The Vaccine World of COVID-19: India’s Contribution
Abstract
:1. Introduction
2. International Collaboration, Development, and Commercialization
2.1. CovishieldTM
2.2. Sputnik V
3. Covaxin, by Bharat Biotech, India
4. Vaccines under Different Stages of Clinical Development in India
4.1. ZyCoV-D
4.2. NVX-CoV2373
4.3. Biological-E Vaccine
4.4. HGCO-19 (Genova)
4.5. Inactivated Rabies Vector Platform (Bharat Biotech)
5. Supply Chain and Global Distribution
6. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez-Losada, M.; Arenas, M.; Galán, J.C.; Palero, F.; González-Candelas, F. Recombination in Viruses: Mechanisms, Methods of Study, and Evolutionary Consequences. Infect. Genet. Evol. 2015, 30, 296–307. [Google Scholar] [CrossRef] [Green Version]
- Wouters, O.J.; Shadlen, K.C.; Salcher-Konrad, M.; Pollard, A.J.; Larson, H.J.; Teerawattananon, Y.; Jit, M. Challenges in ensuring global access to COVID-19 vaccines: Production, affordability, allocation, and deployment. Lancet 2021, 397, 1023–1034. [Google Scholar] [CrossRef]
- Joshi, G.; Borah, P.; Thakur, S.; Sharma, P.; Mayank; Poduri, R. Exploring the COVID-19 Vaccine Candidates against SARS-CoV-2 and Its Variants: Where Do We Stand and Where Do We Go? Hum. Vaccine Immunother. 2021, 17, 4714. [Google Scholar] [CrossRef]
- Kaur, H.; Kaur, M.; Bhattacharyya, A.; Prajapat, M.; Thota, P.; Sarma, P.; Kumar, S.; Kaur, G.; Sharma, S.; Prakash, A.; et al. Indian Contribution toward Biomedical Research and Development in COVID-19: A Systematic Review. Indian J. Pharm. 2021, 53, 63. [Google Scholar] [CrossRef]
- Karnik, M.; Beeraka, N.M.; Uthaiah, C.A.; Nataraj, S.M.; Bettadapura, A.D.S.; Aliev, G.; Madhunapantula, S.R.V. A Review on SARS-CoV-2-Induced Neuroinflammation, Neurodevelopmental Complications, and Recent Updates on the Vaccine Development. Mol. Neurobiol. 2021, 58, 4535–4563. [Google Scholar] [CrossRef]
- Chavda, V.P.; Apostolopoulos, V. Reply to the Letter “Mucormycosis and Black Fungus: Breaking the Myth”. Maturitas 2022, 159, 71. [Google Scholar] [CrossRef]
- Kumar, N.; Acharya, A.; Gendelman, H.E.; Byrareddy, S.N. The 2022 Outbreak and the Pathobiology of the Monkeypox Virus. J. Autoimmun. 2022, 131, 102855. [Google Scholar] [CrossRef]
- Mukherjee, D.; Ruchika, F.N.U.; Pokhrel, N.B.; Jaiswal, V. Tomato Fever and COVID 19, a Double Hit in the Indian Health System. Immun. Inflamm. Dis. 2022, 10, e677. [Google Scholar] [CrossRef]
- COVID-19 Vaccine Tracker and Landscape. Available online: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (accessed on 30 September 2022).
- Global Vaccine Action Plan. Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/strategies/global-vaccine-action-plan (accessed on 30 September 2022).
- How Many People Are Fully Vaccinated in the World-Google Search. Available online: https://www.google.com/search?q=how+many+people+are+fully+vaccinated+in+the+world&rlz=1C1CHBF_enIN1013IN1013&oq=how+many+people+are+fully+vaccinated+in+the+world&aqs=chrome..69i57.29215j1j15&sourceid=chrome&ie=UTF-8 (accessed on 30 September 2022).
- WHO—COVID19 Vaccine Tracker. Available online: https://covid19.trackvaccines.org/agency/who/ (accessed on 30 September 2022).
- Moradian, N.; Ochs, H.D.; Sedikies, C.; Hamblin, M.R.; Camargo, C.A.; Martinez, J.A.; Biamonte, J.D.; Abdollahi, M.; Torres, P.J.; Nieto, J.J.; et al. The urgent need for integrated science to fight COVID-19 pandemic and beyond. J. Transl. Med. 2020, 18, 205. [Google Scholar] [CrossRef]
- COVID-19 Shows Why United Action Is Needed for More Robust International Health Architecture. Available online: https://www.who.int/news-room/commentaries/detail/op-ed---covid-19-shows-why-united-action-is-needed-for-more-robust-international-health-architecture (accessed on 30 September 2022).
- Zastrow, M. Open Science Takes on the Coronavirus Pandemic. Nature 2020, 581, 109–110. [Google Scholar] [CrossRef]
- George, G.; Howard-Grenville, J.; Joshi, A.; Tihanyi, L. Understanding and Tackling Societal Grand Challenges through Management Research. Acad. Manag. J. 2016, 59, 1880–1895. [Google Scholar] [CrossRef]
- Director-General’s Opening Remarks at the World Health Assembly—24 May 2021. Available online: https://www.who.int/director-general/speeches/detail/director-general-s-opening-remarks-at-the-world-health-assembly---24-may-2021 (accessed on 24 May 2021).
- Austin, C.C.; Bernier, A.; Bezuidenhout, L.; Bicarregui, J.; Biro, T.; Cambon-Thomsen, A.; Carroll, S.R.; Cournia, Z.; Dabrowski, P.W.; Diallo, G.; et al. Fostering Global Data Sharing: Highlighting the Recommendations of the Research Data Alliance COVID-19 Working Group. Wellcome Open Res. 2020, 5, 267. [Google Scholar] [CrossRef]
- Chesbrough, H. To Recover Faster from COVID-19, Open up: Managerial Implications from an Open Innovation Perspective. Ind. Mark. Manag. 2020, 88, 410–413. [Google Scholar] [CrossRef]
- Druedahl, L.C.; Minssen, T.; Price, W.N. Collaboration in Times of Crisis: A Study on COVID-19 Vaccine R&D Partnerships. Vaccine 2021, 39, 6291. [Google Scholar] [CrossRef]
- COVID-19 Technology Access Pool. Available online: https://www.who.int/initiatives/covid-19-technology-access-pool (accessed on 30 September 2022).
- Coronavirus (COVID-19) Vaccines for Developing Countries: An Equal Shot at Recovery. Available online: https://www.oecd.org/coronavirus/policy-responses/coronavirus-covid-19-vaccines-for-developing-countries-an-equal-shot-at-recovery-6b0771e6/ (accessed on 4 February 2021).
- Safer Together—Unlocking the Power of Partnerships Against COVID-19. Available online: https://blogs.worldbank.org/health/safer-together-unlocking-power-partnerships-against-covid-19 (accessed on 30 September 2022).
- Reich, M.R. Public-Private Partnerships for Public Health. Nat. Med. 2000, 6, 617–620. [Google Scholar] [CrossRef]
- Research Collaborations Bring Big Rewards: The World Needs More. Nature 2021, 594, 301–302. [CrossRef]
- Bernardo, T.; Sobkowich, K.E.; Forrest, R.O.; Stewart, L.S.; D’Agostino, M.; Gutierrez, E.P.; Gillis, D. Collaborating in the Time of COVID-19: The Scope and Scale of Innovative Responses to a Global Pandemic. JMIR Public Health Surveill. 2021, 7, e25935. [Google Scholar] [CrossRef]
- Bump, J.B.; Friberg, P.; Harper, D.R. International Collaboration and COVID-19: What Are We Doing and Where Are We Going? BMJ 2021, 372, n180. [Google Scholar] [CrossRef]
- Rosiello, A.; Smith, J. A Sociological Economy of HIV/AIDS Vaccine Partnerships: Case Studies from Africa and India. Int. Rev. Sociol. Rev. Int. De Sociol. 2008, 18, 283–299. [Google Scholar] [CrossRef]
- Odevall, L.; Hong, D.; Digilio, L.; Sahastrabuddhe, S.; Mogasale, V.; Baik, Y.; Choi, S.; Kim, J.H.; Lynch, J. The Euvichol Story—Development and Licensure of a Safe, Effective and Affordable Oral Cholera Vaccine through Global Public Private Partnerships. Vaccine 2018, 36, 6606–6614. [Google Scholar] [CrossRef]
- Hughes, B. Vaccine Partnerships to Tackle Neglected Diseases. Nat. Rev. Drug Discov. 2008, 7, 277–278. [Google Scholar] [CrossRef]
- Hotez, P.J. “Vaccine Diplomacy”: Historical Perspectives and Future Directions. PLoS Negl. Trop. Dis. 2014, 8, e2808. [Google Scholar] [CrossRef] [Green Version]
- Sturchio, J.L.; Cohen, G.M. How PEPFAR’s Public-Private Partnerships Achieved Ambitious Goals, from Improving Labs to Strengthening Supply Chains. Health Aff. 2012, 31, 1450–1458. [Google Scholar] [CrossRef] [Green Version]
- Kumraj, G.; Pathak, S.; Shah, S.; Majumder, P.; Jain, J.; Bhati, D.; Hanif, S.; Mukherjee, S.; Ahmed, S. Capacity Building for Vaccine Manufacturing Across Developing Countries: The Way Forward. Hum. Vaccine Immunother. 2022, 18, 2020529. [Google Scholar] [CrossRef]
- Ghosh, S.; Shankar, S.; Chatterjee, K.; Chatterjee, K.; Yadav, A.K.; Pandya, K.; Suryam, V.; Agrawal, S.; Ray, S.; Phutane, V.; et al. COVISHIELD (AZD1222) VaccINe Effectiveness among Healthcare and Frontline Workers of INdian Armed Forces: Interim Results of VIN-WIN Cohort Study. Med. J. Armed Forces India 2021, 77, S264–S270. [Google Scholar] [CrossRef]
- Joshi, R.K.; Muralidharan, C.G.; Ahuja, A.; Mukherjee, R.; Chaurasia, S.; Manjaly, L.; Divyanshi; Sahoo, A.K.; Gosavi, J.; Thomas, A. Vaccine Effectiveness to Protect against Moderate or Severe Disease in COVID Cases: A Prospective Cohort Study. Med. J. Armed Forces India, 2022; online ahead of print. [Google Scholar] [CrossRef]
- Moderna COVID-19 Vaccines | FDA. Available online: https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/moderna-covid-19-vaccines (accessed on 30 September 2022).
- The Moderna COVID-19 (MRNA-1273) Vaccine: What You Need to Know. Available online: https://www.who.int/news-room/feature-stories/detail/the-moderna-covid-19-mrna-1273-vaccine-what-you-need-to-know (accessed on 30 September 2022).
- Sharma, R.; Tiwari, S.; Dixit, A. Covaxin: An Overview of Its Immunogenicity and Safety Trials in India. Bioinformation 2021, 17, 840–845. [Google Scholar] [CrossRef]
- Heath, P.T.; Galiza, E.P.; Baxter, D.N.; Boffito, M.; Browne, D.; Burns, F.; Chadwick, D.R.; Clark, R.; Cosgrove, C.; Galloway, J.; et al. Safety and Efficacy of NVX-CoV2373 COVID-19 Vaccine. New Engl. J. Med. 2021, 385, 1172–1183. [Google Scholar] [CrossRef]
- Rehman, S.U.; Rehman, S.U.; Yoo, H.H. COVID-19 Challenges and Its Therapeutics. Biomed Pharm. 2021, 142, 112015. [Google Scholar] [CrossRef]
- Thiagarajan, K. COVID-19: India Is at Centre of Global Vaccine Manufacturing, but Opacity Threatens Public Trust. BMJ 2021, 372, n196. [Google Scholar] [CrossRef]
- Shin, S.P.; Shin, K.S.; Lee, J.M.; Jung, I.K.; Koo, J.; Lee, S.W.; Park, S.; Shin, J.; Park, M.; Park, B.; et al. The Chimeric Adenovirus (Ad5/35) Expressing Engineered Spike Protein Confers Immunity against SARS-CoV-2 in Mice and Non-Human Primates. Vaccines 2022, 10, 712. [Google Scholar] [CrossRef]
- COVID-19: Vaccines-UpToDate. Available online: https://www.uptodate.com/contents/covid-19-vaccines?search=prenatal%20care%20for%20incarcerated%20women&topicRef=128410&source=related_link (accessed on 1 October 2022).
- Rabail, R.; Ahmed, W.; Ilyas, M.; Rajoka, M.S.R.; Hassoun, A.; Khalid, A.R.; Khan, M.R.; Aadil, R.M. The Side Effects and Adverse Clinical Cases Reported after COVID-19 Immunization. Vaccines 2022, 10, 488. [Google Scholar] [CrossRef]
- Thiruvengadam, R.; Awasthi, A.; Medigeshi, G.; Bhattacharya, S.; Mani, S.; Sivasubbu, S.; Shrivastava, T.; Samal, S.; Rathna Murugesan, D.; Koundinya Desiraju, B.; et al. Effectiveness of ChAdOx1 NCoV-19 Vaccine against SARS-CoV-2 Infection during the Delta (B.1.617.2) Variant Surge in India: A Test-Negative, Case-Control Study and a Mechanistic Study of Post-Vaccination Immune Responses. Lancet Infect. Dis. 2022, 22, 473–482. [Google Scholar] [CrossRef]
- Lopez Bernal, J.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of COVID-19 Vaccines against the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef]
- Shen, C.F.; Yen, C.L.; Fu, Y.C.; Cheng, C.M.; Shen, T.C.; Chang, P.D.; Cheng, K.H.; Liu, C.C.; Chang, Y.T.; Chen, P.L.; et al. Innate Immune Responses of Vaccinees Determine Early Neutralizing Antibody Production After ChAdOx1nCoV-19 Vaccination. Front. Immunol. 2022, 13, 83. [Google Scholar] [CrossRef]
- Asano, M.; Okada, H.; Itoh, Y.; Hirata, H.; Ishikawa, K.; Yoshida, E.; Matsui, A.; Kelly, E.J.; Shoemaker, K.; Olsson, U.; et al. Immunogenicity and Safety of AZD1222 (ChAdOx1 NCoV-19) against SARS-CoV-2 in Japan: A Double-Blind, Randomized Controlled Phase 1/2 Trial. Int. J. Infect. Dis. 2022, 114, 165–174. [Google Scholar] [CrossRef]
- Swanson, P.A.; Padilla, M.; Hoyland, W.; McGlinchey, K.; Fields, P.A.; Bibi, S.; Faust, S.N.; McDermott, A.B.; Lambe, T.; Pollard, A.J.; et al. AZD1222/ChAdOx1 NCoV-19 Vaccination Induces a Polyfunctional Spike Protein-Specific TH1 Response with a Diverse TCR Repertoire. Sci. Transl. Med. 2021, 13, 7211. [Google Scholar] [CrossRef]
- Hernanz, I.; Arconada, C.; López Corral, A.; Sánchez-Pernaute, O.; Carreño, E. Recurrent Anterior Non-Necrotizing Scleritis as an Adverse Event of ChAdOx1 NCoV-19 (Vaxzevria) Vaccine. Ocul. Immunol. Inflamm. 2022, 30, 1247–1249. [Google Scholar] [CrossRef]
- Tapdia, M.; Kumar, A.; Singh, V.K.; Pathak, A.; Joshi, D. Post ChAdOx1 NCoV-19 Vaccination Frontal Lobe Syndrome. Neurol. Sci. 2022, 43, 4099–4101. [Google Scholar] [CrossRef]
- Sah, M.K.; Singh, B.M.; Sinha, P.; Devkota, P.; Yadav, S.K.; Shrestha, J.; Shrestha, A. Superficial Venous Thrombosisas a Possible Consequence of ChAdOx1 NCoV-19 Vaccine: Two Case Reports. J. Med. Case Rep. 2022, 16, 1–6. [Google Scholar] [CrossRef]
- Rogers, P.; Walker, I.; Yeung, J.; Khan, A.; Gangi, A.; Mobashwera, B.; Ayto, R.; Shah, A.; Hermans, J.; Murchison, A.; et al. Thrombus Distribution in Vaccine-Induced Immune Thrombotic Thrombocytopenia after ChAdOx1 NCoV-19 Vaccination. Radiology, 2022; online ahead of print. [Google Scholar] [CrossRef]
- Behrens, G.M.N.; Barros-Martins, J.; Cossmann, A.; Ramos, G.M.; Stankov, M.V.; Odak, I.; Dopfer-Jablonka, A.; Hetzel, L.; Köhler, M.; Patzer, G.; et al. BNT162b2-Boosted Immune Responses Six Months after Heterologous or Homologous ChAdOx1nCoV-19/BNT162b2 Vaccination against COVID-19. Nat. Commun. 2022, 13, 4872. [Google Scholar] [CrossRef]
- Das, A.; Ahmed, R.; Akhtar, S.; Begum, K.; Banu, S. An Overview of Basic Molecular Biology of SARS-CoV-2 and Current COVID-19 Prevention Strategies. Gene Rep. 2021, 23, 101122. [Google Scholar] [CrossRef]
- Al-Dayan, N.; Venugopal, D.; Dhanasekaran, S. Footprint of the COVID-19 Pandemic in India: A Study of Immune Landscape and Other Factors Shielding Mortality. Anal. Cell. Pathol. 2020, 2020, 6692739. [Google Scholar] [CrossRef]
- Study of Sputnik V COVID-19 Vaccination in Adults in Kazakhstan-Full Text View-ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04871841?term=Sputnik+V&cond=SARS+CoV-2&draw=2&rank=1 (accessed on 30 September 2022).
- COVAXINTM (BBV152) for the Treatment of COVID-19, India. Available online: https://www.clinicaltrialsarena.com/projects/covaxin-bbv152-for-the-treatment-of-covid-19/ (accessed on 28 June 2022).
- The Bharat Biotech BBV152 COVAXIN Vaccine against COVID-19: What You Need to Know. Available online: https://www.who.int/news-room/feature-stories/detail/the-bharat-biotech-bbv152-covaxin-vaccine-against-covid-19-what-you-need-to-know (accessed on 1 October 2022).
- Ganneru, B.; Jogdand, H.; Daram, V.K.; Das, D.; Molugu, N.R.; Prasad, S.D.; Kannappa, S.V.; Ella, K.M.; Ravikrishnan, R.; Awasthi, A.; et al. Th1 Skewed Immune Response of Whole Virion Inactivated SARS CoV 2 Vaccine and Its Safety Evaluation. iScience 2021, 24, 102298. [Google Scholar] [CrossRef]
- Fact Sheet for Vaccine Recipients and Caregivers Restricted Use of CovaxinTM under Clinical Trial Mode the Bharat Biotech COVID-19 Vaccine (COVAXIN TM) to Prevent Coronavirus Disease 2019(COVID-19) Prioritized Groups of Individuals Who Have been Informed by the Ministry of Health and Family Welfare to Attend a Booth Specified for COVAXIN TM Based Vaccination. Available online: https://cdsco.gov.in/opencms/export/sites/CDSCO_WEB/en/Factsheetof-ChAdSerum.pdf (accessed on 1 January 2021).
- Murugan, C.; Ramamoorthy, S.; Kuppuswamy, G.; Murugan, R.K.; Sivalingam, Y.; Sundaramurthy, A. COVID-19: A Review of Newly Formed Viral Clades, Pathophysiology, Therapeutic Strategies and Current Vaccination Tasks. Int. J. Biol. Macromol. 2021, 193, 1165. [Google Scholar] [CrossRef]
- Vadrevu, K.M.; Ganneru, B.; Reddy, S.; Jogdand, H.; Raju, D.; Praturi, U.; Sapkal, G.; Yadav, P.; Reddy, P.; Verma, S.; et al. Persistence of Immunity and Impact of a Third (Booster) Dose of an Inactivated SARS-CoV-2 Vaccine, BBV152; a Phase 2, Double-Blind, Randomised Controlled Trial. Sci. Rep. 2022, 12, 12038. [Google Scholar] [CrossRef]
- Kumar, N.P.; Banurekha, V.V.; Kumar, C.P.G.; Nancy, A.; Padmapriyadarsini, C.; Shankar, S.; Hanna, L.E.; Murhekar, M.; Devi, K.R.U.; Babu, S. Inactivated COVID-19 Vaccines: Durability of Covaxin/BBV152 Induced Immunity against Variants of Concern. J. Travel Med. 2022, 29, 1–71. [Google Scholar] [CrossRef]
- Kumar, N.P.; Banurekha, V.V.; Girish Kumar, C.P.; Nancy, A.; Padmapriyadarsini, C.; Mary, A.S.; Devi, K.R.U.; Murhekar, M.; Babu, S. Prime-Boost Vaccination With Covaxin/BBV152 Induces Heightened Systemic Cytokine and Chemokine Responses. Front. Immunol. 2021, 12, 4219. [Google Scholar] [CrossRef]
- Feikin, D.R.; Higdon, M.M.; Abu-Raddad, L.J.; Andrews, N.; Araos, R.; Goldberg, Y.; Groome, M.J.; Huppert, A.; O’Brien, K.L.; Smith, P.G.; et al. Duration of effectiveness of vaccines against SARS CoV-2 infection and COVID-19 disease: Results of a systematic review and meta-regression. Lancet 2022, 399, 924–944. [Google Scholar] [CrossRef]
- Cascella, M.; Rajnik, M.; Cuomo, A.; Dulebohn, S.C.; di Napoli, R. Features, Evaluation, and Treatment of Coronavirus (COVID-19). Available online: https://www.ncbi.nlm.nih.gov/books/NBK554776/ (accessed on 2 October 2022).
- Edara, V.-V.; Patel, M.; Suthar, M.S. Covaxin (BBV152) Vaccine Neutralizes SARS-CoV-2 Delta and Omicron Variants. medRxiv 2022. [Google Scholar] [CrossRef]
- Chavda, V.P.; Apostolopoulos, V. Omicron Variant (B.1.1.529) of SARS-CoV-2: Threat for the Elderly? Maturitas 2022, 158, 78. [Google Scholar] [CrossRef]
- Chavda, V.P.; Hanuma Kumar Ghali, E.N.; Yallapu, M.M.; Apostolopoulos, V. Therapeutics to Tackle Omicron Outbreak. Immunotherapy 2022, 14, 833–838. [Google Scholar] [CrossRef]
- Bharat Biotech: Covaxin—COVID19 Vaccine Tracker. Available online: https://covid19.trackvaccines.org/vaccines/9/ (accessed on 1 October 2022).
- Dey, A.; Chozhavel Rajanathan, T.M.; Chandra, H.; Pericherla, H.P.R.; Kumar, S.; Choonia, H.S.; Bajpai, M.; Singh, A.K.; Sinha, A.; Saini, G.; et al. Immunogenic potential of DNA vaccine candidate, ZyCoV-D against SARS-CoV-2 in animal models. Vaccine 2021, 39, 4108–4116. [Google Scholar] [CrossRef]
- Shafaati, M.; Saidijam, M.; Soleimani, M.; Hazrati, F.; Mirzaei, R.; Amirheidari, B.; Tanzadehpanah, H.; Karampoor, S.; Kazemi, S.; Yavari, B.; et al. A brief review on DNA vaccines in the era of COVID-19. Future Virol. 2021; Epub. [Google Scholar] [CrossRef]
- Momin, T.; Kansagra, K.; Patel, H.; Sharma, S.; Sharma, B.; Patel, J.; Mittal, R.; Sanmukhani, J.; Maithal, K.; Dey, A.; et al. Safety and Immunogenicity of a DNA SARS-CoV-2 Vaccine (ZyCoV-D): Results of an Open-Label, Non-Randomized Phase I Part of Phase I/II Clinical Study by Intradermal Route in Healthy Subjects in India. EClinicalMedicine 2021, 38, 101020. [Google Scholar] [CrossRef]
- Chavda, V.P.; Chen, Y.; Dave, J.; Chen, Z.-S.; Chauhan, S.C.; Yallapu, M.M.; Uversky, V.N.; Bezbaruah, R.; Patel, S.; Apostolopoulos, V. COVID-19 and Vaccination: Myths vs. Science. Expert Rev. Vaccines 2022, 21, 1603–1620. [Google Scholar] [CrossRef]
- Pollet, J.; Chen, W.H.; Strych, U. Recombinant Protein Vaccines, a Proven Approach against Coronavirus Pandemics. Adv. Drug Deliv. Rev. 2021, 170, 71. [Google Scholar] [CrossRef]
- Serum Institute of India. News. Available online: https://www.seruminstitute.com/news.php (accessed on 30 September 2022).
- SII Begins Manufacturing, Stockpiling 2nd Covid Vaccine Covovax after Modi Govt Nod—The Print—Select. Available online: https://theprint.in/health/sii-begins-manufacturing-stockpiling-2nd-covid-vaccine-covovax-after-modi-govt-nod/665600/ (accessed on 30 September 2022).
- Summary of Product Characteristics/Package Insert SARS-CoV-2 RS Protein (COVID-19) Recombinant Spike Protein Nanoparticle Vaccine. Available online: https://cdsco.gov.in/opencms/resources/UploadCDSCOWeb/2018/UploadSmPC/serumhhh.pdf (accessed on 1 October 2022).
- Dunkle, L.M.; Kotloff, K.L.; Gay, C.L.; Áñez, G.; Adelglass, J.M.; Barrat Hernández, A.Q.; Harper, W.L.; Duncanson, D.M.; McArthur, M.A.; Florescu, D.F.; et al. Efficacy and Safety of NVX-CoV2373 in Adults in the United States and Mexico. N. Engl. J. Med. 2022, 386, 531–543. [Google Scholar] [CrossRef]
- Interim Recommendations for Use of the Novavax NVX-CoV2373 Vaccine Against COVID-19. Available online: https://apps.who.int/iris/bitstream/handle/10665/363204/WHO-2019-nCoV-vaccines-SAGE_recommendation-Novavax_NVX-CoV2373-2022.1-eng.pdf (accessed on 27 September 2022).
- Mallory, R.M.; Formica, N.; Pfeiffer, S.; Wilkinson, B.; Marcheschi, A.; Albert, G.; McFall, H.; Robinson, M.; Plested, J.S.; Zhu, M.; et al. Safety and Immunogenicity Following a Homologous Booster Dose of a SARS-CoV-2 Recombinant Spike Protein Vaccine (NVX-CoV2373): A Secondary Analysis of a Randomised, Placebo-Controlled, Phase 2 Trial. Lancet Infect. Dis. 2022, 22, 1565–1576. [Google Scholar] [CrossRef]
- Lai, C.Y.; To, A.; Wong, T.A.S.; Lieberman, M.M.; Clements, D.E.; Senda, J.T.; Ball, A.H.; Pessaint, L.; Andersen, H.; Furuyama, W.; et al. Recombinant Protein Subunit SARS-CoV-2 Vaccines Formulated with CoVaccine HTTM Adjuvant Induce Broad, Th1 Biased, Humoral and Cellular Immune responses in Mice. Vaccine X 2021, 9, 100126. [Google Scholar] [CrossRef]
- Corbevax COVID-19 Vaccine: How Corbevax Is Different. Available online: https://indianexpress.com/article/explained/corbevax-vaccine-biological-e-india-7344928/ (accessed on 30 September 2022).
- Kaur, R.J.; Dutta, S.; Bhardwaj, P.; Charan, J.; Dhingra, S.; Mitra, P.; Singh, K.; Yadav, D.; Sharma, P.; Misra, S. Adverse Events Reported from COVID-19 Vaccine Trials: A Systematic Review. Indian J. Clin. Biochem. 2021, 36, 427. [Google Scholar] [CrossRef]
- Thuluva, S.; Paradkar, V.; Gunneri, S.R.; Yerroju, V.; Mogulla, R.; Turaga, K.; Kyasani, M.; Manoharan, S.K.; Medigeshi, G.; Singh, J.; et al. Evaluation of Safety and Immunogenicity of Receptor-Binding Domain-Based COVID-19 Vaccine (Corbevax) to Select the Optimum Formulation in Open-Label, Multicentre, and Randomised Phase-1/2 and Phase-2 Clinical Trials. EBioMedicine 2022, 83, 104217. [Google Scholar] [CrossRef]
- MRNA Vaccines—Gennova Bio. Available online: https://gennova.bio/mrna-vaccines/ (accessed on 30 September 2022).
- Ramachandran, S.; Satapathy, S.R.; Dutta, T. Delivery Strategies for MRNA Vaccines. Pharm. Med. 2022, 36, 11. [Google Scholar] [CrossRef]
- Menni, C.; Klaser, K.; May, A.; Polidori, L.; Capdevila, J.; Louca, P.; Sudre, C.H.; Nguyen, L.H.; Drew, D.A.; Merino, J.; et al. Vaccine Side-Effects and SARS-CoV-2 Infection after Vaccination in Users of the COVID Symptom Study App in the UK: A Prospective Observational Study. Lancet Infect. Dis. 2021, 21, 939. [Google Scholar] [CrossRef]
- Hawman, D.W.; Meade-White, K.; Clancy, C.; Archer, J.; Hinkley, T.; Leventhal, S.S.; Rao, D.; Stamper, A.; Lewis, M.; Rosenke, R.; et al. Replicating RNA Platform Enables Rapid Response to the SARS-CoV-2 Omicron Variant and Elicits Enhanced Protection in Naïve Hamsters Compared to Ancestral Vaccine. EBioMedicine 2022, 83, 104196. [Google Scholar] [CrossRef]
- A New Coronavirus Vaccine Designed to Meet a Global Demand. Available online: https://www.jefferson.edu/about/news-and-events/2020/4/a-new-coronavirus-vaccine-designed-to-meet-a-global-demand.html (accessed on 30 September 2022).
- Kaur, S.P.; Gupta, V. COVID-19 Vaccine: A Comprehensive Status Report. Virus Res. 2020, 288, 198114. [Google Scholar] [CrossRef]
- Hassan, A.O.; Shrihari, S.; Gorman, M.J.; Ying, B.; Yaun, D.; Raju, S.; Chen, R.E.; Dmitriev, I.P.; Kashentseva, E.; Adams, L.J.; et al. An Intranasal Vaccine Durably Protects against SARS-CoV-2 Variants in Mice. Cell Rep. 2021, 36. [Google Scholar] [CrossRef]
- Chavda, V.P.; Vora, L.K.; Pandya, A.K.; Patravale, V.B. Intranasal Vaccines for SARS-CoV-2: From Challenges to Potential in COVID-19 Management. Drug Discov. Today 2021, 26, 2619–2636. [Google Scholar] [CrossRef]
- Chavda, V.P.; Vora, L.K.; Apostolopoulos, V. Inhalable Vaccines: Can They Help Control Pandemics? Vaccines 2022, 10, 1309. [Google Scholar] [CrossRef]
- Atmar, R.L.; Lyke, K.E.; Deming, M.E.; Jackson, L.A.; Branche, A.R.; el Sahly, H.M.; Rostad, C.A.; Martin, J.M.; Johnston, C.; Rupp, R.E.; et al. Homologous and Heterologous COVID-19 Booster Vaccinations. New Engl. J. Med. 2022, 386, 1046–1057. [Google Scholar] [CrossRef]
- Thuluva, S.; Paradkar, V.; Turaga, K.; Gunneri, S.; Yerroju, V.; Mogulla, R.; Kyasani, M.; Kumar Manoharan, S.; Medigeshi, G.; Singh, J.; et al. Selection of Optimum Formulation of RBD-Based Protein Sub-Unit Covid19 Vaccine (Corbevax) Based on Safety and Immunogenicity in an Open-Label, Randomized Phase-1 and 2 Clinical Studies. medRxiv 2022. [Google Scholar] [CrossRef]
- COVID19 Vaccine Tracker. Available online: https://covid19.trackvaccines.org/ (accessed on 30 September 2022).
- Bhuiyan, T.R.; Akhtar, M.; Khaton, F.; Rahman, S.I.A.; Ferdous, J.; Alamgir, A.S.M.; Rahman, M.; Kawser, Z.; Hasan, I.; Calderwood, S.B.; et al. Covishield Vaccine Induces Robust Immune Responses in Bangladeshi Adults. IJID Reg. 2022, 3, 211. [Google Scholar] [CrossRef]
- Harder, T.; Külper-Schiek, W.; Reda, S.; Treskova-Schwarzbach, M.; Koch, J.; Vygen-Bonnet, S.; Wichmann, O. Effectiveness of COVID-19 Vaccines against SARS-CoV-2 Infection with the Delta (B.1.617.2) Variant: Second Interim Results of a Living Systematic Review and Meta-Analysis, 1 January to 25 August 2021. Eurosurveillance 2021, 26, 2100920. [Google Scholar] [CrossRef]
- Novavax COVID-19 Vaccine: Standing Orders for Administering Vaccine to Persons 12 Years of Age and Older. Available online: https://www.cdc.gov/vaccines/covid-19/info-by-product/novavax/downloads/novavax-standing-orders.pdf (accessed on 1 October 2022).
- Kotz, D. Novavax Vaccine Demonstrates Strong Immune Response. UMB. 9 February 2021. Available online: https://www.umaryland.edu/news/archived-news/february-2021/umb-study-novavax-vaccine-demonstrates-strong-immune-response.php (accessed on 1 October 2022).
- Mahase, E. COVID-19: Novavax Vaccine Efficacy Is 86% against UK Variant and 60% against South African Variant. BMJ 2021, 372, n296. [Google Scholar] [CrossRef]
- Szabó, G.T.; Mahiny, A.J.; Vlatkovic, I. COVID-19 MRNA Vaccines: Platforms and Current Developments. Mol. Ther. 2022, 30, 1850–1868. [Google Scholar] [CrossRef]
- Chavda, V.P.; Pandya, R.; Apostolopoulos, V. DNA Vaccines for SARS-CoV-2: Toward Third-Generation Vaccination Era. Expert Rev. Vaccines 2021, 20, 1549–1560. [Google Scholar] [CrossRef]
- Mallapaty, S. India’s DNA COVID Vaccine Is a World First-More Are Coming. Nature 2021, 597, 161–162. [Google Scholar] [CrossRef]
- Acess to COVID-19 Vaccines: Global Approaches in a Global Crisis. Available online: https://www.oecd.org/coronavirus/policy-responses/access-to-covid-19-vaccines-global-approaches-in-a-global-crisis-c6a18370/ (accessed on 18 March 2021).
- Mobarak, A.M.; Miguel, E.; Abaluck, J.; Ahuja, A.; Alsan, M.; Banerjee, A.; Breza, E.; Chandrasekhar, A.G.; Duflo, E.; Dzansi, J.; et al. End COVID-19 in low- and middle-income countries. Science 2022, 375, 1105–1110. [Google Scholar] [CrossRef]
- Tagoe, E.T.; Sheikh, N.; Morton, A.; Nonvignon, J.; Sarker, A.R.; Williams, L.; Megiddo, I. COVID-19 Vaccination in Lower-Middle Income Countries: National Stakeholder Views on Challenges, Barriers, and Potential Solutions. Front. Public Health 2021, 9, 709127. [Google Scholar] [CrossRef]
- Jecker, N.S.; Wightman, A.G.; Diekema, D.S. Vaccine Ethics: An Ethical Framework for Global Distribution of COVID-19 Vaccines. J. Med. Ethics 2021, 47, 308–317. [Google Scholar] [CrossRef]
- Nachega, J.B.; Sam-Agudu, N.A.; Masekela, R.; van der Zalm, M.M.; Nsanzimana, S.; Condo, J.; Ntoumi, F.; Rabie, H.; Kruger, M.; Wiysonge, C.S.; et al. Addressing Challenges to Rolling out COVID-19 Vaccines in African Countries. Lancet Glob. Health 2021, 9, e746–e748. [Google Scholar] [CrossRef]
- Using Trade to Fight COVID-19: Manufacturing and Distributing Vaccines. Available online: https://www.oecd.org/coronavirus/policy-responses/using-trade-to-fight-covid-19-manufacturing-and-distributing-vaccines-dc0d37fc/ (accessed on 11 February 2021).
- Forman, R.; Shah, S.; Jeurissen, P.; Jit, M.; Mossialos, E. COVID-19 Vaccine Challenges: What Have We Learned so Far and What Remains to Be Done? Health Policy 2021, 125, 553–567. [Google Scholar] [CrossRef]
- Fortune India: Business News, Strategy, Finance and Corporate Insight. Available online: https://www.fortuneindia.com/covid-19-vaccine-in-india/covid-19-vaccine-how-ready-is-indias-supply-chain/105242 (accessed on 30 September 2022).
- Alam, S.T.; Ahmed, S.; Ali, S.M.; Sarker, S.; Kabir, G.; ul-Islam, A. Challenges to COVID-19 Vaccine Supply Chain: Implications for Sustainable Development Goals. Int. J. Prod. Econ. 2021, 239, 108193. [Google Scholar] [CrossRef]
- The Fight to Manufacture COVID Vaccines in Lower-Income Countries. Available online: https://www.nature.com/articles/d41586-021-02383-z (accessed on 16 September 2021).
- Rahman, M.A.; Islam, M.S. Early Approval of COVID-19 Vaccines: Pros and Cons. Hum. Vaccines Immunother. 2021, 17, 3288–3296. [Google Scholar] [CrossRef]
- Hwang, A.; Veira, C.; Malvolti, S.; Cherian, T.; MacDonald, N.; Steffen, C.; Jones, I.; Hinman, A.; Mantel, C. Global Vaccine Action Plan Lessons Learned II: Stakeholder Perspectives. Vaccine 2020, 38, 5372–5378. [Google Scholar] [CrossRef]
- Holm, M.R.; Poland, G.A. Critical Aspects of Packaging, Storage, Preparation, and Administration of MRNA and Adenovirus-Vectored COVID-19 Vaccines for Optimal Efficacy. Vaccine 2021, 39, 457–459. [Google Scholar] [CrossRef]
- Chavda, V.P.; Vuppu, S.; Mishra, T.; Kamaraj, S.; Patel, A.B.; Sharma, N.; Chen, Z.S. Recent review of COVID-19 management: Diagnosis, treatment and vaccination. Pharmacol. Rep. 2022, 1–29. [Google Scholar] [CrossRef]
- Kashte, S.; Gulbake, A.; El-Amin, S.F.; Gupta, A. COVID-19 Vaccines: Rapid Development, Implications, Challenges and Future Prospects. Hum. Cell 2021, 34, 711–733. [Google Scholar] [CrossRef]
- Basu, D.; Chavda, V.P.; Mehta, A.A. Therapeutics for COVID-19 and Post COVID-19 Complications: An Update. Curr. Res. Pharmacol. Drug Discov. 2022, 3, 100086. [Google Scholar] [CrossRef]
- DCGI Approves Anti-COVID Drug Developed by DRDO for Emergency Use. Available online: https://pib.gov.in/Pressreleaseshare.aspx?PRID=1717007 (accessed on 30 September 2022).
- Sahu, K.; Kumar, R. Role of 2-Deoxy-D-Glucose (2-DG) in COVID-19 Disease: A Potential Game-Changer. J. Fam. Med. Prim. Care 2021, 10, 3548. [Google Scholar] [CrossRef]
- Raez, L.E.; Papadopoulos, K.; Ricart, A.D.; Chiorean, E.G.; Dipaola, R.S.; Stein, M.N.; Rocha Lima, C.M.; Schlesselman, J.J.; Tolba, K.; Langmuir, V.K.; et al. A Phase I Dose-Escalation Trial of 2-Deoxy-D-Glucose Alone or Combined with Docetaxel in Patients with Advanced Solid Tumors. Cancer Chemother. Pharm. 2013, 71, 523–530. [Google Scholar] [CrossRef]
- Chavda, V.P.; Sonak, S.S.; Munshi, N.K.; Dhamade, P.N. Pseudoscience and Fraudulent Products for COVID-19 Management. Env. Sci. Pollut. Res. Int. 2022, 29, 62887. [Google Scholar] [CrossRef]
- Chavda, V.P.; Apostolopoulos, V. COVID-19 Vaccine Design and Vaccination Strategy for Emerging Variants. Expert Rev Vaccines 2022, 21, 1359–1361. [Google Scholar] [CrossRef]
- Interim Statement on COVID-19 Vaccination for Children. Available online: https://www.who.int/news/item/11-08-2022-interim-statement-on-covid-19-vaccination-for-children (accessed on 30 September 2022).
- Vadrevu, K.M.; Reddy, S.; Jogdand, H.; Ganneru, B.; Mirza, N.; Tripathy, V.N.; Singh, C.; Khalatkar, V.; Prasanth, S.; Rai, S.; et al. Immunogenicity and Reactogenicity of an Inactivated SARS-CoV-2 Vaccine (BBV152) in Children Aged 2-18 Years: Interim Data from an Open-Label, Non-Randomised, Age de-Escalation Phase 2/3 Study. Lancet Infect. Dis. 2022, 22, 1303–1312. [Google Scholar] [CrossRef]
- Mariatulqabtiah, A.R.; Buttigieg, K.R. COVID-19 Vaccinations for Children. Lancet Infect. Dis. 2022, 22, 1255–1256. [Google Scholar] [CrossRef]
Name of Vaccine * | Type of Vaccine | Indian Contribution | No. of Doses | The Interval between the First and Second Doses | The Time between the Second and Booster Dose | Reference |
---|---|---|---|---|---|---|
CovishieldTM | Nonreplicating viral vector | Phase 3 trials and Manufacturing | 2 doses | 4–6 weeks (extended to 12–16 weeks) | 24 weeks | [34,35] |
Sputnik V | mRNA | Phase 3 trials and Manufacturing | 2 doses | 8 weeks | 4 weeks | [36,37] |
Covaxin | Inactivated | Fully developed and manufactured in India | 2 doses | 4–6 weeks | 24 weeks | [38] |
NVX-Co2373 (Novavax) | Protein subunit | Manufacturing | 2 doses | 3–4 weeks | 2 months after 2nd dose; can be Pfizer- BioNTech or Moderna | [39] |
Name | Route | Efficacy against Various Variants | Immune Responses | Clinical Trial Status | Ref. |
---|---|---|---|---|---|
BBV154 * | Intranasal | B.1.351 (Beta) B.1.1.28 (Gamma) B.1.617.1 (Delta) | Induces a vast immunological response, including IgG neutralization, T cell, and, mucosal IgA, responses. | Currently, Phase 3 trial is ongoing (NCT05522335) | [93,94,95] |
CORBEVAXTM SARS-CoV-2 (Biological-E) * | Intramuscular | B.1.351 (Beta), B.1.617.2 (Delta) B.1.1.529 (Omicron) | Cellular immune responses, anti-RBD-IgG1 titers, anti-RBD-IgG concentrations, and neutralizing Ab-titers. | Approved in 2 countries | [96,97,98] |
COVAXIN * | Intramuscular | B.1.1.7 (Alpha) P.1-B.1.1.28 (Gamma) P.2-B.1.1.28 (Zeta) B.1.617 (Kappa) B.1.351 & B.1.617.2 (Beta & Delta) | It improves humoral and cellular immune responses | Approved, WHO Emergency Use Listing 14 Countries | [98] |
CovishieldTM | Intramuscular | B.1.1.7 (Alpha), B.1.617.2 (Delta) | SARS-CoV-2-specific IgG responses | Approved, WHO Emergency Use Listing 49 countries | [98,99,100] |
Novavax | Intramuscular | B.1.1.7 (Alpha) B.1.351 (Beta) | Yields high antibody levels, resulting in substantial SARSCoV-2 protection | Approved, WHO Emergency Use Listing 6 countries | [98,101,102] |
HGCO-19 (Genova) * | Nasal | B.1.1.7 (Alpha) B.1.351 (Beta) P.1 (Gamma) B.1.617.2 (Delta) B.1.1.529 (Omicron) | Potent T-cell responses | Approved in 1 country | [98,103,104] |
ZyCoV-D * | Intradermal | B.1.617.2 (Delta) | Uses a fragment of the SARS-CoV-2 virus’s genetic code-DNA or RNA-to activate an immune response against its spike protein | Approved in 1 country | [98,105,106] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavda, V.P.; Vihol, D.R.; Solanki, H.K.; Apostolopoulos, V. The Vaccine World of COVID-19: India’s Contribution. Vaccines 2022, 10, 1943. https://doi.org/10.3390/vaccines10111943
Chavda VP, Vihol DR, Solanki HK, Apostolopoulos V. The Vaccine World of COVID-19: India’s Contribution. Vaccines. 2022; 10(11):1943. https://doi.org/10.3390/vaccines10111943
Chicago/Turabian StyleChavda, Vivek P., Disha R. Vihol, Hetvi K. Solanki, and Vasso Apostolopoulos. 2022. "The Vaccine World of COVID-19: India’s Contribution" Vaccines 10, no. 11: 1943. https://doi.org/10.3390/vaccines10111943
APA StyleChavda, V. P., Vihol, D. R., Solanki, H. K., & Apostolopoulos, V. (2022). The Vaccine World of COVID-19: India’s Contribution. Vaccines, 10(11), 1943. https://doi.org/10.3390/vaccines10111943