Ocular Vascular Events following COVID-19 Vaccines: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Search Strategy
2.3. Study Outcomes
2.4. Eligibility Criteria
2.5. Study Selection
2.6. Data Extraction
2.7. Quality Assessment
2.8. Data Synthesis
3. Results
3.1. Search Results
3.2. Baseline Characteristics of Studies Reporting COVID-19-Vaccine-Associated Vascular Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karpiński, T.M.; Ożarowski, M.; Seremak-Mrozikiewicz, A.; Wolski, H.; Wlodkowic, D. The 2020 race towards SARS-CoV-2 specific vaccines. Theranostics 2021, 11, 1690. [Google Scholar] [CrossRef]
- WHO. COVID-19 Vaccines with WHO Emergency Use Listing. WHO—Prequalification of Medical Products (IVDs, Medicines, Vaccines and Immunization Devices, Vector Control); WHO: Geneva, Switzerland, 2021.
- Feikin, D.R.; Higdon, M.M.; Abu-Raddad, L.J.; Andrews, N.; Araos, R.; Goldberg, Y.; Groome, M.; Huppert, A.; O'Brien, K.; Smith, P.G.; et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: Results of a systematic review and meta-regression. Lancet 2022, 399, 924–944. [Google Scholar] [CrossRef]
- WHO. Adverse Events Following Immunization (AEFI). WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Pottegård, A.; Lund, L.C.; Karlstad, Ø.; Dahl, J.; Andersen, M.; Hallas, J.; Lidegaard, Ø.; Tapia, G.; Gulseth, H.L.; Ruiz, P.L.-D.; et al. Arterial events, venous thromboembolism, thrombocytopenia, and bleeding after vaccination with Oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: Population based cohort study. BMJ 2021, 373, n1114. [Google Scholar] [CrossRef]
- Taha, M.J.J.; Abuawwad, M.T.; Alrubasy, W.A.; Sameer, S.K.; Alsafi, T.; Al-Bustanji, Y.; Abu-Ismail, L.; Nashwan, A.J. Ocular manifestations of recent viral pandemics: A literature review. Front. Med. 2022, 9, 1011335. [Google Scholar] [CrossRef]
- Girbardt, C.; Busch, C.; Al-Sheikh, M.; Gunzinger, J.M.; Invernizzi, A.; Xhepa, A.; Unterlauft, J.D.; Rehak, M. Retinal Vascular Events after mRNA and Adenoviral-Vectored COVID-19 Vaccines—A Case Series. Vaccines 2021, 9, 1349. [Google Scholar] [CrossRef]
- Dean, A.G.; Arner, T.G.; Sunki, G.G.; Friedman, R.; Lantinga, M.; Sangam, S.; Zubieta, J.C.; Sullivan, K.M.; Brendel, K.A.; Gao, Z.; et al. Epi Info™, a Database and Statistics Program for Public Health Professionals; CDC: Atlanta, GA, USA, 2011. [Google Scholar]
- Ritchie, H.; Mathieu, E.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Ortiz-Ospina, E.; Hasell, J.; Macdonald, B.; Beltekian, D.; Roser, M. Coronavirus pandemic (COVID-19). In Our World in Data. 2020. Available online: https://ourworldindata.org/coronavirus (accessed on 26 October 2022).
- Muka, T.; Glisic, M.; Milic, J.; Verhoog, S.; Bohlius, J.; Bramer, W.; Chowdhury, R.; Franco, O.H. A 24-step guide on how to design, conduct, and successfully publish a systematic review and meta-analysis in medical research. Eur. J. Epidemiol. 2020, 35, 49–60. [Google Scholar] [CrossRef]
- Abdallah, S.; Hamzah, K. Case Report—Central Retinal Artery Occlusion After Ad26.COV2.S COVID-19 Vaccine. Biomed. J. Sci. Tech. Res. 2022, 43, 34720–34724. [Google Scholar]
- Abdin, A.D.; Gärtner, B.C.; Seitz, B. Central retinal artery occlusion following COVID-19 vaccine administration. Am. J. Ophthalmol. Case Rep. 2022, 26, 101430. [Google Scholar] [CrossRef]
- Amin, M.A.; Nahin, S.; Dola, T.A.; Afrin, S.; Hawlader, M.D.H. Retinal hemorrhage of late post-COVID-19 and post-vaccine-related pathogenic mechanisms: A new challenge for ophthalmologist in COVID era. Clin. Case Rep. 2022, 10, e05471. [Google Scholar] [CrossRef]
- Bialasiewicz, A.A.; Farah-Diab, M.S.; Mebarki, H.T. Central retinal vein occlusion occurring immediately after 2nd dose of mRNA SARS-CoV-2 vaccine. Int. Ophthalmol. 2021, 41, 3889–3892. [Google Scholar] [CrossRef]
- Bolletta, E.; Iannetta, D.; Mastrofilippo, V.; De Simone, L.; Gozzi, F.; Croci, S.; Bonacini, M.; Belloni, L.; Zerbini, A.; Adani, C.; et al. Uveitis and other ocular complications following COVID-19 vaccination. J. Clin. Med. 2021, 10, 5960. [Google Scholar] [CrossRef]
- Cackett, P.; Ali, A.; Young, S.L.; Pavilion, N.L.P.A.E. Phenotypic appearance of central retinal vein occlusion post AstraZeneca vaccine. Int. J. Ophthalmol. 2022, 15, 672–673. [Google Scholar] [CrossRef]
- Casarini, B.; Bruni, F.; Rubino, P.; Mora, P. Vitreous Hemorrhage and Long-Lasting Priapism After COVID-19 m-RNA Based Vaccine: A Case Report. Eur. J. Ophthalmol. 2022, 0, 11206721221098880. [Google Scholar] [CrossRef]
- Che, S.A.; Lee, K.Y.; Yoo, Y.J. Bilateral Ischemic Optic Neuropathy from Giant Cell Arteritis Following COVID-19 Vaccination. J. Neuro-Ophthalmol. 2022, 1–2, 10–1097. [Google Scholar] [CrossRef]
- Chen, P.-J.; Chang, Y.-S.; Lim, C.-C.; Lee, Y.-K. Susac Syndrome Following COVID-19 Vaccination: A Case Report. Vaccines 2022, 10, 363. [Google Scholar] [CrossRef]
- Choi, M.; Seo, M.-H.; Choi, K.-E.; Lee, S.; Choi, B.; Yun, C.; Kim, S.-W.; Kim, Y.Y. Vision-Threatening Ocular Adverse Events after Vaccination against Coronavirus Disease 2019. J. Clin. Med. 2022, 11, 3318. [Google Scholar] [CrossRef]
- Chow, S.Y.; Hsu, Y.-R.; Fong, V.H. Central retinal artery occlusion after Moderna mRNA-1273 vaccination. J. Formos. Med. Assoc. 2022, 121, 2369–2370. [Google Scholar] [CrossRef]
- Chung, S.A.; Yeo, S.; Sohn, S.-Y. Nonarteritic Anterior Ischemic Optic Neuropathy Following COVID-19 Vaccination: A Case Report. Korean J. Ophthalmol. 2022, 36, 168–170. [Google Scholar] [CrossRef]
- Da Silva, L.S.; Finamor, L.P.; Andrade, G.C.; Lima, L.H.; Zett, C.; Muccioli, C.; Sarraf, E.P.; Marinho, P.M.; Peruchi, J.; Oliveira, R.D.D.L.; et al. Vascular retinal findings after COVID-19 vaccination in 11 cases: A coincidence or consequence? Arq. Bras. Oftalmol. 2022, 85, 158–165. [Google Scholar] [CrossRef]
- Majumder, P.D.; Prakash, V.J. Retinal venous occlusion following COVID-19 vaccination: Report of a case after third dose and review of the literature. Indian J. Ophthalmol. 2022, 70, 2191. [Google Scholar] [CrossRef]
- Elhusseiny, A.M.; Sanders, R.N.; Siddiqui, M.Z.; Sallam, A.B. Non-arteritic Anterior Ischemic Optic Neuropathy with Macular Star following COVID-19 Vaccination. Ocul. Immunol. Inflamm. 2022, 30, 1274–1277. [Google Scholar] [CrossRef]
- Endo, B.; Bahamon, S.; Martínez-Pulgarín, D.F. Central retinal vein occlusion after mRNA SARS-CoV-2 vaccination: A case report. Indian J. Ophthalmol. 2021, 69, 2865. [Google Scholar] [CrossRef]
- Franco, S.V.; Fonollosa, A. Ischemic Optic Neuropathy After Administration of a SARS-CoV-2 Vaccine: A Report of 2 Cases. Am. J. Case Rep. 2022, 23, e935095. [Google Scholar]
- Goyal, M.; Murthy, S.; Srinivas, Y. Unilateral retinal vein occlusion in a young, healthy male following Sputnik V vaccination. Indian J. Ophthalmol. 2021, 69, 3793. [Google Scholar] [CrossRef]
- Ikegami, Y.; Numaga, J.; Okano, N.; Fukuda, S.; Yamamoto, H.; Terada, Y. Combined central retinal artery and vein occlusion shortly after mRNA-SARS-CoV-2 vaccination. QJM Int. J. Med. 2022, 114, 884–885. [Google Scholar] [CrossRef]
- Ishibashi, K.; Yatsuka, H.; Haruta, M.; Kimoto, K.; Yoshida, S.; Kubota, T. Branch Retinal Artery Occlusions, Paracentral Acute Middle Maculopathy and Acute Macular Neuroretinopathy After COVID-19 Vaccinations. Clin. Ophthalmol. 2022, 16, 987–992. [Google Scholar] [CrossRef]
- Kang, M.S.; Kim, S.Y.; Kwon, H.J. Case Report: Recanalization of Branch Retinal Artery Occlusion Due to Microthrombi Following the First Dose of SARS-CoV-2 mRNA Vaccination. Front. Pharmacol. 2022, 13, 845615. [Google Scholar] [CrossRef]
- Lee, S.; Sankhala, K.K.; Bose, S.; Gallemore, R.P. Combined Central Retinal Artery and Vein Occlusion with Ischemic Optic Neuropathy After COVID-19 Vaccination. Int. Med. Case Rep. J. 2022, 15, 7–14. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Li, H.; Li, M.; Gong, S. Ocular Adverse Events after Inactivated COVID-19 Vaccination in Xiamen. Vaccines 2022, 10, 482. [Google Scholar] [CrossRef]
- Lin, W.-Y.; Wang, J.-J.; Lai, C.-H. Non-Arteritic Anterior Ischemic Optic Neuropathy Following COVID-19 Vaccination. Vaccines 2022, 10, 931. [Google Scholar] [CrossRef]
- Maleki, A.; Look-Why, S.; Manhapra, A.; Foster, C.S. COVID-19 recombinant mRNA vaccines and serious ocular inflammatory side effects: Real or coincidence? J. Ophthalmic Vis. Res. 2021, 16, 490–501. [Google Scholar] [CrossRef]
- Murgova, S.; Balchev, G. Ophthalmic manifestation after SARS-CoV-2 vaccination: A case series. J. Ophthalmic Inflamm. Infect. 2022, 12, 1–4. [Google Scholar] [CrossRef]
- Nachbor, K.M.; Naravane, A.V.; Adams, O.E.; Abel, A.S. Nonarteritic anterior ischemic optic neuropathy associated with COVID-19 vaccination. J. Neuroophthalmol. 2021, 1–3. [Google Scholar] [CrossRef]
- Nusanti, S.; Putera, I.; Sidik, M.; Edwar, L.; Koesnoe, S.; Rachman, A.; Kurniawan, M.; Tarigan, T.J.E.; Yunus, R.E.; Saraswati, I.; et al. A case of aseptic bilateral cavernous sinus thrombosis following a recent inactivated SARS-CoV-2 vaccination. Taiwan J. Ophthalmol. 2022, 12, 334–338. [Google Scholar]
- Park, H.S.; Byun, Y.; Byeon, S.H.; Kim, S.S.; Kim, Y.J.; Lee, C.S. Retinal hemorrhage after SARS-CoV-2 vaccination. J. Clin. Med. 2021, 10, 5705. [Google Scholar] [CrossRef]
- Peters, M.C.; Cheng, S.S.H.; Sharma, A.; Moloney, T.P.; Franzco, S.S.H.C.; Franzco, A.S.; Franzco, T.P.M. Retinal vein occlusion following COVID-19 vaccination. Clin. Exp. Ophthalmol. 2022, 50, 459–461. [Google Scholar] [CrossRef]
- Priluck, A.Z.; Arevalo, J.F.; Pandit, R.R. Ischemic retinal events after COVID-19 vaccination. Am. J. Ophthalmol. Case Rep. 2022, 26, 101540. [Google Scholar] [CrossRef]
- Pur, D.R.; Bursztyn, L.L.C.D.; Iordanous, Y. Branch retinal vein occlusion in a healthy young man following mRNA COVID-19 vaccination. Am. J. Ophthalmol. Case Rep. 2022, 26, 101445. [Google Scholar] [CrossRef]
- Romano, D.; Morescalchi, F.; Romano, V.; Semeraro, F. COVID-19 AdenoviralVector Vaccine and Central Retinal Vein Occlusion. Ocul. Immunol. Inflamm. 2022, 30, 1286–1288. [Google Scholar] [CrossRef]
- Sacconi, R.; Simona, F.; Forte, P.; Querques, G. Retinal vein occlusion following two doses of mRNA-1237 (moderna) immunization for SARS-CoV-2: A case report. Ophthalmol. Ther. 2022, 11, 453–458. [Google Scholar] [CrossRef]
- Sanjay, S.; Acharya, I.; Rawoof, A.; Shetty, R. Non-arteritic anterior ischaemic optic neuropathy (NA-AION) and COVID-19 vaccination. BMJ Case Rep. 2022, 15, e248415. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.P.; Gelnick, S.; Jonisch, J.; Verma, R. Central Retinal Vein Occlusion Following BNT162b2 (Pfizer-BioNTech) COVID-19 Messenger RNA Vaccine. Retin. Cases Brief Rep. 2021, 0. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, P.K.; Yadav, A.; Sharma, B.; Sharma, A.; Kumar, P. Central Retinal Vein Occlusion Following the First Dose of COVID Vaccine. Cureus 2022, 14, e25842. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, N.; Yadav, D.; Kota, A.; Singh, H. Central retinal vein occlusion post-COVID-19 vaccination. Indian J. Ophthalmol. 2022, 70, 308. [Google Scholar] [CrossRef] [PubMed]
- Sugihara, K.; Kono, M.; Tanito, M. Branch Retinal Vein Occlusion after Messenger RNA-Based COVID-19 Vaccine. Case Rep. Ophthalmol. 2022, 13, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Takacs, A.; Ecsedy, M.; Nagy, Z.Z. Possible COVID-19 MRNA Vaccine-Induced Case of Unilateral Central Retinal Vein Occlusion. Ocul. Immunol. Inflamm. 2022, 1–6. [Google Scholar] [CrossRef]
- Tanaka, H.; Nagasato, D.; Nakakura, S.; Tanabe, H.; Nagasawa, T.; Wakuda, H.; Imada, Y.; Mitamura, Y.; Tabuchi, H. Exacerbation of branch retinal vein occlusion post SARS-CoV2 vaccination. Medicine 2021, 100, e28236. [Google Scholar] [CrossRef]
- Suphachaiprasert, K.T.; Thammakumpee, K. A Cilioretinal Artery Occlusion (CLRAO) Associated with Optic Disc Edema after Viral Vector SARS-CoV-2 Vaccination: Case Report. J. Med. Assoc. Thail. 2022, 105, 565–568. [Google Scholar]
- Tsukii, R.; Kasuya, Y.; Makino, S. Nonarteritic anterior ischemic optic neuropathy following COVID-19 vaccination: Consequence or coincidence. Case Rep. Ophthalmol. Med. 2021, 2021, 5126254. [Google Scholar] [CrossRef]
- Kotian, R.; Vinzamuri, S.; Pradeep, T. Bilateral paracentral acute middle maculopathy and acute macular neuroretinopathy following COVID-19 vaccination. Indian J. Ophthalmol. 2021, 69, 2862–2864. [Google Scholar] [CrossRef]
- Vujosevic, S.; Limoli, C.; Romano, S.; Vitale, L.; Villani, E.; Nucci, P. Retinal vascular occlusion and SARS-CoV-2 vaccination. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 3455–3464. [Google Scholar] [CrossRef]
- Hsu, Y.-R.; Wang, L.-U.; Chen, F.-T.; Wang, J.-K.; Huang, T.-L.; Chang, P.-Y.; Chen, Y.-J. Ocular inflammatory manifestations following COVID-19 vaccinations in Taiwan: A case series. Taiwan J. Ophthalmol. 2022, 12, 465. [Google Scholar] [CrossRef]
- Elnahry, A.G.; Asal, Z.B.; Shaikh, N.; Dennett, K.; Abd Elmohsen, M.N.; Elnahry, G.A.; Shehab, A.; Vytopil, M.; Ghaffari, L.; Athappilly, G.K.; et al. Optic neuropathy after COVID-19 vaccination: A report of two cases. Int. J. Neurosci. 2021, 1–7. [Google Scholar] [CrossRef]
- Haseeb, A.; Elhusseiny, A.M.; Chauhan, M.Z.; Elnahry, A.G. Optic neuropathy after COVID-19 vaccination: Case report and systematic review. Neuroimmunol. Rep. 2022, 2, 100121. [Google Scholar] [CrossRef]
- Bilotta, C.; Perrone, G.; Adelfio, V.; Spatola, G.F.; Uzzo, M.L.; Argo, A.; Zerbo, S. COVID-19 Vaccine-Related Thrombosis: A Systematic Review and Exploratory Analysis. Front. Immunol. 2021, 12, 729251. [Google Scholar] [CrossRef]
- McGonagle, D.; De Marco, G.; Bridgewood, C. Mechanisms of immunothrombosis in vaccine-induced thrombotic thrombocytopenia (VITT) compared to natural SARS-CoV-2 infection. J. Autoimmun. 2021, 121, 102662. [Google Scholar] [CrossRef]
- Elnahry, A.G.; Al-Nawaflh, M.Y.; Eldin, A.A.G.; Solyman, O.; Sallam, A.B.; Phillips, P.H.; Elhusseiny, A.M. COVID-19 Vaccine-Associated Optic Neuropathy: A Systematic Review of 45 Patients. Vaccines 2022, 10, 1758. [Google Scholar] [CrossRef]
- Simpson, C.R.; Shi, T.; Vasileiou, E.; Katikireddi, S.V.; Kerr, S.; Moore, E.; McCowan, C.; Agrawal, U.; Shah, S.A.; Ritchie, L.D.; et al. First-dose ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic and hemorrhagic events in Scotland. Nat. Med. 2021, 27, 1290–1297. [Google Scholar] [CrossRef]
- Ostrowski, S.R.; Søgaard, O.S.; Tolstrup, M.; Stærke, N.B.; Lundgren, J.; Østergaard, L.; Hvas, A.M. Inflammation and platelet activation after COVID-19 vaccines-possible mechanisms behind vaccine-induced immune thrombocytopenia and thrombosis. Front. Immunol. 2021, 12, 779453. [Google Scholar] [CrossRef]
- Haseeb, A.A.; Solyman, O.; Abushanab, M.M.; Obaia, A.S.A.; Elhusseiny, A.M. Ocular Complications Following Vaccination for COVID-19: A One-Year Retrospective. Vaccines 2022, 10, 342. [Google Scholar] [CrossRef]
- Vo, A.D.; La, J.; Wu, J.T.Y.; Strymish, J.M.; Ronan, M.; Brophy, M.; Do, N.V.; Branch-Elliman, W.; Fillmore, N.R.; Monach, P.A. Factors Associated with Severe COVID-19 Among Vaccinated Adults Treated in US Veterans Affairs Hospitals. JAMA Netw. Open 2022, 5, e2240037. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Gao, Y.; Fu, W.; Xu, H. Risk Factors and Treatments of Suprachoroidal Hemorrhage. BioMed Res. Int. 2022, 2022, 6539917. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.J.; Mirza, R.G.; Gill, M.K. Age-Related Macular Degeneration. Med. Clin. N. Am. 2021, 105, 473–491. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-S.; Ho, C.-H.; Chu, C.-C.; Wang, J.-J.; Tseng, S.-H.; Jan, R.-L. Risk of retinal artery occlusion in patients with diabetes mellitus: A retrospective large-scale cohort study. PLoS ONE 2018, 13, e0201627. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.S.; Jan, R.L.; Weng, S.F.; Wang, J.J.; Chio, C.C.; Wei, F.T.; Chu, C.C. Retinal artery occlusion and the 3-year risk of stroke in Taiwan: A nationwide population-based study. Am. J. Ophthalmol. 2012, 154, 645–652.e1. [Google Scholar] [CrossRef]
- Li, Y.; Hall, N.E.; Pershing, S.; Hyman, L.; Haller, J.A.; Lee, A.Y.; Lee, C.S.; Chiang, M.; Lum, F.; Miller, J.W.; et al. Age, Gender, and Laterality of Retinal Vascular Occlusion: A Retrospective Study from the IRIS® Registry. Ophthalmol. Retin. 2021, 6, 161–171. [Google Scholar] [CrossRef]
- Song, P.; Xu, Y.; Zha, M.; Zhang, Y.; Rudan, I. Global epidemiology of retinal vein occlusion: A systematic review and meta-analysis of prevalence, incidence, and risk factors. J. Glob. Health 2019, 9, 010427. [Google Scholar] [CrossRef]
- Cheung, C.Y.; Biousse, V.; Keane, P.A.; Schiffrin, E.L.; Wong, T.Y. Hypertensive eye disease. Nat. Rev. Dis. Prim. 2022, 8, 1–18. [Google Scholar] [CrossRef]
- Kinouchi, R.; Ishiko, S.; Hanada, K.; Hayashi, H.; Mikami, D.; Yoshida, A. Identification of risk factors for retinal vascular events in a population-based cross-sectional study in Rumoi, Japan. Sci. Rep. 2021, 11, 6340. [Google Scholar] [CrossRef]
- Campochiaro, P.A. Molecular pathogenesis of retinal and choroidal vascular diseases. Prog. Retin. Eye Res. 2015, 49, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Porta, M.; Striglia, E. Intravitreal anti-VEGF agents and cardiovascular risk. Intern. Emerg. Med. 2019, 15, 199–210. [Google Scholar] [CrossRef]
- Anderson, W.J.; da Cruz, N.F.S.; Lima, L.H.; Emerson, G.G.; Rodrigues, E.B.; Melo, G.B. Mechanisms of sterile inflammation after intravitreal injection of antiangiogenic drugs: A narrative review. Int. J. Retin. Vitr. 2021, 7, 37. [Google Scholar] [CrossRef]
- Marín-Lambíes, C.; Gallego-Pinazo, R.; Salom, D.; Navarrete-Sanchis, J.; Díaz-Llopis, M. Rapid Regression of Exudative Maculopathy in Idiopathic Retinitis, Vasculitis, Aneurysms and Neuroretinitis Syndrome after Intravitreal Ranibizumab. Case Rep. Ophthalmol. 2012, 3, 251–257. [Google Scholar] [CrossRef]
- Schmidt-Erfurth, U.; Garcia-Arumi, J.; Gerendas, B.S.; Midena, E.; Sivaprasad, S.; Tadayoni, R.; Wolf, S.; Loewenstein, A. Guidelines for the Management of Retinal Vein Occlusion by the European Society of Retina Specialists (EURETINA). Ophthalmologica 2019, 242, 123–162. [Google Scholar] [CrossRef]
- Scott, I.U.; VanVeldhuisen, P.C.; Oden, N.L.; Ip, M.S.; Blodi, B.A. Month 60 Outcomes After Treatment Initiation with Anti–Vascular Endothelial Growth Factor Therapy for Macular Edema Due to Central Retinal or Hemiretinal Vein Occlusion. Am. J. Ophthalmol. 2022, 240, 330–341. [Google Scholar] [CrossRef]
No. | Author | Country | Type of Study | No. of Cases | Mean Age | Gender | Diagnosis |
---|---|---|---|---|---|---|---|
1 | Abdallah & Hamzah [11] | USA | Case Report | 1 | 51 | M | CRAO |
2 | Abdin et al. [12] | Germany | Case Report | 1 | 76 | F | CRAO |
3 | Amin et al. [13] | Bangladesh | Case Report | 1 | 41 | M | VH |
4 | Bialasiewicz et al. [14] | Qatar | Case Report | 1 | 50 | M | CRVO |
5 | Bolletta et al. [15] | Italy | Case Series | 6 | 49.5 | 3 M, 3 F | 1 CRVO, 5 BRVO |
6 | Cackett et al. [16] | UK | Case Report | 2 | 45 | 2 F | 2 CRVO |
7 | Casarini et al. [17] | Italy | Case Report | 1 | 60 | M | VH |
8 | Che et al. [18] | South Korea | Case Report | 1 | 87 | F | AAION |
9 | Chen et al. [19] | Taiwan | Case Report | 1 | 48 | F | BRAO |
10 | Choi et al. [20] | Korea | Case Series | 9 | 60.8 | 3 M, 6 F | 4 CRVO, 5 BRVO |
11 | Chow et al. [21] | Taiwan | Case Report | 1 | 70 | M | CRAO |
12 | Chung et al. [22] | Korea | Case Report | 1 | 65 | F | NAAION |
13 | Da Silva et al. [23] | Brazil | Case Series | 11 | 57 | 3 M, 8 F | 5 CRAO, 4 CRVO, 2 Intraretinal Hemorrhage |
14 | Majumder & Prakash [24] | India | Case Report | 1 | 28 | M | CRVO |
15 | Elhusseiny et al. [25] | USA | Case Report | 1 | 51 | M | NAAION |
16 | Endo et al. [26] | Spain | Case Report | 1 | 52 | M | CRVO |
17 | Franco & Fonollosa [27] | Spain | Case Report | 2 | 59 | 2 M | 2 NAAION |
18 | Girbardt et al. [7] | India | Case Series | 6 | 46.5 | 4 M, 2 F | BRAO, CRVO, Venous Stasis Retinopathy, NAAION, CRAO, AMN |
19 | Goyal et al. [28] | Japan | Case Report | 1 | 28 | M | CRVO |
20 | Ikegami et al. [29] | Japan | Case Report | 1 | 54 | F | CRAO |
21 | Ishibashi et al. [30] | Japan | Case Series | 6 | 59.3 | 3 M, 3 F | 4 BRAO, PAMM, AMN |
22 | Kang et al. [31] | Korea | Case Report | 1 | 64 | M | BRAO |
23 | Lee et al. [32] | USA | Case Report | 1 | 34 | M | CRVO |
24 | Chen et al. [33] | China | Case Series | 5 | 54.2 | 4 M, 1 F | BRAO, BRVO, CRAO, CRVO, VH |
25 | Lin et al. [34] | Taiwan | Case Report | 1 | 61 | F | NAAION |
26 | Maleki et al. [35] | US | Case Series | 2 | 56 | 2 F | AAION, AZOOR |
27 | Murgova & Balchev [36] | Bulgaria | Case Series | 1 | 58.4 | 3 M, 2 F | NAAION |
28 | Nachbor et al. [37] | Nepal | Case Report | 1 | 64 | F | NAAION |
29 | Nusanti et al. [38] | Indonesia | Case Report | 1 | 50 | F | N/A |
30 | Park et al. [39] | Korea | Case Series | 21 | 77 | 11 M, 19 F | 11 AMD, 10 RVO |
31 | Peters et al. [40] | Australia | Case Series | 5 | 57 | 3 M, 2 F | 3 BRVO, RVO, CRVO |
32 | Priluck et al. [41] | USA | Case Report | 2 | 38.5 | 2 F | BRVO, AMN |
33 | Pur et al. [42] | Canada | Case Report | 1 | 34 | M | BRVO |
34 | Romano et al. [43] | Italy | Case Report | 1 | 54 | F | CRVO |
35 | Sacconi et al. [44] | Italy | Case Report | 1 | 74 | F | RVO |
36 | Sanjay et al. [45] | India | Case Report | 1 | 50 | F | N/A |
37 | Shah et al. [46] | USA | Case Report | 1 | 27 | F | CRVO |
38 | Sodhi et al. [47] | India | Case Report | 1 | 43 | M | CRVO |
39 | Sonawane et al. [48] | India | Case Report | 2 | 46.5 | M | 2 CRVO |
40 | Sugihara et al. [49] | Japan | Case Report | 1 | 38 | M | BRVO |
41 | Takacs et al. [50] | Hungary | Case Report | 1 | 35 | M | CRVO |
42 | Tanaka et al. [51] | Japan | Case Report | 2 | 71.5 | M | 2 BRVO |
43 | Suphachaiprasert & Thammakumpee [52] | Thailand | Case Report | 1 | 41 | M | CRAO |
44 | Tsukii et al. [53] | Japan | Case Report | 1 | 55 | F | NAAION |
45 | Vinzamuri et al. [54] | India | Case Report | 1 | 35 | M | N/A |
46 | Vujosevic et al. [55] | Italy | Case Series | 14 | 77 | 5 M, 9 F | 6 BRVO, 6 CRVO, 2 RVO |
47 | Wang et al. [56] | Taiwan | Case Series | 1 | 47.7 | 4 M, 7 F | CRAO |
48 | Elnahry et al. [57] | USA | Case Series | 2 | 50.5 | F | NAAION |
49 | Haseeb et al. [58] | Egypt | Case Report | 1 | 40 | M | NAAION |
Characteristic | Nature of Ocular Event | Total | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Arterial n (%) | Venous n (%) | Venous & Arterial n (%) | Hemorrhagic n (%) | Others n (%) | |||||
Demographics | |||||||||
Age | 57.86 ± 16.89 | 59.39 ± 16.84 | 56.33 ± 23.58 | 74.15 ± 9.11 | 38.33 ± 13.89 | 58.92 ± 17.57 | 0.692 | ||
Sex | 0.804 | ||||||||
Female | 17 (13.1%) | 35 (26.9%) | 2 (1.5%) | 7 (5.4%) | 6 (4.6%) | 67 (51.5%) | |||
Male | 19 (14.6%) | 34 (26.2%) | 1 (0.8%) | 6 (4.6%) | 3 (2.3%) | 63 (48.5%) | |||
COVID-19 Vaccine | 0.380 | ||||||||
AstraZeneca | 10 (7.7%) | 33 (25.4%) | 0 (0%) | 3 (2.3%) | 4 (3.1%) | 50 (38.5%) | |||
CoronaVac | 4 (3.1%) | 2 (1.5%) | 0 (0%) | 1 (0.8%) | 1 (0.8%) | 8 (6.2%) | |||
Johnson & Johnson | 1 (0.8%) | 2 (1.5%) | 0 (0%) | 0 (0%) | 1 (0.8%) | 4 (3.1%) | |||
Moderna | 4 (3.1%) | 3 (2.3%) | 1 (0.8%) | 0 (0%) | 1 (0.8%) | 9 (6.9%) | |||
Pfizer-BioNTech | 17 (13.1%) | 27 (20.8%) | 2 (1.5%) | 8 (6.2%) | 2 (1.5%) | 56 (43.1%) | |||
Sputnik V | 0 (0%) | 1 (0.8%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (0.8%) | |||
Unspecified | 0 (0%) | 1 (0.8%) | 0 (0%) | 1 (0.8%) | 0 (0%) | 2 (1.6%) | |||
Dose | 0.429 | ||||||||
First | 17 (13.1%) | 29 (22.3%) | 0 (0%) | 10 (7.7%) | 4 (3.1%) | 60 (46.2%) | |||
Second | 15 (11.5%) | 30 (23.1%) | 3 (2.3%) | 3 (2.3%) | 4 (3.1%) | 55 (42.3%) | |||
Booster | 0 (0%) | 3 (2.3%) | 0 (0%) | 0 (0%) | 0 (0%) | 3 (2.3%) | |||
Unspecified | 4 (3.1%) | 7 (5.4%) | 0 (0%) | 0 (0%) | 1 (0.8%) | 12 (9.2%) | |||
Total | 36 (27.7%) | 69 (53%) | 3 (2.3%) | 13 (1%) | 9 (4.6%) | 130 (100%) |
Characteristic | Nature of Ocular Event | Total | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Arterial n (%) | Venous n (%) | Venous & Arterial n (%) | Hemorrhagic n (%) | Others n (%) | ||||
No. of Patients | 36 (27.7%) | 69 (53%) | 3 (2.3%) | 13 (1%) | 9 (4.6%) | 130 (100%) | ||
Clinical Characteristics | ||||||||
Underlying Systemic Disease | ||||||||
Hypertension | 11 (8.7%) | 21 (16.5%) | 1 (0.8%) | 5 (3.9%) | 2 (1.6%) | 40 (31.5%) | 0.964 | |
Diabetes Mellitus | 8 (6.2%) | 12 (9.2%) | 0 (0%) | 6 (4.6%) | 0 (0%) | 26 (20%) | 0.062 | |
Other | 9 (7.2%) | 17 (13.6%) | 1 (0.8%) | 8 (6.4%) | 2 (1.6%) | 37 (29.6%) | N/A | |
Underlying Ocular Condition | ||||||||
Old Vascular Event | 1 (0.8%) | 6 (4.8%) | 0 (0%) | 1 (0.8%) | 0 (0%) | 8 (6.4%) | 0.953 | |
Old Ocular Surgery/Procedure | 4 (3.2%) | 9 (7.2%) | 0 (0%) | 5 (4%) | 0 (0%) | 18 (14.4%) | 0.862 | |
Anti-VEGF Injections | 0 (0%) | 1 (0.8%) | 0 (0%) | 5 (4%) | 0 (0%) | 6 (4.8%) | 0.004 | |
Other | 2 (1.6%) | 5 (4%) | 0 (0%) | 6 (4.7%) | 0 (0%) | 13 (10.3%) | N/A | |
Laterality | 0.002 | |||||||
Right | 15 (11.5%) | 32 (24.6%) | 2 (1.5%) | 8 (6.2%) | 1 (0.8%) | 58 (44.6%) | ||
Left | 11 (8.5%) | 19 (14.6%) | 1 (0.8%) | 4 (3.1%) | 3 (2.3%) | 38 (29.2%) | ||
Bilateral | 3 (2.3%) | 1 (0.8%) | 0 (0%) | 1 (0.8%) | 4 (3.1%) | 9 (6.9%) | ||
Not reported | 7 (5.4%) | 17 (13.1%) | 0 (0%) | 0 (0%) | 1 (0.8%) | 25 (19.2%) | ||
Duration between Vaccination and Ocular Event (days) | 0.095 | |||||||
≤5 | 17 (13.1%) | 33 (25.4%) | 1 (0.8%) | 6 (4.6%) | 3 (2.3%) | 60 (46.2%) | ||
6–10 | 6 (4.6%) | 16 (12.3%) | 0 (0%) | 2 (1.5%) | 4 (3.1%) | 28 (21.5%) | ||
11–15 | 5 (3.8%) | 11 (8.5%) | 2 (1.5%) | 1 (0.8%) | 0 (0%) | 19 (14.6%) | ||
16–20 | 2 (1.5%) | 1 (0.8%) | 0 (0%) | 1 (0.8%) | 0 (0%) | 4 (3.1%) | ||
21–25 | 1 (0.8%) | 5 (3.8%) | 0 (0%) | 0 (0%) | 0 (0%) | 6 (4.6%) | ||
26–30 | 1 (0.8%) | 3 (2.3%) | 0 (0%) | 3 (2.3%) | 1 (0.8%) | 8 (6.2%) | ||
>30 | 4 (3.1%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (0.8%) | 5 (3.8%) | ||
Main Presenting Complaint | ||||||||
Visual Disturbances | 26 (20%) | 50 (38.5%) | 3 (2.3%) | 2 (1.5%) | 8 (6.2%) | 89 (68.5%) | ||
Other | 2 (1.6%) | 2 (1.6%) | 0 (0%) | 0 (0%) | 3 (2.4%) | 7 (5.3%) | ||
Not reported | 10 (7.9%) | 19 (15%) | 0 (0%) | 11 (8.7%) | 1 (0.8%) | 41 (31.5%) |
Management | Nature of Ocular Event | Total | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Arterial n (%) | Venous n (%) | Venous & Arterial n (%) | Hemorrhagic n (%) | Others n (%) | ||||
Medical | ||||||||
Intravitreal anti-VEGF | 1 (0.8%) | 30 (23.6%) | 2 (1.6%) | 6 (4.7%) | 0 (0%) | 39 (30.7%) | <0.001 | |
Corticosteroid | 6 (4.6%) | 12 (9.2%) | 1 (0.8%) | 0 (0%) | 1 (0.8%) | 20 (15.4%) | 0.43 | |
Observation | 3 (2.4%) | 9 (7.1%) | 1 (0.8%) | 2 (1.6%) | 1 (0.8%) | 16 (12.6%) | 0.798 | |
Other Intervention | 7 (5.4%) | 4 (3.1%) | 0 (0%) | 0 (0%) | 2 (1.5%) | 13 (10%) | 0.116 | |
Unavailable Data | 18 (14.2%) | 16 (12.6%) | 0 (0%) | 2 (1.6%) | 5 (3.9%) | 41 (32.3%) | N/A | |
Surgical/Procedural | ||||||||
Vitrectomy | 0 (0%) | 1 (0.8%) | 0 (0%) | 5 (3.9%) | 0 (0%) | 6 (4.7%) | <0.001 | |
Laser Procedure | 0 (0%) | 3 (2.4%) | 0 (0%) | 0 (0%) | 0 (0%) | 3 (2.4%) | 0.63 | |
Other Interventions | 1 (0.8%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (0.8%) | 0.58 | |
Total | 36 (27.7%) | 69 (53%) | 3 (2.3%) | 13 (1%) | 9 (4.6%) | 130 (100%) |
Outcome | Nature of Ocular Event | Total | p-Value | ||||
---|---|---|---|---|---|---|---|
Arterial n (%) | Venous n (%) | Venous & Arterial n (%) | Hemorrhagic n (%) | Others n (%) | |||
Improved | 6 (16.7%) | 17 (24.6%) | 1 (33.3%) | 3 (23.1%) | 1 (11.1%) | 28 (21.5%) | 0.369 |
Persisted | 8 (22.2%) | 22 (31.9%) | 0 (0%) | 4 (30.8%) | 1 (11.1%) | 35 (26.9%) | 0.516 |
Worsened | 2 (5.6%) | 2 (2.9%) | 0 (0%) | 2 (15.4%) | 0 (0%) | 6 (4.6%) | 0.34 |
Unavailable Data | 20 (55.6%) | 28 (40.6%) | 2 (66.7%) | 4 (30.8%) | 7 (77.8%) | 61 (46.9%) | N/A |
Total | 36 (20%) | 69 (41.77%) | 3 (1.85%) | 13 (7.85%) | 9 (5.46%) | 130 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Serhan, H.; Abdelaal, A.; Abuawwad, M.T.; Taha, M.J.J.; Irshaidat, S.; Abu Serhan, L.; Abu-Ismail, L.; Abu Salim, Q.F.; Abdelazeem, B.; Elnahry, A.G. Ocular Vascular Events following COVID-19 Vaccines: A Systematic Review. Vaccines 2022, 10, 2143. https://doi.org/10.3390/vaccines10122143
Abu Serhan H, Abdelaal A, Abuawwad MT, Taha MJJ, Irshaidat S, Abu Serhan L, Abu-Ismail L, Abu Salim QF, Abdelazeem B, Elnahry AG. Ocular Vascular Events following COVID-19 Vaccines: A Systematic Review. Vaccines. 2022; 10(12):2143. https://doi.org/10.3390/vaccines10122143
Chicago/Turabian StyleAbu Serhan, Hashem, Abdelaziz Abdelaal, Mohammad T. Abuawwad, Mohammad J. J. Taha, Sara Irshaidat, Leen Abu Serhan, Luai Abu-Ismail, Qusai Faisal Abu Salim, Basel Abdelazeem, and Ayman G. Elnahry. 2022. "Ocular Vascular Events following COVID-19 Vaccines: A Systematic Review" Vaccines 10, no. 12: 2143. https://doi.org/10.3390/vaccines10122143
APA StyleAbu Serhan, H., Abdelaal, A., Abuawwad, M. T., Taha, M. J. J., Irshaidat, S., Abu Serhan, L., Abu-Ismail, L., Abu Salim, Q. F., Abdelazeem, B., & Elnahry, A. G. (2022). Ocular Vascular Events following COVID-19 Vaccines: A Systematic Review. Vaccines, 10(12), 2143. https://doi.org/10.3390/vaccines10122143