A Fractional Order Model Studying the Role of Negative and Positive Attitudes towards Vaccination
Abstract
:1. Introduction
2. Formulation of the Model
3. Analysis of the Model
3.1. Existence and Uniqueness of a Solution of the Model
3.2. Equilibria and Basic Reproduction Number
- Disease-free equilibrium ()
- Endemic equilibrium ()
3.3. Local Stability Analysis of the Solution of the Model
4. Numerical Simulation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Picon, N.C. The Sleep of Neoliberal Reason: Denialism, Conspiracies and Storytelling on Crises through Ventajas de viajarentren. Humanities 2022, 11, 64. [Google Scholar] [CrossRef]
- Larson, H.J.; Jarrett, C.; Eckersberger, E.; Smith, D.M.D.; Paterson, P. Understanding Vaccine Hesitancy around Vaccines and Vaccination from a Global Perspective: A Systematic Review of Published Literature, 2007–2012. Vaccine 2014, 32, 2150–2159. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Tu, P.; Beitsch, L.M. Confidence and Receptivity for COVID-19 Vaccines: A Rapid Systematic Review. Vaccines 2021, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Piedrahita-Valdés, H.; Piedrahita-Castillo, D.; Bermejo-Higuera, J.; Guillem-Saiz, P.; Bermejo-Higuera, J.R.; Guillem-Saiz, J.; Sicilia-Montalvo, J.A.; Machío-Regidor, F. Vaccine Hesitancy on Social Media: Sentiment Analysis from June 2011 to April 2019. Vaccines 2021, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Reiter, P.L.; Pennell, M.L.; Katz, M.L. Acceptability of a COVID-19 vaccine among adults in the United States: How many people would get vaccinated? Vaccine 2020, 38, 6500–6507. [Google Scholar] [CrossRef]
- Bonte, J. The Continuum of Attitudes towards Vaccination A Qualitative Analysis of Arguments Used in Pro-, Anti-and Hesitant Tweets. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2022. [Google Scholar]
- Lee, S.K.; Sun, J.; Jang, S.; Connelly, S. Misinformation of COVID-19 vaccines and vaccine hesitancy. Sci. Rep. 2022, 12, 1–11. [Google Scholar] [CrossRef]
- Crocetti, E.; Albarello, F.; Meeus, W.; Rubini, M. Identities: A developmental social-psychological perspective. Eur. Rev. Soc. Psychol. 2022, 1, 1–41. [Google Scholar] [CrossRef]
- Deml, M.J.; Buhl, A.; Huber, B.M.; Burton-Jeangros, C.; Tarr, P.E. Trust, affect, and choice in parents’ vaccination decision-making and health-care provider selection in Switzerland. Sociol. Health Illn. 2022, 44, 41–58. [Google Scholar] [CrossRef]
- Smith, S.E.; Sivertsen, N.; Lines, L.; De Bellis, A. Decision making in vaccine hesitant parents and pregnant women—An integrative review. Int. J. Nurs. Stud. Adv. 2022, 4, 100062. [Google Scholar] [CrossRef]
- de Waure, C.; Calabrò, G.E.; Ricciardi, W. Recommendations to drive a value-based decision-making on vaccination. Expert Rev. Vaccines 2022, 21, 289–296. [Google Scholar] [CrossRef]
- Karaagac, B.; Owolabi, K.M.; Pindza, E. Analysis and new simulations of fractional Noyes-Field model using Mittag-Leffler kernel. Sci. Afr. 2022, 17, e01384. [Google Scholar] [CrossRef]
- Georgiev, S.; Vulkov, L. Numerical Coefficient Reconstruction of Time-Depending Integer-and Fractional-Order SIR Models for Economic Analysis of COVID-19. Mathematics 2022, 10, 4247. [Google Scholar] [CrossRef]
- Afreen, A.; Raheem, A. Study of a nonlinear system of fractional differential equations with deviated arguments via Adomian decomposition method. Int. J. Appl. Comput. Math. 2022, 8, 1–7. [Google Scholar] [CrossRef]
- Vignesh, D.; Banerjee, S. Dynamical analysis of a fractional discrete-time vocal system. Nonlinear Dyn. 2022, 1, 1–5. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Sajjadi, S.S.; Mozyrska, D. A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 083127. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Akgöz, B.; Civalek, Ö. Nonlocal thermoelastic vibration of a solid medium subjected to a pulsed heat flux via Caputo–Fabrizio fractional derivative heat conduction. Appl. Phys. A 2022, 128, 1–3. [Google Scholar] [CrossRef]
- Naeem, M.; Rezazadeh, H.; Khammash, A.A.; Shah, R.; Zaland, S. Analysis of the fuzzy fractional-order solitary wave solutions for the KdV equation in the sense of Caputo-Fabrizio derivative. J. Math. 2022, 2022, 3688916. [Google Scholar] [CrossRef]
- Edessa, G.K. Existence and Uniqueness Solution of the Model of Enzyme Kinetics in the Sense of Caputo–Fabrizio Fractional Derivative. Int. J. Differ. Equ. 2022, 2022, 1345919. [Google Scholar] [CrossRef]
- Baba, I.A.; Rihan, F.A. A fractional–order model with different strains of COVID-19. Phys. A Stat. Mech. Its Appl. 2022, 603, 127813. [Google Scholar] [CrossRef]
- Hattaf, K. On the stability and numerical scheme of fractional differential equations with application to biology. Computation 2022, 10, 97. [Google Scholar] [CrossRef]
- Hattaf, K. A new generalized definition of fractional derivative with non-singular kernel. Computation 2020, 8, 49. [Google Scholar] [CrossRef]
- IPSOS. Global Attitudes on a COVID-19 Vaccine–Ipsos Survey for The World Economic Forum. 2020. Available online: https://www.ipsos.com/sites/default/files/ct/news/documents/2020-11/global-attitudes-on-a-covid-19-vaccine-oct-2020.pdf (accessed on 1 November 2022).
- Buonomo, B.; Della Marca, R.; d’Onofrio, A.; Groppi, M. A behavioural modelling approach to assess the impact of COVID-19 vaccine hesitancy. J. Theor. Biol. 2022, 534, 110973. [Google Scholar] [CrossRef]
- d’Onofrio, A.; Manfredi, P.; Salinelli, E. Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases. Theor. Popul. Biol. 2007, 71, 301–317. [Google Scholar] [CrossRef]
- Bauch, C.T. Imitation dynamics predict vaccinating behaviour. Proc. R. Soc. B Biol. Sci. 2005, 272, 1669–1675. [Google Scholar] [CrossRef] [Green Version]
- d’Onofrio, A.; Manfredi, P.; Poletti, P. The interplay of public intervention and private choices in determining the outcome of vaccination programmes. PLoS ONE 2012, 7, e45653. [Google Scholar] [CrossRef] [Green Version]
- Della Marca, R.; d’Onofrio, A. Volatile opinions and optimal control of vaccine awareness campaigns: Chaotic behaviour of the forward-backward sweep algorithm vs. heuristic direct optimization. Commun. Nonlinear Sci. Numer. Simul. 2021, 98, 105768. [Google Scholar] [CrossRef]
- Wang, Z.; Bauch, C.T.; Bhattacharyya, S.; d’Onofrio, A.; Manfredi, P.; Perc, M.; Perra, N.; Salathé, M.; Zhao, D. Statistical physics of vaccination. Phys. Rep. 2016, 664, 1–13. [Google Scholar] [CrossRef]
Variable/Parameter | Meaning |
---|---|
F | For-Vaccination susceptible compartment |
A | Against-Vaccination susceptible compartment |
I | Infected compartment |
R | Recovered compartment |
Λ | Infection rate |
β | Recovery rate |
Death rate of I | |
Death rate of R | |
Immunization rate of For-Vaccination compartment | |
γ | Migration rate from Against-Vaccination to For-Vaccination compartment through awareness |
η | Migration rate from For-Vaccination to Against-Vaccination compartment through receiving false information about vaccines |
α | Fractional order |
Probability term |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baba, I.A.; Rihan, F.A.; Humphries, U.W.; Mikailu, B.B. A Fractional Order Model Studying the Role of Negative and Positive Attitudes towards Vaccination. Vaccines 2022, 10, 2135. https://doi.org/10.3390/vaccines10122135
Baba IA, Rihan FA, Humphries UW, Mikailu BB. A Fractional Order Model Studying the Role of Negative and Positive Attitudes towards Vaccination. Vaccines. 2022; 10(12):2135. https://doi.org/10.3390/vaccines10122135
Chicago/Turabian StyleBaba, Isa Abdullahi, Fathalla A. Rihan, Usa Wannasingha Humphries, and Badamasi Bashir Mikailu. 2022. "A Fractional Order Model Studying the Role of Negative and Positive Attitudes towards Vaccination" Vaccines 10, no. 12: 2135. https://doi.org/10.3390/vaccines10122135
APA StyleBaba, I. A., Rihan, F. A., Humphries, U. W., & Mikailu, B. B. (2022). A Fractional Order Model Studying the Role of Negative and Positive Attitudes towards Vaccination. Vaccines, 10(12), 2135. https://doi.org/10.3390/vaccines10122135