janahi, E.M.; Bhardwaj, T.; Somvanshi, P.; Haque, S.; Najm, M.Z. In silico identification of immunodominant B-cell and T-cell epitopes of non-structural proteins of Usutu Virus. Microb. Pathog. 2018, 125, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Kaliamurthi, S.; Selvaraj, G.; Kaushik, A.C.; Ke-Ren, G.; Dong-Qing, W. Designing of CD8+ and CD8+-overlapped CD4+ epitope vaccine by targeting late and early proteins of human papillomavirus. Biologics 2018, 12, 107–125. [Google Scholar] [PubMed] [Green Version]
- Kaliamurthi, S.; Selvaraj, G.; Chinnasamy, S.; Wang, Q.; Nangraj, A.S.; Cho, W.C.S.; Gu, K.; Wei, D.-Q. Exploring the papillomaviral proteome to identify potential candidates for a chimeric vaccine against cervix papilloma using immunomics and computational structural vaccinology. Viruses 2019, 11, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namvar, A.; Bolhassani, A.; Javadi, G.; Noormohammadi, Z. In silico/In vivo analysis of high-risk papillomavirus L1 and L2 conserved sequences for development of cross-subtype prophylactic vaccine. Sci. Rep. 2019, 9, 15225. [Google Scholar] [CrossRef] [Green Version]
- Dehghani, B.; Hasanshahi, Z.; Hashempour, T.; Motamedifar, M. The possible regions to design Human Papilloma Viruses vaccine in Iranian L1 protein. Biologia 2020, 75, 749–759. [Google Scholar] [CrossRef]
- Abbasifarid, E.; Bolhassani, A.; Irani, S.; Sotoodehnejadnematalahi, F. Synergistic effects of exosomal crocin or curcumin compounds and HPV L1-E7 polypeptide vaccine construct on tumor eradication in C57BL/6 mouse model. PLoS ONE 2021, 16, e0258599. [Google Scholar] [CrossRef]
- Ahmad, N.; Ali, S.S.; Ahmad, S.; Hussain, Z.; Qasim, M.; Suleman, M.; Ali, S.; Nizam-Uddin, N.; Khan, A.; Wei, D.-Q. Computational Modeling of Immune Response Triggering Immunogenic Peptide Vaccine against the Human Papillomaviruses to Induce Immunity against Cervical Cancer. Viral Immunol. 2021, 34, 457–469. [Google Scholar] [CrossRef]
- Bagheri, A.; Nezafat, N.; Eslami, M.; Ghasemi, Y.; Negahdaripour, M. Designing a therapeutic and prophylactic candidate vaccine against human papillomavirus through vaccinomics approaches. Infect. Genet. Evol. 2021, 95, 105084. [Google Scholar] [CrossRef]
- Samira, S.; Fatemeh, A.-D.; Mahmoud, R.-K.; Majid, S.; Maryam, G.-D.; Mehran, M.; Morteza, A.; Nader, B. Design of a multi-epitope vaccine against cervical cancer using immunoinformatics approaches. Sci. Rep. 2021, 11, 12397. [Google Scholar]
- Sisakht, M.; Mahmoodzadeh, A.; Zahedi, M.; Rostamzadeh, D.; Hasan-Abad, A.M.; Atapour, A. In silico approach for designing a novel recombinant fusion protein as a candidate vaccine against hpv. Curr. Proteom. 2021, 18, 549–562. [Google Scholar] [CrossRef]
- Hasan, M.; Ghosh, P.P.; Azim, K.F.; Mukta, S.; Abir, R.A.; Nahar, J.; Hasan Khan, M.M. Reverse vaccinology approach to design a novel multi-epitope subunit vaccine against avian influenza A (H7N9) virus. Microb. Pathog. 2019, 130, 19–37. [Google Scholar] [CrossRef] [PubMed]
- Hekmat, S.; Siadat, S.D.; Aghasadeghi, M.R.; Sadat, S.M.; Bahramali, G.; Aslani, M.M.; Mahdavi, M.; Shahbazi, S. From in-silico immunogenicity verification to in vitro expression of recombinant Core-NS3 fusion protein of HCV. Bratisl. Med. J. 2017, 118, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Ikram, A.; Zaheer, T.; Awan, F.M.; Obaid, A.; Naz, A.; Hanif, R.; Paracha, R.Z.; Ali, A.; Naveed, A.K.; Janjua, H.A. Exploring NS3/4A, NS5A and NS5B proteins to design conserved subunit multi-epitope vaccine against HCV utilizing immunoinformatics approaches. Sci. Rep. 2018, 8, 16107. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, V.; Singh, M.P.; Ratho, R.K. Identification of T cell and B cell epitopes against Indian HCV-genotype-3a for vaccine development- An in silico analysis. Biologicals 2018, 53, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Atapour, A.; Mokarram, P.; MostafaviPour, Z.; Hosseini, S.Y.; Ghasemi, Y.; Mohammadi, S.; Nezafat, N. Designing a fusion protein vaccine against HCV: An in silico approach. Int. J. Pept. Res. Ther. 2019, 25, 861–872. [Google Scholar] [CrossRef]
- Dehghan, Z.; Lari, A.; Yarian, F.; Ahangarzadeh, S.; Sharifnia, Z.; Shahzamani, K.; Shahidi, S. Development of polyepitopic immunogenic contrast against hepatitis C virus 1a-6a genotype by in silico approach. Biomed. Biotechnol. Res. J. 2020, 4, 355–364. [Google Scholar]
- Khalid, H.; Ashfaq, U.A. Exploring HCV genome to construct multi-epitope based subunit vaccine to battle HCV infection: Immunoinformatics based approach. J. Biomed. Inform. 2020, 108, 103498. [Google Scholar] [CrossRef]
- Khan, A.; Nawaz, M.; Ullah, S.; Rehman, I.U.; Khan, A.; Saleem, S.; Zaman, N.; Shinwari, Z.K.; Ali, M.; Wei, D.-Q. Core amino acid substitutions in HCV-3a isolates from Pakistan and opportunities for multi-epitopic vaccines. J. Biomol. Struct. Dyn. 2020, 40, 3753–3768. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Shahid, F.; Tahir Ul Qamar, M.; Ur Rehman, H.; Abbasi, S.W.; Sajjad, W.; Ismail, S.; Alrumaihi, F.; Allemailem, K.S.; Almatroudi, A.; et al. Immuno-informatics analysis of pakistan-based hcv subtype-3a for chimeric polypeptide vaccine design. Vaccines 2021, 9, 293. [Google Scholar] [CrossRef]
- Pyasi, S.; Sharma, V.; Dipti, K.; Jonniya, N.A.; Nayak, D. Immunoinformatics approach to design multi-epitope-subunit vaccine against bovine ephemeral fever disease. Vaccines 2021, 9, 925. [Google Scholar] [CrossRef]
- Pradhan, D.; Yadav, M.; Verma, R.; Khan, N.S.; Jena, L.; Jain, A.K. Discovery of T-cell driven subunit vaccines from Zika virus genome: An immunoinformatics approach. Interdiscip. Sci. Comput. Life Sci. 2017, 9, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.; Rao, R.; Raj, U.; Varadwaj, P.K. Computational modeling and analysis of prominent T-cell epitopes for assisting in designing vaccine of ZIKA virus. J. Appl. Pharm. Sci. 2017, 7, 116–122. [Google Scholar]
- Kumar Pandey, R.; Ojha, R.; Mishra, A.; Kumar Prajapati, V. Designing B- and T-cell multi-epitope based subunit vaccine using immunoinformatics approach to control Zika virus infection. J. Cell. Biochem. 2018, 119, 7631–7642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvador, E.A.; Pires de Souza, G.A.; Cotta Malaquias, L.C.; Wang, T.; Leomil Coelho, L.F. Identification of relevant regions on structural and nonstructural proteins of Zika virus for vaccine and diagnostic test development: An in silico approach. New Microbes New Infect. 2019, 29, 100506. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Sasidharan, S.; Raj, S.; Balaji, S.N.; Saudagar, P. Exploring the Zika Genome to Design a Potential Multiepitope Vaccine Using an Immunoinformatics Approach. Int. J. Pept. Res. Ther. 2020, 26, 2231–2240. [Google Scholar] [CrossRef]
- Shahid, F.; Ashfaq, U.A.; Javaid, A.; Khalid, H. Immunoinformatics guided rational design of a next generation multi epitope based peptide (MEBP) vaccine by exploring Zika virus proteome. Infect. Genet. Evol. 2020, 80, 104199. [Google Scholar] [CrossRef]
- Ezzemani, W.; Windisch, M.P.; Kettani, A.; Altawalah, H.; Nourlil, J.; Benjelloun, S.; Ezzikouri, S. Immuno-informatics-based identification of novel potential b cell and t cell epitopes to fight zika virus infections. Infect. Disord. Drug Targets 2021, 21, 572–581. [Google Scholar] [CrossRef]
- Paul, D.; Sharif, I.H.; Sayem, A.; Ahmed, H.; Saleh, A.; Mahmud, S. In silico prediction of a highly immunogenic and conserved epitope against Zika Virus. Inform. Med. Unlocked 2021, 24, 100613. [Google Scholar] [CrossRef]
- Jain, P.; Joshi, A.; Akhtar, N.; Krishnan, S.; Kaushik, V. An immunoinformatics study: Designing multivalent T-cell epitope vaccine against canine circovirus. J. Genet. Eng. Biotechnol. 2021, 19, 121. [Google Scholar] [CrossRef]
- Ali, M.; Pandey, R.K.; Khatoon, N.; Narula, A.; Mishra, A.; Prajapati, V.K. Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Sci. Rep. 2017, 7, 9232. [Google Scholar] [CrossRef] [Green Version]
- Subramaniyan, V.; Venkatachalam, R.; Srinivasan, P.; Palani, M. In silico prediction of monovalent and chimeric tetravalent vaccines for prevention and treatment of dengue fever. J. Biomed. Res. 2017, 32, 222–236. [Google Scholar]
- Adnan, M.; Nuhamunada, M.; Hidayati, L.; Wijayanti, N. In silico vaccine design against dengue virus type 2 envelope glycoprotein. HAYATI J. Biosci. 2020, 27, 228–240. [Google Scholar] [CrossRef]
- Krishnan, S.; Amit, J.; Vikas, K. T cell epitope designing for dengue peptide vaccine using docking and molecular simulation studies. Mol. Simul. 2020, 46, 787–795. [Google Scholar]
- Islam, R.; Parvez, M.S.A.; Anwar, S.; Hosen, M.J. Delineating blueprint of an epitope-based peptide vaccine against the multiple serovars of dengue virus: A hierarchical reverse vaccinology approach. Inform. Med. Unlocked 2020, 20, 100430. [Google Scholar] [CrossRef]
- Fadaka, A.O.; Samantha, S.N.R.; Martin, D.R.; Mediline, G.; Ashwil, K.; Madimabe, M.A.; Meyer, M. Immunoinformatics design of a novel epitope-based vaccine candidate against dengue virus. Sci. Rep. 2021, 11, 19707. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Joshi, A.; Akhtar, N.; Kaushik, V. Immunoinformatics designed T cell multi epitope dengue peptide vaccine derived from non structural proteome. Microb. Pathog. 2021, 150, 104728. [Google Scholar] [CrossRef] [PubMed]
- Hoque, H.; Islam, R.; Ghosh, S.; Rahaman, M.M.; Jewel, N.A.; Miah, M.A. Implementation of in silico methods to predict common epitopes for vaccine development against Chikungunya and Mayaro viruses. Heliyon 2021, 7, e06396. [Google Scholar] [CrossRef] [PubMed]
- Ojha, R.; Pareek, A.; Pandey, R.K.; Prusty, D.; Prajapati, V.K. Strategic Development of a Next-Generation Multi-Epitope Vaccine to Prevent Nipah Virus Zoonotic Infection. ACS Omega 2019, 4, 13069–13079. [Google Scholar] [CrossRef] [Green Version]
- Ravichandran, L.; Venkatesan, A.; Febin Prabhu Dass, J. Epitope-based immunoinformatics approach on RNA-dependent RNA polymerase (RdRp) protein complex of Nipah virus (NiV). J. Cell. Biochem. 2019, 120, 7082–7095. [Google Scholar] [CrossRef]
- Kaushik, V. In Silico Identification of Epitope-Based Peptide Vaccine for Nipah Virus. Int. J. Pept. Res. Ther. 2020, 26, 1147–1153. [Google Scholar] [CrossRef]
- Majee, P.; Jain, N.; Kumar, A. Designing of a multi-epitope vaccine candidate against Nipah virus by in silico approach: A putative prophylactic solution for the deadly virus. J. Biomol. Struct. Dyn. 2021, 39, 1461–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raju, S.; Sahoo, D.; Bhari, V.K. In-silico design of multi-epitope vaccine against Nipah virus using immunoinformatics approach. J. Pure Appl. Microbiol. 2021, 15, 212–231. [Google Scholar] [CrossRef]
- Sharma, S.; Srivastava, S.; Kumar, A.; Srivastava, V. Anticipation of Antigenic Sites for the Goal of Vaccine Designing Against Nipah Virus: An Immunoinformatics Inquisitive Quest. Int. J. Pept. Res. Ther. 2021, 27, 1899–1911. [Google Scholar] [CrossRef] [PubMed]
- Soltan, M.A.; Eldeen, M.A.; Elbassiouny, N.; Ibrahim, M.; El-damasy, D.A.; Fayad, E.; Abu Ali, O.A.; Raafat, N.; Eid, R.A.; Al-Karmalawy, A.A. Proteome Based Approach Defines Candidates for Designing a Multitope Vaccine against the Nipah Virus. Int. J. Mol. Sci. 2021, 22, 9330. [Google Scholar] [CrossRef]
- Sarkar, B.; Ullah, M.A.; Araf, Y. A systematic and reverse vaccinology approach to design novel subunit vaccines against Dengue virus type-1 (DENV-1) and human Papillomavirus-16 (HPV-16). Inform. Med. Unlocked 2020, 19, 100343. [Google Scholar] [CrossRef]
- Dash, R.; Das, R.; Junaid, M.; Akash, M.F.C.; Islam, A.; Hosen, S.Z. In silico-based vaccine design against Ebola virus glycoprotein. Adv. Appl. Bioinform. Chem. 2017, 10, 11–28. [Google Scholar] [CrossRef]
- Dehghani, B.; Ghasabi, F.; Hashempoor, T.; Joulaei, H.; Hasanshahi, Z.; Halaji, M.; Chatrabnous, N.; Mousavi, Z.; Moayedi, J. Functional and structural characterization of Ebola virus glycoprotein (1976–2015)—An in silico study. Int. J. Biomath. 2017, 10, 1750108. [Google Scholar] [CrossRef]
- Kadam, A.; Sasidharan, S.; Saudagar, P. Computational design of a potential multi-epitope subunit vaccine using immunoinformatics to fight Ebola virus. Infect. Genet. Evol. 2020, 85, 104464. [Google Scholar] [CrossRef]
- Ullah, M.A.; Sarkar, B.; Islam, S.S. Exploiting the reverse vaccinology approach to design novel subunit vaccines against Ebola virus. Immunobiology 2020, 225, 151949. [Google Scholar] [CrossRef]
- Mustafa, M.I.; Shantier, S.W.; Abdelmageed, M.I.; Makhawi, A.M. Epitope-based peptide vaccine against Bombali Ebolavirus viral protein 40: An immunoinformatics combined with molecular docking studies. Inform. Med. Unlocked 2021, 25, 100694. [Google Scholar] [CrossRef]
- Shankar, U.; Jain, N.; Mishra, S.K.; Sk, M.F.; Kar, P.; Kumar, A. Mining of Ebola virus genome for the construction of multi-epitope vaccine to combat its infection. J. Biomol. Struct. Dyn. 2021, 40, 4815–4831. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Yu, S.; Guo, Y.; Gu, L.; Wang, G.; Ren, Z.; Li, Y.; Li, K.; Li, R. Development of a multivalent enterovirus subunit vaccine based on immunoinformatic design principles for the prevention of HFMD. Vaccine 2020, 38, 3671–3681. [Google Scholar] [CrossRef] [PubMed]
- Waheed, Y.; Safi, S.Z.; Najmi, M.H.; Aziz, H.; Imran, M. Prediction of promiscuous T cell epitopes in RNA dependent RNA polymerase of chikungunya virus. Asian Pac. J. Trop. Med. 2017, 10, 760–764. [Google Scholar] [CrossRef] [PubMed]
- Tahir ul Qamar, M.; Bari, A.; Adeel, M.M.; Maryam, A.; Ashfaq, U.A.; Du, X.; Muneer, I.; Ahmad, H.I.; Jia, W. Peptide vaccine against chikungunya virus: Immuno-informatics combined with molecular docking approach. J. Transl. Med. 2018, 16, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narula, A.; Pandey, R.K.; Khatoon, N.; Mishra, A.; Prajapati, V.K. Excavating chikungunya genome to design B and T cell multi-epitope subunit vaccine using comprehensive immunoinformatics approach to control chikungunya infection. Infect. Genet. Evol. 2018, 61, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.; Mourosi, J.T.; Khan, M.F.; Hosen, M.J. Prediction of epitope-based peptide vaccine against the Chikungunya virus by immuno-informatics approach. Curr. Pharm. Biotechnol. 2020, 21, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Bappy, S.S.; Sultana, S.; Adhikari, J.; Mahmud, S.; Khan, M.A.; Kibria, K.M.K.; Rahman, M.M.; Shibly, A.Z. Extensive immunoinformatics study for the prediction of novel peptide-based epitope vaccine with docking confirmation against envelope protein of Chikungunya virus: A computational biology approach. J. Biomol. Struct. Dyn. 2021, 39, 1139–1154. [Google Scholar] [CrossRef]
- Mishu, I.D.; Akter, S.; Alam, A.S.M.R.U.; Hossain, M.A.; Sultana, M. In silico Evolutionary Divergence Analysis Suggests the Potentiality of Capsid Protein VP2 in Serotype-Independent Foot-and-Mouth Disease Virus Detection. Front. Vet. Sci. 2020, 7, 592. [Google Scholar] [CrossRef]
- Bano, T.; Janahi, E.M.; Dhasmana, A.; Lohani, M.; Haque, S.; Mandal, R.K.; Dar, S.A.; Jawed, A.; Wahid, M.; Akhter, N.; et al. In silico CD4+, CD8+ & humoral immunity associated antigenic epitope prediction and HLA distribution analysis of HTLV-I. J. BUON 2018, 23, 1514–1527. [Google Scholar]
- Pandey, R.K.; Ojha, R.; Chatterjee, N.; Upadhyay, N.; Mishra, A.; Prajapati, V.K. Combinatorial screening algorithm to engineer multiepitope subunit vaccine targeting human T-lymphotropic virus-1 infection. J. Cell. Physiol. 2019, 234, 8717–8726. [Google Scholar] [CrossRef]
- Raza, T.; Mizan, S.; Yasmin, F.; Al-Shahriar, A.; Shahik, S. Epitope-based universal vaccine for Human T-lymphotropic virus-1 (HTLV-1). PLoS ONE 2021, 16, e0248001. [Google Scholar] [CrossRef] [PubMed]
- Tariq, M.H.; Bhatti, R.; Ali, N.F.; Ashfaq, U.A.; Shahid, F.; Almatroudi, A.; Khurshid, M. Rational design of chimeric Multiepitope Based Vaccine (MEBV) against human T-cell lymphotropic virus type 1: An integrated vaccine informatics and molecular docking based approach. PLoS ONE 2021, 16, e0258443. [Google Scholar] [CrossRef] [PubMed]
- Bano, T.; Akhtar, S.; Siddiqui, M.H.; Arif, J.M.; Lohani, M.; Sayeed, U.; Khan, M.K.A. Peptide based vaccine design for therapeutic intervention against Htlv-I: A computational approach. Biochem. Cell. Arch. 2017, 17, 777–788. [Google Scholar]
- Bahrami, A.A.; Bandehpour, M.; Khalesi, B.; Kazemi, B. Computational Design and Analysis of a Poly-Epitope Fusion Protein: A New Vaccine Candidate for Hepatitis and Poliovirus. Int. J. Pept. Res. Ther. 2020, 26, 389–403. [Google Scholar] [CrossRef]
- Srivastava, S.; Kamthania, M.; Singh, S.; Saxena, A.K.; Sharma, N. Structural basis of development of multi-epitope vaccine against middle east respiratory syndrome using in silico approach. Infect. Drug Resist. 2018, 11, 2377–2391. [Google Scholar] [CrossRef] [Green Version]
- Ashfaq, U.A.; Saleem, S.; Masoud, M.S.; Ahmad, M.; Nahid, N.; Bhatti, R.; Almatroudi, A.; Khurshid, M. Rational design of multi epitope-based subunit vaccine by exploring MERS-COV proteome: Reverse vaccinology and molecular docking approach. PLoS ONE 2021, 16, e0245072. [Google Scholar] [CrossRef]
- Khan, S.; Shaker, B.; Ahmad, S.; Abbasi, S.W.; Arshad, M.; Haleem, A.; Ismail, S.; Zaib, A.; Sajjad, W. Towards a novel peptide vaccine for Middle East respiratory syndrome coronavirus and its possible use against pandemic COVID-19. J. Mol. Liq. 2021, 324, 114706. [Google Scholar] [CrossRef]
- Ul Qamar, M.T.; Saleem, S.; Ashfaq, U.A.; Bari, A.; Anwar, F.; Alqahtani, S. Epitope-based peptide vaccine design and target site depiction against Middle East Respiratory Syndrome Coronavirus: An immune-informatics study. J. Transl. Med. 2019, 17, 362. [Google Scholar] [CrossRef]
- Mahmud, S.; Rafi, M.O.; Paul, G.K.; Promi, M.M.; Shimu, M.S.S.; Biswas, S.; Emran, T.B.; Dhama, K.; Alyami, S.A.; Moni, M.A.; et al. Designing a multi-epitope vaccine candidate to combat MERS-CoV by employing an immunoinformatics approach. Sci. Rep. 2021, 11, 15431. [Google Scholar] [CrossRef]
- Chaudhuri, D.; Datta, J.; Majumder, S.; Giri, K. In silico designing of peptide based vaccine for Hepatitis viruses using reverse vaccinology approach. Infect. Genet. Evol. 2020, 84, 104388. [Google Scholar] [CrossRef]
- Nosrati, M.; Mohabatkar, H.; Behbahani, M. Introducing of an integrated artificial neural network and Chou’s pseudo amino acid composition approach for computational epitope-mapping of Crimean-Congo haemorrhagic fever virus antigens. Int. Immunopharmacol. 2020, 78, 106020. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, N.; Verma, A.; Dash, P.K. Identification of functional epitopes of structural proteins and in-silico designing of dual acting multiepitope anti-tick vaccine against emerging Crimean-Congo hemorrhagic fever virus. Eur. J. Pharm. Sci. 2020, 151, 105396. [Google Scholar] [CrossRef] [PubMed]
- Tahir Ul Qamar, M.; Ismail, S.; Ahmad, S.; Mirza, M.U.; Abbasi, S.W.; Ashfaq, U.A.; Chen, L.-L. Development of a Novel Multi-Epitope Vaccine Against Crimean-Congo Hemorrhagic Fever Virus: An Integrated Reverse Vaccinology, Vaccine Informatics and Biophysics Approach. Front. Immunol. 2021, 12, 669812. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.A.; Nain, Z.; Syed, S.B.; Abdulla, F.; Moni, M.A.; Sheam, M.M.; Karim, M.M.; Adhikari, U.K. Computational formulation and immune dynamics of a multi-peptide vaccine candidate against Crimean-Congo hemorrhagic fever virus. Mol. Cell. Probes 2021, 55, 101693. [Google Scholar] [CrossRef]
- Kalyanaraman, N. In silico prediction of potential vaccine candidates on capsid protein of human bocavirus 1. Mol. Immunol. 2018, 93, 193–205. [Google Scholar] [CrossRef]
- Abdulla, F.; Nain, Z.; Hossain, M.M.; Sayed, S.B.; Ahmed Khan, M.S.; Adhikari, U.K. Computational Approach for Screening the Whole Proteome of Hantavirus and Designing a Multi-Epitope Subunit Vaccine; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2019. [Google Scholar]
- Abdulla, F.; Nain, Z.; Hossain, M.M.; Syed, S.B.; Ahmed Khan, M.S.; Adhikari, U.K. A comprehensive screening of the whole proteome of hantavirus and designing a multi-epitope subunit vaccine for cross-protection against hantavirus: Structural vaccinology and immunoinformatics study. Microb. Pathog. 2021, 150, 104705. [Google Scholar] [CrossRef]
- Conte, F.P.; Tinoco, B.C.; Santos, C.T.; Oliveira, R.C.; Figueira, M.J.; Mohana-Borges, R.; Lemos, E.R.S.; Neves, P.C.D.C.; Rodrigues-da-Silva, R.N. Identification and validation of specific B-cell epitopes of hantaviruses associated to hemorrhagic fever and renal syndrome. PLoS Negl. Trop. Dis. 2019, 13, e0007915. [Google Scholar] [CrossRef] [Green Version]
- Ghafoor, D.; Kousar, A.; Ahmed, W.; Khan, S.; Ullah, Z.; Ullah, N.; Khan, S.; Ahmed, S.; Khan, Z.; Riaz, R. Computational vaccinology guided design of multi-epitopes subunit vaccine designing against Hantaan virus and its validation through immune simulations. Infect. Genet. Evol. 2021, 93, 104950. [Google Scholar] [CrossRef]
- Ojha, R.; Nandani, R.; Prajapati, V.K. Contriving multiepitope subunit vaccine by exploiting structural and nonstructural viral proteins to prevent Epstein–Barr virus-associated malignancy. J. Cell. Physiol. 2019, 234, 6437–6448. [Google Scholar] [CrossRef]
- Chauhan, V.; Goyal, K.; Singh, M.P. Identification of broadly reactive epitopes targeting major glycoproteins of Herpes simplex virus (HSV) 1 and 2—An immunoinformatics analysis. Infect. Genet. Evol. 2018, 61, 24–35. [Google Scholar] [CrossRef]
- Hasan, M.; Islam, S.; Chakraborty, S.; Mustafa, A.H.; Azim, K.F.; Joy, Z.F.; Hossain, M.N.; Foysal, S.H.; Hasan, M.N. Contriving a chimeric polyvalent vaccine to prevent infections caused by herpes simplex virus (type-1 and type-2): An exploratory immunoinformatic approach. J. Biomol. Struct. Dyn. 2020, 38, 2898–2915. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, B.; Ullah, M.A. Designing Novel Subunit Vaccines against Herpes Simplex Virus-1 Using Reverse Vaccinology Approach; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2020. [Google Scholar]
- Sarkar, B.; Ullah, M.A.; Araf, Y.; Das, S.; Rahman, M.H.; Moin, A.T. Designing novel epitope-based polyvalent vaccines against herpes simplex virus-1 and 2 exploiting the immunoinformatics approach. J. Biomol. Struct. Dyn. 2021, 39, 6585–6605. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Suleman, M.; Zafar, Z.; Ali, S.S.; Nasir, S.N.; Namra; Hussain, Z.; Waseem, M.; Khan, A.; Hassan, F.; et al. Towards an ensemble vaccine against the pegivirus using computational modelling approaches and its validation through in silico cloning and immune simulation. Vaccines 2021, 9, 818. [Google Scholar]
- Batool, H.; Batool, S.; Mahmood, M.S.; Mushtaq, N.; Khan, A.U.; Ali, M.; Sahibzada, K.I.; Ashraf, N.M. Prediction of Putative Epitope-based Vaccine Against All Corona Virus strains for Chinese Population: Approach toward Development of Vaccine. Microbiol. Immunol. 2020, 65, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, C.; Sharma, A.R.; Bhattacharya, M.; Saha, R.P.; Ghosh, S.; Biswas, S.; Samanta, S.; Sharma, G.; Agoramoorthy, G.; Lee, S.-S. SARS-CoV-2 and other human coronaviruses: Mapping of protease recognition sites, antigenic variation of spike protein and their grouping through molecular phylogenetics. Infect. Genet. Evol. 2021, 89, 104729. [Google Scholar] [CrossRef]
- Devi, A.; Chaitanya, N.S.N. In silico designing of multi-epitope vaccine construct against human coronavirus infections. J. Biomol. Struct. Dyn. 2021, 39, 6903–6917. [Google Scholar] [CrossRef]
- Sarkar, B.; Ullah, M.A.; Araf, Y.; Islam, N.N.; Zohora, U.S. Immunoinformatics-guided designing and in silico analysis of epitope-based polyvalent vaccines against multiple strains of human coronavirus (HCoV). Expert Rev. Vaccines 2021, 1–21. [Google Scholar] [CrossRef]
- Awadelkareem, E.A.; Ali, S.A.E. Vaccine Design against Coronavirus Spike (S) Glycoprotein in Chicken: Immunoinformatic and Computational Approaches; Research Square: Durham, UK, 2020. [Google Scholar]
- Hossain, M.U.; Omar, T.M.; Oany, A.R.; Kibria, K.M.K.; Shibly, A.Z.; Moniruzzaman, M.; Ali, S.R.; Islam, M.M. Design of peptide-based epitope vaccine and further binding site scrutiny led to groundswell in drug discovery against Lassa virus. 3 Biotech 2018, 8, 81. [Google Scholar] [CrossRef]
- Sayed, S.B.; Nain, Z.; Khan, M.S.A.; Abdulla, F.; Tasmin, R.; Adhikari, U.K. Exploring Lassa Virus Proteome to Design a Multi-epitope Vaccine Through Immunoinformatics and Immune Simulation Analyses. Int. J. Pept. Res. Ther. 2020, 26, 2089–2107. [Google Scholar] [CrossRef]
- Abass, O.A.; Timofeev, V.I.; Sarkar, B.; Onobun, D.O.; Ogunsola, S.O.; Aiyenuro, A.E.; Aborode, A.T.; Aigboje, A.E.; Omobolanle, B.N.; Imolele, A.G.; et al. Immunoinformatics analysis to design novel epitope based vaccine candidate targeting the glycoprotein and nucleoprotein of Lassa mammarenavirus (LASMV) using strains from Nigeria. J. Biomol. Struct. Dyn. 2021, 1–20. [Google Scholar] [CrossRef]
- Baral, P.; Elumalai, P.; Gerstman, B.S.; Chapagain, P.P. In-silico identification of the vaccine candidate epitopes against the Lassa virus hemorrhagic fever. Sci. Rep. 2020, 10, 7667. [Google Scholar] [CrossRef] [PubMed]
- Jafari, D.; Malih, S.; Gomari, M.M.; Safari, M.; Jafari, R.; Farajollahi, M.M. Designing a chimeric subunit vaccine for influenza virus, based on HA2, M2e and CTxB: A bioinformatics study. BMC Mol. Cell Biol. 2020, 21, 89. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.; Sharma, R.; Grover, A. Immuno-informatics guided designing of a multi-epitope vaccine against Dengue and Zika. J. Biomol. Struct. Dyn. 2021, 1–15. [Google Scholar] [CrossRef]
- Mahata, D.; Mukherjee, D.; Malviya, V.; Mukherjee, G. Targeting “Immunogenic Hotspots” in Dengue and Zika Virus: A Novel Approach to a Common Vaccine; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2021. [Google Scholar]
- Sarkar, B.; Ullah, M.A.; Araf, Y.; Das, S.; Hosen, M.J. Blueprint of epitope-based multivalent and multipathogenic vaccines: Targeted against the dengue and zika viruses. J. Biomol. Struct. Dyn. 2021, 39, 6882–6902. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Gupta, P.S.S.; Bandyopadhyay, A.K. Insight into SNPs and epitopes of E protein of newly emerged genotype-I isolates of JEV from Midnapur, West Bengal, India. BMC Immunol. 2017, 18, 13. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, V.; Singh, M.P. Immuno-informatics approach to design a multi-epitope vaccine to combat cytomegalovirus infection. Eur. J. Pharm. Sci. 2020, 147, 105279. [Google Scholar] [CrossRef]
- Verma, S.; Pandey, A.K. A disclosure of hidden secrets in human cytomegalovirus: An in-silico study of identification of novel genes and their analysis for vaccine development. Meta Gene 2020, 25, 100754. [Google Scholar] [CrossRef]
- Akhtar, N.; Joshi, A.; Singh, J.; Kaushik, V. Design of a novel and potent multivalent epitope based human cytomegalovirus peptide vaccine: An immunoinformatics approach. J. Mol. Liq. 2021, 335, 116586. [Google Scholar] [CrossRef]
- Chauhan, V.; Rungta, T.; Goyal, K.; Singh, M.P. Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach. Sci. Rep. 2019, 9, 2517. [Google Scholar] [CrossRef]
- Pandey, R.K.; Ojha, R.; Aathmanathan, V.S.; Krishnan, M.; Prajapati, V.K. Immunoinformatics approaches to design a novel multi-epitope subunit vaccine against HIV infection. Vaccine 2018, 36, 2262–2272. [Google Scholar] [CrossRef]
- Larijani, M.S.; Sadat, S.M.; Bolhassani, A.; Pouriayevali, M.H.; Bahramali, G.; Ramezani, A. In silico design and immunologic evaluation of HIV-1 p24-nef fusion protein to approach a therapeutic vaccine candidate services. Curr. HIV Res. 2018, 16, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, F.; Adhikari, U.K.; Uddin, M.K. Exploring T & B-cell epitopes and designing multi-epitope subunit vaccine targeting integration step of HIV-1 lifecycle using immunoinformatics approach. Microb. Pathog. 2019, 137, 103791. [Google Scholar] [PubMed]
- Arumugam, S.; Prasad, V. In-silico design of envelope based multi-epitope vaccine candidate against Kyasanur forest disease virus. Sci. Rep. 2021, 11, 17118. [Google Scholar] [CrossRef]
- Hasan, M.; Azim, K.F.; Begum, A.; Khan, N.A.; Shammi, T.S.; Imran, A.S.; Chowdhury, I.M.; Urme, S.R.A. Vaccinomics strategy for developing a unique multi-epitope monovalent vaccine against Marburg marburgvirus. Infect. Genet. Evol. 2019, 70, 140–157. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, S.M.N.; Rahman, M.; Kar, A.; Jahan, N.; Khan, A. Designing of an epitope-based universal peptide vaccine against highly conserved regions in rna dependent rna polymerase protein of human marburg virus: A computational assay. Anti Infect. Agents 2020, 18, 294–305. [Google Scholar] [CrossRef]
- Sami, S.A.; Marma, K.K.S.; Mahmud, S.; Khan, M.A.N.; Albogami, S.; El-Shehawi, A.M.; Rakib, A.; Chakraborty, A.; Mohiuddin, M.; Dhama, K.; et al. Designing of a Multi-epitope Vaccine against the Structural Proteins of Marburg Virus Exploiting the Immunoinformatics Approach. ACS Omega 2021, 6, 32043–32071. [Google Scholar] [CrossRef]
- Joshi, A.; Pathak, D.C.; Mannan, M.A.-U.; Kaushik, V. In-silico designing of epitope-based vaccine against the seven banded grouper nervous necrosis virus affecting fish species. Netw. Model. Anal. Health Inform. Bioinform. 2021, 10, 37. [Google Scholar] [CrossRef]
- Azim, K.F.; Hasan, M.; Hossain, M.N.; Somana, S.R.; Hoque, S.F.; Bappy, M.N.I.; Chowdhury, A.T.; Lasker, T. Immunoinformatics approaches for designing a novel multi epitope peptide vaccine against human norovirus (Norwalk virus). Infect. Genet. Evol. 2019, 74, 103936. [Google Scholar] [CrossRef]
- Ahmad, I.; Ali, S.S.; Zafar, B.; Hashmi, H.F.; Shah, I.; Khan, S.; Suleman, M.; Khan, M.; Ullah, S.; Ali, S.; et al. Development of multi-epitope subunit vaccine for protection against the norovirus’ infections based on computational vaccinology. J. Biomol. Struct. Dyn. 2020, 40, 3098–3109. [Google Scholar] [CrossRef]
- Moeini, H.; Afridi, S.Q.; Donakonda, S.; Knolle, P.A.; Protzer, U.; Hoffmann, D. Linear B-Cell epitopes in human norovirus GII. 4 capsid protein elicit blockade antibodies. Vaccines 2021, 9, 52. [Google Scholar] [CrossRef]
- Saha, C.K.; Mahbub Hasan, M.; Saddam Hossain, M.; Asraful Jahan, M.; Azad, A.K. In silico identification and characterization of common epitope-based peptide vaccine for Nipah and Hendra viruses. Asian Pac. J. Trop. Med. 2017, 10, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, E.; Dehury, B.; Satapathy, A.K.; Dwibedi, B. Design and testing of a highly conserved human rotavirus VP8* immunogenic peptide with potential for vaccine development. J. Biotechnol. 2018, 281, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Nirwati, H.; Donato, C.M.; Ikram, A.; Aman, A.T.; Wibawa, T.; Kirkwood, C.D.; Soenarto, Y.; Pan, Q.; Hakim, M.S. Phylogenetic and immunoinformatic analysis of VP4, VP7, and NSP4 genes of rotavirus strains circulating in children with acute gastroenteritis in Indonesia. J. Med. Virol. 2019, 91, 1776–1787. [Google Scholar] [CrossRef] [PubMed]
- Devi, Y.D.; Devi, A.; Gogoi, H.; Dehingia, B.; Doley, R.; Buragohain, A.K.; Singh, C.S.; Borah, P.P.; Rao, C.D.; Ray, P.; et al. Exploring rotavirus proteome to identify potential B- and T-cell epitope using computational immunoinformatics. Heliyon 2020, 6, e05760. [Google Scholar] [CrossRef]
- Adhikari, U.K.; Tayebi, M.; Mizanur Rahman, M. Immunoinformatics approach for epitope-based peptide vaccine design and active site prediction against polyprotein of emerging oropouche virus. J. Immunol. Res. 2018, 2018, 6718083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, M.U.; Keya, C.A.; Das, K.C.; Hashem, A.; Omar, T.M.; Khan, M.A.; Rakib-Uz-Zaman, S.M.; Salimullah, M. An immunopharmacoinformatics approach in development of vaccine and drug candidates for West Nile Virus. Front. Chem. 2018, 6, 246. [Google Scholar] [CrossRef] [Green Version]
- Alom, M.W.; Shehab, M.N.; Sujon, K.M.; Akter, F. Exploring E, NS3, and NS5 proteins to design a novel multi-epitope vaccine candidate against West Nile Virus: An in-silico approach. Inform. Med. Unlocked 2021, 25, 100644. [Google Scholar] [CrossRef]
- Khan, M.T.; Islam, R.; Jerin, T.J.; Mahmud, A.; Khatun, S.; Kobir, A.; Islam, M.N.; Akter, A.; Mondal, S.I. Immunoinformatics and molecular dynamics approaches: Next generation vaccine design against West Nile virus. PLoS ONE 2021, 16, e0253393. [Google Scholar] [CrossRef]
- Bohra, N.; Sasidharan, S.; Raj, S.; Balaji, S.N.; Saudagar, P. Utilising capsid proteins of poliovirus to design a multi-epitope based subunit vaccine by immunoinformatics approach. Mol. Simul. 2020, 46, 419–428. [Google Scholar] [CrossRef]
- Hossain, R.; Yasmin, T.; Hosen, M.I.; Nabi, A.H.M.N. In silico identification of potential epitopes present in human adenovirus proteins for vaccine design and of putative drugs for treatment against viral infection. J. Immunol. Methods 2018, 455, 55–70. [Google Scholar] [CrossRef]
- Tufail, S.; Shah, M.A.; Zafar, M.; Asif, T.A.; Shehzad, A.; Shah, M.S.; Habib, M.; Saleemi, M.K.; Muddassar, M.; Mirza, O.; et al. Identification of potent epitopes on hexon capsid protein and their evaluation as vaccine candidates against infections caused by members of Adenoviridae family. Vaccine 2021, 39, 3560–3564. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Mai, J.; Yang, Y.; Wang, N. Porcine Parvovirus 7: Evolutionary Dynamics and Identification of Epitopes toward Vaccine Design. Vaccines 2020, 8, 359. [Google Scholar] [CrossRef] [PubMed]
- Amimo, J.O.; Machuka, E.M.; Abworo, E.O.; Vlasova, A.N.; Pelle, R. Whole genome sequence analysis of porcine astroviruses reveals novel genetically diverse strains circulating in east african smallholder pig farms. Viruses 2020, 12, 1262. [Google Scholar] [CrossRef]
- Ferreyra, F.M.; Harmon, K.; Bradner, L.; Burrough, E.; Derscheid, R.; Magstadt, D.R.; Michael, A.; de Almeida, M.N.; Schumacher, L.; Siepker, C.; et al. Comparative analysis of novel strains of porcine astrovirus type 3 in the USA. Viruses 2021, 13, 1859. [Google Scholar] [CrossRef] [PubMed]
- Siañez-Estrada, L.I.; Rivera-Benítez, J.F.; Rosas-Murrieta, N.H.; Reyes-Leyva, J.; Santos-López, G.; Herrera-Camacho, I. Immunoinformatics approach for predicting epitopes in HN and F proteins of Porcine rubulavirus. PLoS ONE 2020, 15, e0239785. [Google Scholar] [CrossRef]
- Pavitrakar, D.V.; Atre, N.M.; Tripathy, A.S.; Shil, P. Design of a multi-epitope peptide vaccine candidate against chandipura virus: An immuno-informatics study. J. Biomol. Struct. Dyn. 2020, 40, 648–659. [Google Scholar] [CrossRef]
- Deb, D.; Basak, S.; Kar, T.; Narsaria, U.; Castiglione, F.; Paul, A.; Pandey, A.; Srivastava, A.P. Immunoinformatics based designing a multi-epitope vaccine against pathogenic Chandipura vesiculovirus. J. Cell. Biochem. 2021, 123, 322–346. [Google Scholar] [CrossRef]
- Fadholly, A.; Ansori, A.N.M.; Kharisma, V.D.; Rahmahani, J.; Tacharina, M.R. Immunobioinformatics of rabies virus in various countries of asia: Glycoprotein gene. Res. J. Pharm. Technol. 2021, 14, 883–886. [Google Scholar] [CrossRef]
- Kamthania, M.; Srivastava, S.; Desai, M.; Jain, A.; Shrivastav, A.; Sharma, D.K. Immunoinformatics Approach to Design T-cell Epitope-Based Vaccine Against Hendra Virus. Int. J. Pept. Res. Ther. 2019, 25, 1627–1637. [Google Scholar] [CrossRef]
- Hossan, M.I.; Chowdhury, A.S.; Hossain, M.U.; Khan, M.A.; Mahmood, T.B.; Mizan, S. Immunoinformatics aided-design of novel multi-epitope based peptide vaccine against Hendra henipavirus through proteome exploration. Inform. Med. Unlocked 2021, 25, 100678. [Google Scholar] [CrossRef]
- Hossain, M.S.; Hossan, M.I.; Mizan, S.; Moin, A.T.; Yasmin, F.; Akash, A.-S.; Powshi, S.N.; Hasan, A.K.R.; Chowdhury, A.S. Immunoinformatics approach to designing a multi-epitope vaccine against Saint Louis Encephalitis Virus. Inform. Med. Unlocked 2021, 22, 100500. [Google Scholar] [CrossRef]
- Choga, W.T.; Anderson, M.; Zumbika, E.; Phinius, B.B.; Mbangiwa, T.; Bhebhe, L.N.; Baruti, K.; Kimathi, P.O.; Seatla, K.K.; Musonda, R.M.; et al. In Silico Prediction of Human Leukocytes Antigen (HLA) Class II Binding Hepatitis B Virus (HBV) Peptides in Botswana. Viruses 2020, 12, 731. [Google Scholar] [CrossRef] [PubMed]
- Mobini, S.; Chizari, M.; Mafakher, L.; Rismani, E.; Rismani, E. Computational Design of a Novel VLP-Based Vaccine for Hepatitis B Virus. Front. Immunol. 2020, 11, 2074. [Google Scholar] [CrossRef]
- Srivastava, S.; Kamthania, M.; Kumar Pandey, R.; Kumar Saxena, A.; Saxena, V.; Kumar Singh, S.; Kumar Sharma, R.; Sharma, N. Design of novel multi-epitope vaccines against severe acute respiratory syndrome validated through multistage molecular interaction and dynamics. J. Biomol. Struct. Dyn. 2019, 37, 4345–4360. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Sood, D.; Chandra, R. Vaccine Formulation and Optimization for Human Herpes Virus-5 through an Immunoinformatics Framework. ACS Pharmacol. Transl. Sci. 2020, 3, 1318–1329. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Singh, A.; Grover, S.; Kumari, A.; Kumar Dhar, P.; Chandra, R.; Grover, A. HHV-5 epitope: A potential vaccine candidate with high antigenicity and large coverage. J. Biomol. Struct. Dyn. 2019, 37, 2098–2109. [Google Scholar] [CrossRef]
- Momtaz, F.; Foysal, J.; Rahman, M.; Fotedar, R. Design of epitope based vaccine against shrimp white spot syndrome virus (WSSV) by targeting the envelope proteins: An immunoinformatic approach. Turk. J. Fish. Aquat. Sci. 2019, 19, 59–69. [Google Scholar] [CrossRef]
- Rodrigues, R.L.; Menezes, G.D.L.; Saivish, M.V.; Costa, V.G.D.; Pereira, M.; Moreli, M.L.; Silva, R.A.D. Prediction of MAYV peptide antigens for immunodiagnostic tests by immunoinformatics and molecular dynamics simulations. Sci. Rep. 2019, 9, 13339. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.K.; Gomes, H.S.S.; Silva, O.L.T.; Campanelli, S.E.; Campos, D.M.O.; Araújo, J.M.G.; Fernandes, J.V.; Fulco, U.L.; Oliveira, J.I.N. Identification of promiscuous T cell epitopes on Mayaro virus structural proteins using immunoinformatics, molecular modeling, and QM:MM approaches. Infect. Genet. Evol. 2021, 91, 104826. [Google Scholar] [CrossRef]
- Sankar, S.; Ramamurthy, M.; Nandagopal, B.; Sridharan, G. T-cell epitopes predicted from the Nucleocapsid protein of Sin Nombre virus restricted to 30 HLA alleles common to the North American population. Bioinformation 2017, 13, 94. [Google Scholar] [CrossRef] [Green Version]
- Ansori, A.N.M.; Kusala, M.K.J.; Nidom, R.V.; Indrasari, S.; Zarkasie, K.; Santoso, K.P.; Nidom, C.A. Pathological and molecular characterization of newcastle disease virus isolated from gallus gallus in java, indonesia. Indian J. Anim. Res. 2021, 55, 930–935. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Kolyani, K.A.; Tabatabaei, R.R.; Goudarzi, H.; Sepahi, A.A.; Salemi, M. In silico prediction of B and T cell epitopes based on NDV fusion protein for vaccine development against Newcastle disease virus. Vet. Res. Forum 2021, 12, 157–165. [Google Scholar] [PubMed]
- Mohammadi, E.; Dashty, S. Epitope prediction, modeling, and docking studies for H3L protein as an agent of smallpox. Biotechnologia 2019, 100, 69–80. [Google Scholar] [CrossRef]
- Tahir Ul Qamar, M.; Shokat, Z.; Muneer, I.; Ashfaq, U.A.; Javed, H.; Anwar, F.; Bari, A.; Zahid, B.; Saari, N. Multiepitope-Based Subunit Vaccine Design and Evaluation against Respiratory Syncytial Virus Using Reverse Vaccinology Approach. Vaccines 2020, 8, 288. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, S.T.Q.; Yasmeen, M.; Ismail, M.; Muhammad, S.A.; Nawazish-I-Husain, S.; Ali, A.; Munir, F.; Zhang, Q. Designing of Potential Polyvalent Vaccine Model for Respiratory Syncytial Virus by System Level Immunoinformatics Approaches. BioMed Res. Int. 2021, 2021, 9940010. [Google Scholar] [CrossRef]
- Suleman, M.; Qamar, M.T.U.; Rasool, S.; Rasool, A.; Albutti, A.; Alsowayeh, N.; Alwashmi, A.S.S.; Aljasir, M.A.; Ahmad, S.; Hussain, Z.; et al. Immunoinformatics and immunogenetics-based design of immunogenic peptides vaccine against the emerging tick-borne encephalitis virus (Tbev) and its validation through in silico cloning and immune simulation. Vaccines 2021, 9, 1210. [Google Scholar] [CrossRef]
- Adhikari, U.K.; Rahman, M.M. Overlapping CD8 + and CD4 + T-cell epitopes identification for the progression of epitope-based peptide vaccine from nucleocapsid and glycoprotein of emerging Rift Valley fever virus using immunoinformatics approach. Infect. Genet. Evol. 2017, 56, 75–91. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.; Quayum, S.T.; Ahammad, F.; Alam, R.; Samad, A.; Nain, Z. Discovery of potential immune epitopes and peptide vaccine design—A prophylactic strategy against Rift Valley fever virus [version 1; peer review: 2 approved with reservations]. F1000Research 2021, 9, 999. [Google Scholar] [CrossRef]
- Tosta, S.F.D.O.; Passos, M.S.; Kato, R.; Salgado, Á.; Xavier, J.; Jaiswal, A.K.; Soares, S.C.; Azevedo, V.; Giovanetti, M.; Tiwari, S.; et al. Multi-epitope based vaccine against yellow fever virus applying immunoinformatics approaches. J. Biomol. Struct. Dyn. 2021, 39, 219–235. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Pan, Q.; Yang, Y.; Gao, Y.; Qi, X.; Liu, C.; Zhang, Y.; Cui, H.; Wang, X. An inactivated novel genotype fowl adenovirus 4 protects chickens against the hydropericardium syndrome that recently emerged in China. Viruses 2017, 9, 216. [Google Scholar] [CrossRef]
- World Health Organization. COVID-19 Vaccine Tracker and Landscape. Available online: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (accessed on 11 March 2022).
- Sapkal, G.N.; Yadav, P.D.; Ella, R.; Deshpande, G.R.; Sahay, R.R.; Gupta, N.; Vadrevu, K.M.; Abraham, P.; Panda, S.; Bhargava, B. Inactivated COVID-19 vaccine BBV152/COVAXIN effectively neutralizes recently emerged B. 1.1. 7 variant of SARS-CoV-2. J. Travel Med. 2021, 28, taab051. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zeng, G.; Pan, H.; Li, C.; Hu, Y.; Chu, K.; Han, W.; Chen, Z.; Tang, R.; Yin, W. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 2021, 21, 181–192. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, Y.; Xu, M.; Chen, Z.; Yang, W.; Jiang, Z.; Li, M.; Jin, H.; Cui, G.; Chen, P. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 2021, 21, 803–812. [Google Scholar] [CrossRef]
- Tanriover, M.D.; Doğanay, H.L.; Akova, M.; Güner, H.R.; Azap, A.; Akhan, S.; Köse, Ş.; Erdinç, F.Ş.; Akalın, E.H.; Tabak, Ö.F. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): Interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 2021, 398, 213–222. [Google Scholar] [CrossRef]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B. Safety and efficacy of single-dose Ad26. COV2. S vaccine against Covid-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira, E.D.; Zerbini, C. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2020, 384, 403–416. [Google Scholar] [CrossRef]
- World Health Organization. Tracking SARS-CoV-2 Variants. Available online: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (accessed on 11 March 2022).
- Dai, L.; Gao, G.F. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol. 2021, 21, 73–82. [Google Scholar] [CrossRef]
- Martínez-Flores, D.; Zepeda-Cervantes, J.; Cruz-Reséndiz, A.; Aguirre-Sampieri, S.; Sampieri, A.; Vaca, L. SARS-CoV-2 vaccines based on the spike glycoprotein and implications of new viral variants. Front. Immunol. 2021, 12, 701501. [Google Scholar] [CrossRef] [PubMed]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; Peacock, S.J. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Sette, A.; Rappuoli, R. Reverse vaccinology: Developing vaccines in the era of genomics. Immunity 2010, 33, 530–541. [Google Scholar] [CrossRef] [PubMed]
P Population | C Concept | C Context |
---|---|---|
‘different viral pathogens’ | ‘potential vaccine candidates predicted by VaxiJen’ | ‘between 2017 and 2021’ |
Inclusion Criteria | Exclusion Criteria |
---|---|
|
|
Pathogen | Number of Publications | Pathogen | Number of Publications |
---|---|---|---|
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [41,42,43,44,45,46,47,48,49, 50,51,52,53,54,55,56,57,58,59, 60,61,62,63,64,65,66,67,68,69, 70,71,72,73,74,75,76,77,78,79, 80,81,82,83,84,85,86,87,88,89, 90,91,92,93,94,95,96,97,98,99, 100,101,102,103,104,105,106,107,108,109, 110,111,112,113,114,115,116,117,118,119, 120,121,122,123,124,125,126,127,128,129, 130,131,132,133,134,135,136,137,138,139, 140,141,142,143,144,145,146,147,148,149, 150,151,152,153,154,155,156,157,158,159, 160,161] | 121 | Usutu virus (USUV) [162,163] | 2 |
Human papillomavirus (HPV) [164,165,166,167,168,169,170,171,172] | 9 | Avian influenza A (H7N9) virus [173] | 1 |
Hepatitis C virus [174,175,176,177,178,179,180,181] | 8 | Bovine ephemeral fever virus [182] | 1 |
Zika virus (ZIKV) [183,184,185,186,187,188,189,190] | 8 | Canine circovirus [191] | 1 |
Dengue virus [192,193,194,195,196,197,198] | 7 | Chikungunya virus and Mayaro virus [199] | 1 |
Nipah virus (NiV) [200,201,202,203,204,205,206] | 7 | Dengue virus and human papillomavirus [207] | 1 |
Ebola virus [208,209,210,211,212,213] | 6 | Enteroviruses [214] | 1 |
Chikungunya virus [215,216,217,218,219] | 5 | Foot-and-mouth disease virus [220] | 1 |
Human T cell lymphotropic virus type 1 (HTLV-1) [221,222,223,224,225] | 5 | Hepatitis and Poliovirus [226] | 1 |
Middle East respiratory syndrome coronavirus (MERS-CoV) [227,228,229,230,231] | 5 | Hepatitis viruses [232] | 1 |
Crimean-Congo haemorrhagic fever (CCHF) virus [233,234,235,236] | 4 | Human bocavirus 1 (HBoV1) [237] | 1 |
Hantavirus [238,239,240,241] | 4 | Human herpesvirus 4 (HHV-4) or Epstein–Barr virus (EBV) [242] | 1 |
Herpes simplex virus [243,244,245,246] | 4 | Human pegivirus (HPgV) [247] | 1 |
Human coronaviruses [248,249,250,251] | 4 | Infectious bronchitis virus (IBV) [252] | 1 |
Lassa virus (LASV) [253,254,255,256] | 4 | Influenza A virus [257] | 1 |
Dengue virus and Zika virus [258,259,260] | 3 | Japanese encephalitis virus (JEV) [261] | 1 |
Human cytomegalovirus (HCMV) [262,263,264] | 3 | Kaposi’s sarcoma-associated herpesvirus (KSHV) [265] | 1 |
Human immunodeficiency virus (HIV) [266,267,268] | 3 | Kyasanur forest disease virus (KFDV) [269] | 1 |
Marburg virus (MARV) [270,271,272] | 3 | Neural necrosis virus (NNV) [273] | 1 |
Norovirus (NoV) [274,275,276] | 3 | Nipah virus (NiV) and Hendra virus (HeV) [277] | 1 |
Rotavirus [278,279,280] | 3 | Oropouche virus (OROV) [281] | 1 |
West Nile virus (WNV) [282,283,284] | 3 | Poliovirus [285] | 1 |
Adenoviruses [286,287] | 2 | Porcine parvovirus 7 (PPV7) [288] | 1 |
Astroviruses [289,290] | 2 | Porcine rubulavirus (PRV) [291] | 1 |
Chandipura virus [292,293] | 2 | Rabies virus (RABV) [294] | 1 |
Hendra virus (HeV) [295,296] | 2 | Saint Louis encephalitis virus (SLEV) [297] | 1 |
Hepatitis B virus [298,299] | 2 | Severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1 or SARS-CoV) [300] | 1 |
Human herpes virus-5 (HHV-5) or Cytomegalovirus (CMV) [301,302] | 2 | Shrimp white spot syndrome virus (WSSV) [303] | 1 |
Mayaro virus (MAYV) [304,305] | 2 | Sin Nombre virus (SNV) [306] | 1 |
Newcastle disease virus (NDV) [307,308] | 2 | Smallpox viruses [309] | 1 |
Respiratory syncytial virus (RSV) [310,311] | 2 | Tick-borne encephalitis virus (TBEV) [312] | 1 |
Rift Valley fever virus [313,314] | 2 | Yellow fever virus (YFV) [315] | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salod, Z.; Mahomed, O. Mapping Potential Vaccine Candidates Predicted by VaxiJen for Different Viral Pathogens between 2017–2021—A Scoping Review. Vaccines 2022, 10, 1785. https://doi.org/10.3390/vaccines10111785
Salod Z, Mahomed O. Mapping Potential Vaccine Candidates Predicted by VaxiJen for Different Viral Pathogens between 2017–2021—A Scoping Review. Vaccines. 2022; 10(11):1785. https://doi.org/10.3390/vaccines10111785
Chicago/Turabian StyleSalod, Zakia, and Ozayr Mahomed. 2022. "Mapping Potential Vaccine Candidates Predicted by VaxiJen for Different Viral Pathogens between 2017–2021—A Scoping Review" Vaccines 10, no. 11: 1785. https://doi.org/10.3390/vaccines10111785
APA StyleSalod, Z., & Mahomed, O. (2022). Mapping Potential Vaccine Candidates Predicted by VaxiJen for Different Viral Pathogens between 2017–2021—A Scoping Review. Vaccines, 10(11), 1785. https://doi.org/10.3390/vaccines10111785