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Abstract: Foot-and-mouth disease (FMD) is a serious disease affecting the global graziery industry.
Once an epidemic occurs, it can lead to economic and trade stagnation. In recent decades, FMD has
been effectively controlled and even successfully eradicated in some countries or regions through
mandatory vaccination with inactivated foot-and-mouth disease vaccines. Nevertheless, FMD still
occurs in some parts of Africa and Asia. The transmission efficiency of foot-and-mouth disease is
high. Both disease countries and disease-free countries should always be prepared to deal with
outbreaks of FMD. The development of vaccines has played a key role in this regard. This paper
summarizes the development of several promising vaccines including progress and design ideas. It
also provides ways to develop a new generation of vaccines for FMDV and other major diseases.

Keywords: foot-and-mouth disease; inactivated vaccine; adenovirus vector vaccine; synthetic peptide
vaccine; adjuvant

1. Introduction

In countries with highly developed animal husbandry, foot-and-mouth disease (FMD)
is still feared as a worldwide viral disease of animals, resulting in the death of young ani-
mals and the reduced productivity of adult animals, which lead to huge economic loss and
social consequences. It is a highly contagious transboundary disease that mainly affects
domesticated animals such as cattle, swine, sheep, goats and buffalo, as well as about
70 other cloven-hoofed wild animals [1,2]. Although cattle are the main host, swine are
susceptible to some strains too. The disease is caused by infection with the foot-and-mouth
disease virus (FMDV). FMDV mainly infects the host through untreated contaminated food
products, such as swill. The virus first invades the oro-pharynx in swine [3] (nasopharynx
in cattle) and then spreads systemically, forming vesicles from the mouth to the interpha-
langeal space to the breast, nipple and foot [4]. At the same time, infected animals show
clinical characteristics such as high body temperature, excessive salivary secretion and
reduced milk production. They are prone to secondary infections and lose weight, resulting
in a long-term loss of productivity. The disease spreads easily from animal to animal, but
mortality is low because the infection is usually cleared within two weeks. Most deaths
occur in young animals with myocarditis, i.e., degeneration of the heart muscle [2,5]. In
endemic areas, young animals may also acquire resistance through maternal antibodies
to reduce mortality. Swine are thought to be one of the important factors in the spread of
foot-and-mouth disease because one animal emits as much aerosol as 3000 cows in a short
period of time and the virus travels a long distance in air [6,7]. In cattle, buffalo and sheep
(but not swine), infection may persist beyond the acute stage due to low levels of infectious
virus present in the oropharynx [8,9].
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The foot-and-mouth disease virus is a member of the picornavirus family. The genome
of FMDV, which is over 8000 bases in length, includes a large open reading frame (ORF)
encoding a polyprotein that is processed into mature polypeptides. The structural proteins
that form the icosahedral capsid of the virus—VP1, VP2, VP3 and VP4—are encoded by
genes 1D, 1B, 1C and 1A, respectively. Non-structural proteins encoded by genes 2A, 2B,
2C and 3A, 3B, 3Cpro, 3Dpol and Lpro [10], are mainly responsible for FMDV maturation
and replication. Moreover, 5′and 3′ untranslated regions (UTRs) are also important for the
replication and translation of viral genomes [11] (Figure 1). The viral proteins commonly
used in vaccines are VP1, VP2, VP3, as well as 3A and 3D in the context of assembled
capsids or as antigenic peptides.
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Figure 1. Production and processing of FMDV proteins.

Due to the high variability of the virus, there are seven different serotypes of foot-and-
mouth disease virus: O, A, C, SAT (Southern African territory) 1, 2 and 3, and Asian-1.
Different FMDV serotypes have a tendency to recur within a geographical area with
emergence and transmission cycles that may affect multiple countries. Therefore, the
World Organization for Animal Health (OIE) also divides the epidemic regions into seven
sections (Figure 2). Except for Asian-1, each serotype is geographically limited and endemic
within its own region [12]. Serotypes may spread to other regions, as seen with SAT-2,
which has also become endemic in Egypt in recent years [13]. Serotypes O and A have
a wide geographical distribution. However, the number of infections with serotype A
has decreased significantly and infections with serotype O have been sporadic in recent
years. Foot-and-mouth disease is currently endemic in several parts of Asia, large parts
of Africa and the Middle East. Australia, New Zealand and Indonesia are called “foot-
and-mouth disease-free countries” because the disease has disappeared due to the use of
traditional vaccines that chemically inactivate the virus. Some countries do not vaccinate
because of the high potential antigenic diversity of the virus, and in order to maintain
foot-and-mouth disease-free countries and promote trade in animals and animal products.
However, foot-and-mouth disease is a transboundary animal disease (TAD) which can
occur occasionally in any typical free zone. Diversity of species and modes of transmission,
high infectivity, rapid replication rates, high levels of viral excretion, increased international
trade, rapidly changing environments and human activities could all lead to a resurgence
of the FMDV [14]. Once an outbreak occurs, countries will need to reintroduce vaccines to
control the spread of the disease. However, this is controversial and by no means risk-free.
As we know, the earlier the vaccine is given before an outbreak, the better its protection is
likely to be [15]. In order to control the disease, measures such as preventive vaccination
or containment policies must be considered. This paper reviews the research progress of
foot-and-mouth disease vaccines and provides new approaches for the development of
FMD vaccines.
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2. Inactivated Virus Vaccine

At present, the commercial FMD vaccine is an inactivated virus vaccine, which was
also the earliest used. As early as the 1930s, people began to use formalin to kill living
viruses. In the mid-1960s, the use of formalin-inactivated FMDV as a vaccine, cultured in
hamster kidney (BHK) cells, dramatically reduced the prevalence of FMD in some European
countries. By the 1970s, the number of outbreaks in Europe became very low. Following
a ban on foot-and-mouth vaccination in the early 1990s by the European Union (EU),
emergency vaccination in the event of an outbreak was approved [16]. All of this shows
that inactivated vaccines are important for preventing foot-and-mouth disease. FMDV
is highly sensitive to neutralizing antibodies produced in response to whole inactivated
viruses and antibody titers are closely related to protection. Zhang et al. divide the antibody
levels of challenged animals into three zones: the “white zone”, the “gray zone” and the
“black zone”. Animals in the white zone have high levels of antibodies and are likely to
be completely protected from FMDV infection. Animals in the black zone have very low
levels of antibodies and are susceptible to infection. The vaccinated animals in the gray
zone have intermediate antibody titers, making it difficult to predict the level of immune
protection. The antibody levels of the gray zone are associated with the antigen content of
the vaccine. Low antigen levels may stimulate the production of fewer antibodies.

In addition, virus particle integrity also plays a very important role in the immune
response induced by the swine FMD vaccine. The complete virus particle of FMDV is
146S [17], and is composed of 12 pentamers (12S). Each pentamer is composed of five
propolymers (5S) and each propolymer is composed of structural proteins (VP1, VP2,
VP3, VP4). The efficacy of the inactivated FMDV vaccine mainly depends on the integrity
of the virus particles. Empty capsids (75S) provide protective immunity in vaccinated
guinea pigs, but less effectively than complete virions (146S) [18]. Pentamers show poor
immune protection because they can induce the production of non-protective antibodies
against internal epitopes. However, the most protective intact capsids are highly unstable,
degrading to less immunogenic 12S subunits at moderate temperatures or in the presence of
weak acids [19,20]. Therefore, stability is a key factor in the production of foot-and-mouth
disease vaccines. Of the seven serotypes of FMDV, O and SAT are particularly unstable.
Improved methods are needed to maintain the stability of virus particles.

One of the most important issues in the production of inactivated vaccines is the
selection of pandemic strains because of the lack of cross-protection between different
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serotypes of FMDV. Even protection between certain strains within the same serotype is
incomplete [18,21]. According to a study by Pirbright Institute, there have been no reports
of disease caused by FMDV serotype C anywhere since 2004, and it can be said that this
serotype is now extinct outside the laboratory [22,23]. The efficacy of the vaccine pool
in the event of an emergency outbreak is predicted by in vitro vaccine matching tests,
which are usually based on the r1 value. The r1 value (relationship coefficient) is the ratio
of the serum virus neutralization (VN) titer against a heterologous strain to the serum
VN titer against a homologous strain. In addition to the r1 value, the potency of the
vaccine against different strains within the same serotype should also be considered [24].
Only by selecting the effective inactivated vaccine strain can clinical disease be better
prevented. In susceptible swine, FMDV serotype O is more likely than other serotypes to
mutate, thus posing the risk of an emergency outbreak. The O/ME-SA/Ind-2001e vaccine
strain has high immunogenicity and extensive antigen coverage [25], especially in some
Asian countries, and can be used to protect against the emerging FMDV. It is actually
one of the more common and widespread strains in recent years, according to reports
published by the OIE. Of course, we should also take into account other conditions that can
contribute to increased coverage, such as vaccine formulations and vaccination schedules.
Meanwhile, for FMDV serotype A, laboratory evidence has shown that Malaysia 97 and
A22Iraq 64 emergency foot-and-mouth disease vaccines could provide good protection
against serotype A ASIA/G-IX/SEA-97 lineages [26]. He et al. isolated NAb (R50) that
neutralized serotype O and A FMDV from a recovered natural bovine host by using a
single-cell antibody isolation technique. They identified the neutralizing antibody in a
complex with the virus by cryo-electron microscopy at high resolution. They confirmed its
binding to a highly conserved region in the O and A serotype [27].

The development of suspension cell cultures can facilitate the production of inactivated
virus vaccines. Currently, the continuous cell line for the production of FMDV is BHK-21,
which can be cultured to high density in large volumes, with a high virus yield. Serum-
free medium is preferred for the culture of BHK-21 to eliminate pathogens from animal
component sources and to show consistent basic cell characteristics. At the same time,
scientists have struggled to figure out how to produce higher viral titers with the lowest
possible cell density. For example, CDM-2 is added to the culture medium [28]; another
approach is through cellular modification, by knocking out genes such as HDAC9 that
inhibit virus replication [29] or by expressing integrin αvβ6, improving the degree of the
“match” between the virus and the cell so that more strains can reproduce on cell lines and
produce higher virus yields [30].

3. Virus-Like Particle Vaccine

Although inactivated virus vaccines are recommended by the OIE for the control and
eradication of FMD, there are still some deficiencies in vaccine production that lead to
sporadic and even severe outbreaks of FMD. Virus-like particles (VLPs) are large particles
composed of one or several structural proteins of the virus which do not contain viral
nucleic acid and cannot replicate, and have an overall structure similar to that of virus
particles. As an ideal substitute for the traditional inactivated virus in vaccine production,
VLPs not only retain the spatial conformation of natural virus particles with epitopes that
stimulate the production of neutralizing antibodies, but also have certain safety. It has been
proven experimentally that VLPs stimulate dendritic cells in the same way as inactivated
FMDV (iFMDV) and induce humoral immunity at the same time [31].

There are generally two design approaches for VLP vaccines. Empty capsids can be
produced within the vaccinated host, from capsid genes carried by a viral vector such as
adenovirus. Alternatively, empty capsids can be produced in culture (bacteria, mammalian
cells, insect cells or plants) and then given as a vaccine [32].



Vaccines 2022, 10, 1817 5 of 17

3.1. Adenovirus Vector Vaccine

An adenovirus vector vaccine for FMD is licensed as a candidate vaccine in the United
States for emergency use in outbreaks of FMD due to FMDV type A [33,34], and is currently
the most promising alternative to inactivated virus vaccines for worldwide use. The
following objectives can be achieved by the production of FMD VLPs in vivo with human
adenovirus type 5: Firstly, the vector particles can be rapidly internalized by host cells.
Second, multiple specific immune responses can be activated. FMDV peptides will be
presented in a complex with MHC-I molecules on the surface of host cells infected with
the vector, and stimulate a CD8+ cytotoxic T-cell response. Third, infection in immunized
animals can be avoided.

Adenovirus is a double-stranded DNA virus with a genome of about 34–43 Kb and
more than 110 types (human adenoviruses, refer to: http://hadvwg.gmu.edu/ accessed on
10 October 2022). In 1999, the first adenovirus-based vaccine against FMD was produced.
The vaccine uses an E1A/E1B deleted adenovirus, with sequences encoding the FMDV
capsid P1-2A and the viral 3C protease that mediates the processing of viral proteins
and the formation of neutralizing antibodies [35]. It has been shown to be effective in
protecting swine from clinical disease following direct contact with an infected animal [36].
P12A3C boxes from different strains of FMDV have different effects on animals immunized
with adenovirus vectors. On trial, Moraes et al. found that P12A3C boxes from FMDV
A24/Cruzeiro/BRA/55 encoded in human adenovirus type 5 (Ad5-A24) provided early
protection against homologous FMDV attacks in swine and cattle [37]. The Ad5-A24
model was thus established, and then it was fully developed into a commercial product.
Pena et al. modified the Ad5-A24 vector by including FMDV sequences encoding non-
structural proteins [38]. It should be noted that if additional sequences encoding additional
non-structural proteins are included in the recombinant adenovirus vector genome, the
advantage of differentiating infected from immunized animals (DIVA) may be lost. For
the most common FMDV serotype O, a human adenovirus 5 (Ad5-O1Man) with FMDV
O/Manisa/TUR/69 as an antigen has also been explored. This FMDV antigen is expressed
even more efficiently than the A24 antigen in swine [39]. However, the adenovirus vector
vaccine for FMDV serotype O is inferior to the vaccine for serotype A because fewer FMDV
VLPs are produced in the vaccinated animal [40]. The adenovirus vector vaccine for O1/
Campos/Brazil/58 is even less effective than other subtype O vaccines [41]. In a recent
study, Micaela et al. used the optimized Ad5 vector-Ad5[PVP2]OP to effectively improve
the immunogenicity of the FMDV O1/Campos vaccine [42]. The optimized model harbors
the foreign transcription unit in a leftward orientation relative to the Ad5 genome and
drives the expression of the FMDV sequence from the optimized cytomegalovirus (CMV)
enhancer–promoter. The amino acid substitution of S93F/Y98F in the VP2 protein coding
sequence stabilizes the VLPs. The vaccine has only been tested in mice so far.

3.2. Phage Vaccine

T7 and T4 phages have been used in VLP vaccine development. More of this work has
been undertaken with T7 phage. T7 is a lytic phage in the family of Brachyviridae of the
order Urophage. Its head is composed of linear dsDNA (39,936 bp) and six capsid proteins,
including gp10A, gp10B, GP8, GP11, GP12 and GP17, with a total of 415 proteins in each
head [43]. Peptides of FMDV VP1, when displayed on the phage capsid, induced a specific
antibody response in mice [44,45], suggesting that such particles may have potential as a
vaccine. The stability of T7 phage would be a distinct advantage in reducing the storage
and shipping costs of such vaccines.

3.3. Nucleic Acid Vaccine

Nucleic acid vaccines are a promising and attractive option because they are safe,
stable and easy to administer, produce and store. The pcDNA3.1/P12A3C expression
plasmid-encoding proteins of FMDV can be packaged with capsid proteins in vitro to
form VLPs that can be used as vector particles to deliver the expression plasmid to target

http://hadvwg.gmu.edu/
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cells in the host. The expression of FMDV proteins then stimulates immunity through the
MHC I and II pathways to produce antibodies as well as CD4+ and CD8+ T cells. These
DNA-loaded VLPs function as DNA vaccine carriers that protect the plasmid DNA from
degradation by host enzymes. Moreover, they enhanced the level of a specific antibody
and prolonged its duration compared to VLPs without DNA and to plasmid DNA alone
in a guinea pig model [46]. Plasmid DNA vaccines given alone are not highly effective,
requiring three doses to achieve effective antibody levels in pigs [47,48], though co-injection
with plasmid-encoding GM-CSF induced a stronger response in cattle [46] and swine [47].

3.4. E. coli Expression System

Escherichia coli (E. coli) is the most common expression system for VLPs of FMDV.
The FMDV serotype O capsid protein containing a small ubiquitin-like modifier (SUMO)
is expressed in E. coli by optimal tandem arrangement (VP0-VP3-VP1) [49]. In this way,
assembled FMDV VLPs can expose multiple epitopes and have a similar size to the original
FMDV. While effectively inducing the humoral and cellular immune responses specific
to FMDV in swine, the efficiency was also increased with increasing dose. In order to
increase the stability of the VLPs, Li et al. modified selected amino acids then screened
the modified VLPs for increased hydrophobic force inside the capsid, better yield of VLPs,
and immunogenicity of the VLP vaccine [50]. In addition, some live attenuated bacterial
expression systems, such as Salmonella typhimurium [51] and Lactococcus lactis [52], are
used as oral vaccines for the expression of FMDV proteins in the vaccinated host.

3.5. Mammalian Expression System

In recent years, the expression of VLPs in mammalian cells has also become popu-
lar [53]. Transient gene expression (TGE) is used generally because of its characteristics of
multiple copies, repeatability, low cost and rapid production of a large number of proteins
in a short time [54]. For TGE, P12A sequences of different FMDV can be easily cloned into
pTT5 vectors. Unmodified polypeptide sequences enable the platform to quickly adapt
the new topologies and subtypes, resulting in an immune response to different FMDV
serotypes. For example, VLPs produced by the TGE of A2001 Argentina strain and O1Man
can trigger an immune response in immunized animals, including swine and cattle [53,54].
TGE may also address problems related to virus adaptation in cell culture, but further
studies are needed to demonstrate the recombinant expression of more serotypes.

3.6. Chimeric Vaccine

The development of the chimeric VLP vaccine is also an approach that induces a strong
specific humoral response. Epitopes of FMDV displayed on VLPs composed of hepatitis B
core protein or HIV Gag polypeptide or rabbit hemorrhagic disease virus (RHDV) VP60
induce the formation of FMDV-specific antibodies [55–58]. Similar VLPs can also be taken
up by dendritic cells to expose T-cell epitopes through the histocompatibility complex
(MHC) I pathway, thus initiating a cytotoxic T-cell response [59–61]. It may be expected
that VLPs with T-cell epitopes of FMDV could induce a cytotoxic T-cell response, as seen
for other T-cell epitopes expressed as part of RHDV VLPs [59,60].

4. Synthetic Peptide Vaccine

The VP1 G-H ring is the most important protective antigen. FMDV is recognized
by its RGD motif (amino acid residue 130–160), which is the host cell integrin receptor
binding site and plays an important role in the production of neutralizing antibodies to
FMDV. Thus, VP1 has been used in one of the first attempts to produce FMD peptide
subunit vaccines [62,63]. T-cell epitopes were identified in VP4 (internal, highly conserved,
amino acid residue 20–34) [64,65] and in other structural proteins in cattle and swine. These
epitopes are easy to express in peptide vaccines and the epitope sequence can be changed
to represent the appropriate strain in an epidemic scenario.
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The first peptide vaccines represented single linear epitopes. More recently, the
multiple-antigen peptide system (MAP) (Figure 3) has been developed. MAPs are den-
dritic polymers with lysine dendrimers exposed as core and dendritic arms with multiple
antigenic epitopes. This dendritic peptide copolymer is more immunogenic than a simple
linear juxtaposition of B and T epitopes and is moderately resistant to enzyme digestion. In
contrast, VP1 is degraded easily by trypsin.
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In the past, B4T was designed in view of the fact that the seven FMDV serotypes reflect
antigenic diversity and there is no cross-protection among the serotypes. B4T is composed
of an immunodominant T-cell epitope (3A) that covalently connects four different VP1
GH-loop sequences in the form of dendritic branches so that more B-cell epitopes can be
connected and the vaccine strain can better match the circulating virus [66]. However,
it was soon found that a simple structure of B2T constructs with only two branches of
B-cell epitopes was better at inducing specific responses [67]. At the same dose and time
interval, the release of the antibody and IFN-γ release were increased to give stronger
protection when the swine were infected [68]. Along with adenovirus vector vaccines,
this peptide vaccine is one of the few to show that a single dose can replace conventional
FMDV vaccines for protection against disease. Single-dose vaccines not only help reduce
costs, including vaccine materials, labor and logistics, but also facilitate rapid vaccination
in emergency situations which require a fast, low-cost and flexible response to the virus.

T-cell and B-cell epitopes are the key factors in the development of synthetic peptide
vaccines. The non-structural 3D proteins (amino acids 56–70) in FMDV have been used in
synthetic peptide vaccines [69,70]. Swine which were inoculated with B2T-3D induced the
same level of neutralizing antibodies and IFN-γ as B2T-3A, and inoculation with B2T-3D
induced even more IFN-gamma [71]. The cross-neutralizing antibody titer induced by
B2T-3D was higher than that included by B2T-3A. The B2T-TB2 peptide, with six epitopes,
is formed by two B2T molecules and can induce a high level of protective mucosal IgA
response in domestic swine infected with FMDV [72]. The structure also induced strong
humoral immunity against classical swine fever virus (CSFV), a pestivirus within the
family Flaviviridae

Recent findings show that specific MHC alleles and haplotypes affect the efficacy
of peptide vaccines containing a limited number of T-cell epitopes [73]. Porcine MHC
(SLAs, swine leukocyte antigens) is one of the most well studied major histocompatibility
complexes outside of humans [65]. Moreover, 266 SLA-I (SLA-1, -2, -3), 227 SLA-II (DR, DQ,
DM, DO), 2 SLA-related alleles and 2 non-SLA-related alleles have been found in swine
(Table 1). These alleles have been subdivided into different haplotypes by high-resolution
DNA sequencing. As of July 2019, there were 73 independent class I haplotypes and 51 class
II haplotypes [74]. Low-resolution (Lr) haplotype analysis showed that SLA-II contributed
to the number of specific SLA-II-restricted T cells induced by B2T dendritic molecules in
swine, but more data are needed to support this [73].
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Table 1. Numbers of confirmed swine leukocyte antigen (SLA) alleles and proteins [74,75].

Category Locus Allele Protein

SLA class I (classical)
SLA-1 90 88
SLA-2 97 94
SLA-3 41 39

SLA class I (nonclassical)
SLA-6 10 10
SLA-7 3 3
SLA-8 5 5

SLA class I (unclassified) SLA-12 6 6

SLA class I (pseudogene)

SLA-4 3 0
SLA-5 4 0
SLA-9 5 0

SLA-11 2 0

Total class I alleles 266 245

SLA class II

DRA 14 6
DRB1 99 92
DQA 26 24
DQB1 53 48
DMA 7 5
DMB 1 1
DOA 2 2
DOB1 3 3

SLA class II (pseudogene)

DRB2 12 0
DRB3 5 0
DRB4 1 0
DRB5 1 0
DQB2 1 0
DQB2 1 0
DYB 1 0

Total class II alleles 227 181

Other non-SLA genes

MIC-1 1 0
MIC-2 1 1
TAP1 1 1
TAP2 1 1

Total SLA-related alleles 4 3

5. Adjuvant and Delivery System

Successful vaccines depend on safe and effective adjuvants, as well as appropriate
delivery systems and route of administration. Adjuvants used to date include mineral oil
(Montanide Isa-206, ISA-201), aluminum hydroxide, saponins (Quil-A), Toll-like receptor
ligands (targeted pattern recognition receptors), cytokines (IFN-A, IFN-G, IL-1, IL-2, IL-15,
IL-18 and GM-CSF) and liposomes. There are also new and effective adjuvants on the
horizon (Table 2).

Oil adjuvants are more effective than other adjuvants in swine, causing stronger
immune responses. At the same time, they can also cause serious side effects such as
hemolysis, swelling or necrosis at the injection site. Oil-adjuvant vaccines induced strong
immunity and were less interfered with by colostrum antibodies, but the widely used
Montanide ISA-206 has been found to accelerate the degradation of immunologically active
146S particles at the oil–water interface [76].

Aluminum hydroxide induces the typical antibody-mediated Th2 response rather
than cell-mediated Th1 immunity [77]. It also stimulates high levels of lgE production,
which can lead to hypersensitivity and neurotoxicity with a strong inflammatory response
at the injection site. Saponin was combined with aluminum hydroxide (alum) to effectively
compensate for the lack of cellular immunity [78,79]. Saponins also provide an advantage
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when mixed with oil adjuvant. In cattle, a saponin-oil emulsion increased the level of
neutralizing antibody with a lower dose of antigen (146S particles) [80]. Reducing the
required dose of viral antigen represents a significant cost saving in vaccine production.

Humoral immunity to FMDV develops rapidly but is short-lived [81], even in the
case of iFMDV emulsified with adjuvant [82]. Although the immunopotentiator CVC1302
can enhance humoral immunity [83], it is increasingly recognized that cellular immunity
mediated by CD8+ and CD4+ T lymphocytes is equally important for adaptive protection
in immunized animals. Since an enhanced cellular immune response can be more beneficial
in some cases, the direction of adjuvant development has been shifted to stimulate the
Th1 and Th2 responses to antigens as much as possible [84,85]. Antigens need to be taken
up, processed and presented by dendritic cells (DCs) in association with MHC molecules.
Some agonists have been shown to be recognized by CD4+ and CD8+ T cells and induce
DC maturation in the process. Mature DCs are recognized by CD4+ and CD8+ T cells,
resulting in both humoral and cellular immunity. TLR4 agonists are considered to be the
main ligand to activate DCs. In recent years, there have been many examples of TLR4
agonists being used as adjuvants. Coating virus-like particles with dimethyldioctadecy-
lammonium bromide (DDA)-based cationic liposomes and monophosphate liposome A
(MPL) promote Th1 responses and even multifunctional T-cell immune responses such
as Th17 [86]. Lei et al. constructed the recombinant fusion protein HAO-HBHA. They
connected the multi-epitope immunogen HAO of FMDV serotypes A and O in tandem
with heparin-binding hemagglutinin (HBHA) of Mycobacterium tuberculosis, a novel TLR4
agonist. This modification not only increased the expression of IL-4, IL-6, IL-10 and IL12p70,
but also increased the stability and solubility of HAO protein [87].

Chinese herbal medicine is a material that cannot be ignored in adjuvants. Xu et al.
used panax ginseng stem and leaf saponins as immune enhancers. Carbohydrate groups
on the saponin molecule can interact with receptors on antigen-presenting cells (APCs) to
promote a Th1 response [88]. The crude polysaccharides of Cistanche deserticola (CPCD)
can activate DCs through TLR-2 and TLR-4, inducing the activation of MAPK and NF-κB
pathways [89]. CPCD can trigger FMDV specific immune responses such as increased
specific antibodies, splenocyte proliferation, T-cell subsets, IFN-γ, CTL and DC activation
at the optimal dose of 400 µg in mice. The synergistic effect of Artemisia rupestris L. (AEAR)
and ISA-206 oil adjuvant can increase serum antibody titer, enhance cytokine secretion
and stimulate long-term immunity [90]. In addition, the preparation of VLP vaccine
using Achyranthes bidentata polysaccharide (ABP) as an immunostimulant can promote
the proliferation of splenic lymphocytes and increase specific antibodies to enhance the
immune effect, and the preparation can be stored at room temperature for a long time [91].

The non-coding RNA (ncRNA) of FMDV also has potential as a vaccine adjuvant.
ncRNAs are short RNA sequences whose structures are similar to those within the non-
coding regions of the FMDV genome. The 3′ NCR, as well as the IRES and S domains
from the 5′ NCR, induced stronger and longer-lasting B- and T-cell responses, enhancing
protection via the inactivated FMD vaccine in swine [92]. However, it is important to note
that IRES transcripts may reduce the specific humoral response to MAP (multiple antigen
peptide) vaccines [93].

In some cases, delivery systems are not easily distinguished from adjuvants because
they can also stabilize and enhance antigens in addition to delivering them to the appro-
priate target cell. Nanoparticle polymers (NPs) are the most promising delivery systems
currently in use because of their unique physicochemical properties such as controllable
shape and size, with the advantages of large specific surface area, multiple-surface ac-
tive centers and high reactivity. Mesoporous silica nanoparticles (MSNs) [94], chitosan
nanoparticles (CS) [95], gold nanoparticles and L-Lactide-co-glycolic acid (PLGA) [96] have
received significant research attention in the biomedical field and have been shown to
enhance immune response.

In recent years, mesoporous silica nanoparticles have become the most popular trans-
port system. Dendritic mesoporous silica nanoparticles (DMSNs) have a unique central–
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radial pore structure and a greater loading capacity. An et al. used DMSNs with B2T
synthetic peptide and showed prolonged release when the complex was coated with serum
proteins [97]. Monodisperse silica microspheres have good uniformity and controllable
size, but they are difficult to degrade under natural conditions. Yu et al. used disulfide (S-S)
groups to destroy the strong skeleton (-Si-O-Si-) in the original microspheres and avoid
the accumulation of mesoporous silica nanoparticles in the reticuloendothelial system [98].
On this basis, Yin et al. loaded imiquimide (IMQ) into the degradable mesoporous silica
micro-spheres in order to control the release rate of FMDV and reduce the toxicity of IMQ
to immunized animals [99].

As a new reagent, chitosan (CP) has been used in the development of many adjuvants
because it can be functionalized by different functional groups. There are many His
residues on the capsid of FMDV. Divalent metal ions can neutralize His residues, so that
iFMDV can be well adsorbed on the zinc-chelated chitosan particles (CP-PEI-Zn) in order
to increase the thermal stability of the inactivated virus and promote the humoral and
cellular immune responses of mice [100]. Bionic chitosan hydrogel nanoparticles were used
to simulate the flexibility of the pathogen’s configuration and deformation to increase the
contact area between the vaccine and cells for the better delivery of antigens to APCs [101].
Coating PLGA nanoparticles with CP (PLGA-NPs) could improve the immune response
to mucosal inoculation [102]. Zheng et al. used chitosan-coated PLGA-NPs mixed with
amino-functionalized mesoporous silica nanoparticles, loaded with FMDV recombinant
plasmid, for intranasal vaccination along with CpG oligodeoxynucleotides encapsulated in
chitosan-coated PLGA-NPs as adjuvant [103]. Systemic and mucosal immune responses,
including specific IgA, were induced in guinea pigs. Challenge experiments showed
protection against the systemic spread of the virus in vivo following the injection of the
virus into one leg [103].

Gold nanocages (AuNCs) had little biological toxicity in vitro and in vivo, and in-
creased the uptake of VLP via the BHK-21 and RAW264.7 cell lines [104]. The combination
of VLP and AuNCs significantly promoted the proliferation of CD8+ T cells and the release
of immune-related cytokines [104].

Layered double hydroxides (LDHs) are structures with alternating layers of hydroxide
molecules separated by interspace layers filled with anions and water. These anions can be
exchanged for other molecules, including biological molecules, meaning that LDHs can
be loaded with biological molecules and used as delivery vehicles [105]. The properties
of LDHs, including the sustained delivery of their load, make them attractive as potential
vaccine carriers [106]. When used to immunize mice by subcutaneous injection, LDHs
loaded with inactivated FMDV particles induced high and sustained antibody levels,
following an initial delay [107]. In pigs, the LDHs loaded with inactivated FMDV particles
induced specific neutralizing antibodies at levels comparable to levels achieved with
Montanide ISA-206 adjuvant [107].

In addition, some immune-stimulating particle adjuvants (ISPA) [108], ferritin nanopar-
ticles [109], solid lipid nanoparticles (SLN) [110] and bio-mineralized nanomaterials [111]
have also been proven to enhance the stability of the antigen, as well as the proliferation
and the differentiation of central memory T cells and effector memory T cells.

Table 2. A review of adjuvant and delivery systems against foot-and-mouth disease virus (FMDV)
published in the last few years.

Type Adjuvant or Delivery System Mechanism Applicable Vaccines

Saponin
The imine carbonyl group formed contributes to

T-cell activation (inducing Th1/Th2 response) and
permeabilizes cell membranes [78–80]

Adenovirus vector vaccine

CAvant ® SOE (CA V AC,
Daejeon, Korea)

Delivery of antigens to APCs or by direct
stimulation of immune cells [112] Inactivated viruses
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Table 2. Cont.

Type Adjuvant or Delivery System Mechanism Applicable Vaccines

Agonists Cationic liposomes and
monophosphate liposome A

VLP is encapsulated in a cationic liposome and/or
MPL based on DDA [86] VLP vaccine

Agonists Heparin-binding hemagglutinin
(HBHA)

The multi-epitope immunogen HAO of serotype O
and A FMDV was combined with HBHA, a novel

TLR4 agonist [87]
VLP vaccine

Agonists CVC1302
Contains three PRR agonists that can increase

B-cell numbers to increase antibody
response [83,113]

Multi-epitope recombinant
vaccine

Chinese herbal
medicine

Panax ginseng stem and leaf
saponins

The carbohydrate groups on the saponin molecule
can interact with receptors on the APCs, and the

acyl domain can facilitate the entry of antigens into
the APCs [88]

Inactivated viruses

Chinese herbal
medicine

Crude polysaccharides of
Cistanche deserticola (CPCD)

DCs were activated by TLR-2 and TLR-4, and
MAPKs and NF-κB pathway were induced [89] Inactivated viruses

Chinese herbal
medicine Artemisia rupestris L., (AEAR)

Increase serum antibody titers, enhance cytokine
secretion, and stimulate T-cell-mediated immune

responses [90]
Inactivated viruses

Chinese herbal
medicine

Achyranthes bidentata
Polysaccharide (ABP)

The stable polysaccharide nanoemulsion delivery
system can better deliver antigen and promote

immune enhancement [91]
VLP vaccine

Noncoding synthetic RNAs
IRES, S and 3′NCR domains transcribed in vitro

from plasmids induce a powerful antiviral
response [92]

Inactivated viruses

Nanoparticle polymers Mesoporous silica
Unique center–radial hole structure for greater

load capacity and control of FMDV release
rate [97–99,103]

Inactivated viruses

Nanoparticle polymers Chitosan (CP)
The flexible configuration and deformation of the
vaccine particles can increase the contact area with

cells [100–102]

VLP vaccine and
inactivated vaccine

Nanoparticle polymers Gold nanocages (AuNCs)
Proteins can bind to gold nanomaterials by

electrostatic interaction, hydrophobicity and Au-S
bond cooperation [104]

VLP vaccine

Nanoparticle polymers Layered dihydroxide (LDH)
These particles, with interspace layers that can be

loaded with antigens, provide improved and
sustained delivery of antigen in vivo [107]

Inactivated viruses

6. Conclusions

Foot-and-mouth disease is the first disease for which the OIE established an official
list of disease-free countries which can be officially recognized as free of the disease either
in their entirety or in defined zones and compartments. Some disease-free countries have
stopped vaccinating. However, countries that have not received the vaccine may be under
constant threat of foot-and-mouth disease invasion. If FMD catches on, it could become
a major constraint on international livestock trade. Therefore, it is extremely important
for us to prevent and control foot-and-mouth disease. As a picornavirus virus, the FMDV
is consistent with other RNA viruses which have a high rate of genetic variation due to
mutation and recombination during the process of replication. VP1 is most frequently
affected by mutation, whereas VP4 is more conserved. A major challenge with the FMD
vaccine appears to be that the available vaccine targeting one serotype of FMDV does
not generate immune memory cross-reacting against other serotypes of FMDV. Given
that infected swine exhale large amounts of virus that can travel up to 70–330 miles in
the air [114], it is important that vaccines be effective in swine. Whereas the established
vaccines, in use since 1930s, are inactivated virus particles, the newer vaccines in use
represent subviral components in the form of adenovirus vectored vaccines, VLPs and
synthetic peptides. In all cases, the immunogen is intended to elicit a protective response
against multiple strains of FMDV. The duration of immunity is also a challenge. Whereas
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existing inactivated virus vaccines require repeated dosing, it is desirable that vaccines
would provide protection after a single vaccination.

With newer vaccines that protect animals against multiple virus strains, we will be
better prepared against the next outbreak of FMD for a longer period of time. Continued
research should lead to further improvements in protection against FMD.
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