SARS-CoV-2: An Updated Review Highlighting Its Evolution and Treatments
Abstract
:1. Introduction
2. SARS-CoV-2’s Origin
3. Evolutionary Findings Relating to the Novel Coronavirus
4. Clinical Manifestations and Pathological Features
5. Treatments under Development
5.1. Antiviral Drugs for the Treatment of COVID-19
5.1.1. Remdesivir
5.1.2. Arbidol Hydrochloride
5.1.3. Favipiravir
5.1.4. Baricitinib
5.1.5. Tofacitinib
5.1.6. Molnupiravir
5.1.7. Anakinra
5.1.8. Nirmatrelvir/Ritonavir
5.2. Monoclonal Antibodies for the Treatment of COVID-19
5.2.1. Cilgavimab and Tixagevimab
5.2.2. Amubarvimab and Romlusevimab
5.2.3. Bamlanivimab and Etesevimab
5.2.4. Casirivimab and Imdevimab
5.2.5. Sotrovimab
5.2.6. Tocilizumab
5.2.7. Bebtelovimab
5.3. Other COVID-19 Treatments No Longer Used Due to Inefficacy
5.3.1. Convalescent Plasma
5.3.2. Chloroquine
5.3.3. Hydroxychloroquine
5.3.4. Ivermectin
5.3.5. Niclosamide
5.3.6. Chinese Traditional Medicine
5.3.7. Dietary Therapy
6. SARS-CoV-2 Vaccine Trial
Factors Affecting Vaccine Effectiveness
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asselah, T.; Durantel, D.; Pasmant, E. COVID-19: Discovery, diagnostics and drug development. J. Hepatol. 2021, 74, 168–184. [Google Scholar] [CrossRef] [PubMed]
- Giseke, U. COVID-19-does social distancing include species distancing? Agric. Hum. Values 2020, 37, 643–644. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, B.; Sánchez, H.G.C.; Candido, D.D.S.; Jackson, B.; Fleishon, S.; Houzet, R.; Ruis, C.; Delaye, L.; Faria, N.R.; Rambaut, A.; et al. Emergence and widespread circulation of a recombinant SARS–CoV–2 lineage in North America. Cell Host Microbe 2022, 30, 1112–1123. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Mu, F.; Fu, Y. A Capsidless Virus Is trans—Encapsidated by a Bisegmented Botybirnavirus. J. Virol. 2022, 96, e0029622. [Google Scholar] [CrossRef]
- Mei, M.; Tan, X. Current Strategies of Antiviral Drug Discovery for COVID-19. Front. Mol. Biosci. 2021, 8, 671263. [Google Scholar] [CrossRef]
- Nagesha, S.N.; Ramesh, B.N.; Pradeep, C.; Shashidhara, K.S. SARS–CoV 2 spike protein S1 subunit as an ideal target for stable vaccines: A. bioinformatic study. Mater. Today Proc. 2022, 49, 904–912. [Google Scholar]
- Malik, Y.S.; Kumar, P.; Ansari, M.I. SARS–CoV–2 Spike Protein Extrapolation for COVID Diagnosis and Vaccine Development. Front. Mol. Biosci. 2021, 8, 607886. [Google Scholar] [CrossRef]
- Teherán, A.A.; Camero, G.; Prado, R.; Moreno, B.; Trujillo, H.; Ramírez, R.A.; Miranda, D.C.; Paníz, M. Presumptive asymptomatic COVID-19 carriers’ estimation and expected person–to–person spreading among repatriated passengers returning from China. Travel. Med. Infect. Dis. 2020, 37, 101688. [Google Scholar] [CrossRef]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Riou, J.; Althaus, C.L. Pattern of early human–to–human transmission of Wuhan 2019 novel coronavirus (2019–nCoV), December 2019 to January 2020. Euro. Surveill. 2020, 25, 2000058. [Google Scholar] [CrossRef] [Green Version]
- Rothe, C.; Schunk, M.; Sothmann, P.; Bretzel, G.; Froeschl, G.; Wallrauch, C.; Zimmer, T.; Thiel, V.; Janke, C.; Guggemos, W.; et al. Transmission of 2019–nCoV Infection from an Asymptomatic Contact in Germany. N. Engl. J. Med. 2020, 382, 970–971. [Google Scholar] [CrossRef] [PubMed]
- Jonsdottir, H.R.; Dijkman, R. Coronaviruses and the human airway: A universal system for virus–host interaction studies. Virol. J. 2016, 13, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019–nCoV) by real–time RT–PCR. Euro. Surveill. 2020, 25, 2000045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 10, 1056. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.S.; Li, H.; Zhao, S.C.; Lu, R.J.; Niu, P.H.; Tan, W.J. Viral and Bacterial Etiology of Acute Febrile Respiratory Syndrome among Patients in Qinghai, China. Biomed. Environ. Sci. 2019, 32, 438–445. [Google Scholar] [PubMed]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS–CoV–2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Lam, T.T.Y.; Shum, M.H.H.; Zhu, H.C.; Tong, Y.G.; Ni, X.B.; Liao, Y.S.; Wei, W.; Cheung, W.Y.M.; Li, W.J.; Li, L.F.; et al. Identifying SARS–CoV–2 related coronaviruses in Malayan pangolins. Nature 2020, 583, 282–285. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.H.; Pei, Y.Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Fontanet, A.; Autran, B.; Lina, B.; Kieny, M.P.; Karim, S.S.A.; Sridhar, D. SARS-CoV-2 variants and ending the COVID-19 pandemic. Lancet 2021, 397, 952–954. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Zhu, C.; Ai, L.; He, T.; Wang, Y.; Ye, F.; Yang, L.; Ding, C.; Zhu, X.; Lv, R.; et al. Genomic characterization and infectivity of a novel SARS–like coronavirus in Chinese bats. Emerg. Microbes Infect. 2018, 7, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, J.F.; Yuan, S.; Kok, K.H.; To, K.K.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.-Y.; Poon, R.W.-S.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person–to–person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeed, A.A. Evolutionary Perspective and Theories on the Possible Origin of SARS-CoV-2. Cureus 2021, 13, e18981. [Google Scholar] [CrossRef]
- Benvenuto, D.; Giovannetti, M.; Ciccozzi, A.; Spoto, S.; Angeletti, S.; Ciccozzi, M. The 2019–new coronavirus epidemic: Evidence for virus evolution. J. Med. Virol. 2020, 10, 1002. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.; Chaudhary, J.K.; Jain, N.; Chaudhary, P.K.; Khanra, S.; Dhamija, P.; Sharma, A. Role of Structural and Non–Structural Proteins and Therapeutic Targets of SARS–CoV–2 for COVID-19. Cells 2021, 10, 821. [Google Scholar] [CrossRef]
- Carfì, A.; Bernabei, R.; Landi, F. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef]
- Berlin, D.A.; Gulick, R.M.; Martinez, F.J. Severe Covid–19. N. Engl. J. Med. 2020, 383, 2451–2460. [Google Scholar] [CrossRef]
- Liu, Y.H.; Wang, Y.R.; Wang, Q.H. Post–infection cognitive impairments in a cohort of elderly patients with COVID-19. Mol. Neurodegener. 2021, 16, 48. [Google Scholar] [CrossRef]
- De Vito, A.; Fiore, V.; Princic, E.; Geremia, N.; Panu Napodano, C.M.; Muredda, A.A.; Maida, I.; Madeddu, G.; Babudieri, S. Predictors of infection, symptoms development, and mortality in people with SARS–CoV–2 living in retirement nursing homes. PLoS ONE 2021, 16, e0248009. [Google Scholar] [CrossRef]
- Pierce, C.A.; Herold, K.C.; Herold, B.C. COVID-19 and children. Science 2022, 377, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, B.M. New Insights on COVID-19’s Hyperinflammation in Children. JAMA 2020, 324, 1489. [Google Scholar] [CrossRef] [PubMed]
- Sinha, I.P.; Harwood, R.; Semple, M.G.; Hawcutt, D.B.; Thursfield, R.; Narayan, O. COVID-19 infection in children. Lancet Respir. Med. 2020, 8, 446–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahidi, D.M.; Zargari, O.; Abolghasemi, R. A probable atypical skin manifestation of COVID-19 infection. J. Dermatol. Treat. 2022, 33, 1188–1190. [Google Scholar] [CrossRef]
- Hornuss, D.; Lange, B.; Schröter, N. Anosmia in COVID-19 patients. Clin. Microbiol. Infect. 2020, 26, 1426–1427. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, F.; Xie, L. Clinical characteristics of COVID-19–infected cancer patients: A retrospective case study in three hospitals within Wuhan, China. Ann. Oncol. 2020, 31, 894–901. [Google Scholar] [CrossRef]
- Diao, B.; Wang, C.; Tan, Y.; Chen, X.; Liu, Y.; Ning, L.; Chen, L.; Li, M.; Liu, Y.; Wang, G.; et al. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). Front. Immunol. 2020, 11, 827. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, R.; Wang, K.; Zhang, M.; Wang, Z.; Dong, L.; Li, J.; Yao, Y.; Ge, S.; Xu, G. Kidney impairment is associated with in–hospital death of COVID-19 patients. Kidney Int. 2020, 97, 829–838. [Google Scholar] [CrossRef]
- Warren, T.K.; Jordan, R.; Lo, M.K.; Ray, A.S.; Mackman, R.L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H.C.; et al. Therapeutic efficacy of the small molecule GS–5734 against Ebola virus in rhesus monkeys. Nature 2016, 531, 381–385. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wang, H.; Li, W.; Xu, X.G.; Yu, Y. Macrophage activation on “phagocytic synapse” arrays: Spacing of nanoclustered ligands directs TLR1/2 signaling with an intrinsic limit. Sci. Adv. 2020, 6, eabc8482. [Google Scholar] [CrossRef] [PubMed]
- Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; et al. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 2020, 382, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Zhao, M.; Tan, D. Anti–COVID-19 drug screening: Frontier concepts and core technologies. Chin. Med. 2020, 15, 115. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Luo, J.; Zhao, D.; Deng, T.; Weng, Y.; Sun, Y.; Li, X. A preliminary study on the reproductive toxicity of GS–5734 on male mice. BioRxiv 2020, 5, 104. [Google Scholar]
- Malin, J.J.; Suárez, I.; Priesner, V. Remdesivir against COVID-19 and Other Viral Diseases. Clin. Microbiol. Rev. 2020, 34, e00162. [Google Scholar] [CrossRef]
- Goldman, J.D.; Lye, D.C.B.; Hui, D.S. Remdesivir for 5 or 10 Days in Patients with Severe COVID-19. N. Engl. J. Med. 2020, 383, 1827–1837. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; et al. Remdesivir in adults with severe COVID-19: A randomised, double–blind, placebo–controlled, multicentre trial. Lancet 2020, 395, 1569–1578. [Google Scholar] [CrossRef]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of Covid–19–Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
- Gottlieb, R.L.; Vaca, C.E.; Paredes, R.; Mera, J.; Webb, B.J.; Perez, G.; Oguchi, G.; Ryan, P.; Nielsen, B.U.; Brown, M.; et al. Early Remdesivir to Prevent Progression to Severe Covid–19 in Outpatients. N. Engl. J. Med. 2022, 386, 305–315. [Google Scholar] [CrossRef]
- De Vito, A.; Poliseno, M.; Colpani, A.; Zauli, B.; Puci, M.V.; Santantonio, T.; Meloni, M.C.; Fois, M.; Fanelli, C.; Saderi, L.; et al. Reduced risk of death in people with SARS–CoV–2 infection treated with remdesivir: A nested case–control study. Curr. Med. Res. Opin. 2022, 38, 2029–2033. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.; Jin, Y. A trial of arbidol hydrochloride in adults with COVID-19. Chin. Med. J. 2022, 135, 1531–1538. [Google Scholar] [CrossRef] [PubMed]
- Vora, A.; Tiwaskar, M. Favipiravir. J. Assoc. Physicians India 2020, 68, 91–92. [Google Scholar] [PubMed]
- Golan, Y.; Campos, J.A.S.; Woolson, R. Favipiravir in patients with early mild–to–moderate COVID-19: A randomized controlled trial. Clin. Infect. Dis. 2022. Preprint. [Google Scholar] [CrossRef]
- Huang, Y.Q.; Tang, S.Q.; Xu, X.L.; Zeng, Y.M.; He, X.Q.; Li, Y.; Harypursat, V.; Lu, Y.Q.; Wan, Y.; Zhang, L.; et al. No Statistically Apparent Difference in Antiviral Effectiveness Observed Among Ribavirin Plus Interferon–Alpha, Lopinavir/Ritonavir Plus Interferon–Alpha, and Ribavirin Plus Lopinavir/Ritonavir Plus Interferon–Alpha in Patients With Mild to Moderate Coronavirus Disease 2019: Results of a Randomized, Open–Labeled Prospective Study. Front. Pharmacol. 2020, 11, 1071. [Google Scholar]
- Facharztmagazine, R. Baricitinib bei COVID-19–Patienten. MMW Fortschr. Med. 2021, 163, 64. [Google Scholar] [CrossRef]
- Drugs, J.T.M. An EUA for baricitinib (Olumiant) for COVID-19. Med. Lett. Drugs Ther. 2020, 62, 202–203. [Google Scholar]
- Goldberger, T.; Zlotogorski, A. Can Tofacitinib Offer Protection against COVID-19 Infection? Ski. Appendage Disord. 2021, 395, 275–276. [Google Scholar] [CrossRef]
- Guimarães, P.O.; Quirk, D.; Furtado, R.H.; Maia, L.N.; Saraiva, J.F.; Antunes, M.O.; Filho, R.K.; Junior, V.M.; Soeiro, A.M.; Tognon, A.P.; et al. Tofacitinib in Patients Hospitalized with Covid–19 Pneumonia. N. Engl. J. Med. 2021, 385, 406–415. [Google Scholar] [CrossRef]
- Prescriber, J.A. Molnupiravir for COVID-19. Aust. Prescr. 2022, 45, 60. [Google Scholar]
- Fatima, M.; Azeem, S.; Saeed, J. Efficacy and safety of molnupiravir for COVID-19 patients. Eur. J. Intern. Med. 2022, 102, 118–121. [Google Scholar] [CrossRef]
- Najjar-Debbiny, R.; Gronich, N.; Weber, G.; Khoury, J.; Amar, M.; Stein, N.; Goldstein, L.H.; Saliba, W. Effectiveness of Molnupiravir in High Risk Patients: A Propensity Score Matched Analysis. Clin. Infect. Dis. 2022, ciac781, (Online ahead of print). [Google Scholar] [CrossRef] [PubMed]
- De Vito, A.; Colpani, A.; Bitti, A.; Zauli, B.; Meloni, M.C.; Fois, M.; Denti, L.; Bacciu, S.; Marcia, C.; Maida, I.; et al. Safety and efficacy of molnupiravir in SARS-CoV-2-infected patients: A real-life experience. J. Med. Virol. 2022, 94, 5582–5588. [Google Scholar] [CrossRef] [PubMed]
- Kooistra, E.J.; Waalders, N.J.B.; Kox, M. Effect of anakinra in COVID-19. Lancet Rheumatol. 2020, 2, e523–e524. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.H.; Au, I.C.H.; Lau, K.T.K.; Lau, E.H.Y.; Cowling, B.J.; Leung, G.M. Real–world effectiveness of early molnupiravir or nirmatrelvir–ritonavir in hospitalised patients with COVID-19 without supplemental oxygen requirement on admission during Hong Kong’s omicron BA.2 wave: A retrospective cohort study. Lancet Infect. Dis. 2022, 22, 1681–1693. [Google Scholar] [CrossRef]
- Gentile, I.; Scotto, R.; Schiano Moriello, N.; Pinchera, B.; Villari, R.; Trucillo, E.; Ametrano, L.; Fusco, L.; Castaldo, G.; Buonomo, A.R.; et al. Nirmatrelvir/Ritonavir and Molnupiravir in the Treatment of Mild/Moderate COVID-19: Results of a Real–Life Study. Vaccines 2022, 10, 1731. [Google Scholar] [CrossRef]
- Focosi, D.; Casadevall, A. A Critical Analysis of the Use of Cilgavimab plus Tixagevimab Monoclonal Antibody Cocktail (Evusheld™) for COVID-19 Prophylaxis and Treatment. Viruses 2022, 14, 1999. [Google Scholar] [CrossRef]
- Stuver, R.; Shah, G.L.; Korde, N.S.; Roeker, L.E.; Mato, A.R.; Batlevi, C.L.; Chung, D.J.; Doddi, S.; Falchi, L.; Gyurkocza, B.; et al. Activity of AZD7442 (tixagevimab–cilgavimab) against Omicron SARS–CoV–2 in patients with hematologic malignancies. Cancer Cell 2022, 40, 590–591. [Google Scholar] [CrossRef]
- Karaba, A.H.; Kim, J.; Chiang, T.P.-Y.; Alejo, J.L.; Abedon, A.T.; Mitchell, J.; Chang, A.; Eby, Y.; Johnston, T.S.; Aytenfisu, T.Y.J.m. Omicron BA. 1 and BA. 2 Neutralizing Activity Following Pre–Exposure Prophylaxis with Tixagevimab plus Cilgavimab in Vaccinated Solid Organ Transplant Recipients. MedRxiv 2022. Preprint. [Google Scholar] [CrossRef]
- Al Jurdi, A.; Morena, L.; Cote, M.; Bethea, E.; Azzi, J.; Riella, L.V. Tixagevimab/cilgavimab pre–exposure prophylaxis is associated with lower breakthrough infection risk in vaccinated solid organ transplant recipients during the omicron wave. Am. J. Transplant. 2022, 2, 3130–3136. [Google Scholar] [CrossRef]
- Liu, M.; Li, W.; Lu, H. Listing of the neutralizing antibodies amubarvimab and romlusevimab in China: Hopes and impediments. Drug Discov. Ther. 2022, 16, 196–197. [Google Scholar] [CrossRef]
- Jones, B.E.; Brown–Augsburger, P.L.; Corbett, K.S.; Westendorf, K.; Davies, J.; Cujec, T.P.; Wiethoff, C.M.; Blackbourne, J.L.; Heinz, B.A.; Foster, D.; et al. The neutralizing antibody, LY–CoV555, protects against SARS–CoV–2 infection in nonhuman primates. Sci. Transl. Med. 2021, 13, 1906. [Google Scholar] [CrossRef]
- Dougan, M.; Nirula, A.; Azizad, M.; Mocherla, B.; Gottlieb, R.L.; Chen, P.; Hebert, C.; Perry, R.; Boscia, J.; Heller, B.; et al. Bamlanivimab plus Etesevimab in Mild or Moderate Covid–19. N. Engl. J. Med. 2021, 385, 1382–1392. [Google Scholar] [CrossRef]
- Gottlieb, R.L.; Nirula, A.; Chen, P.; Boscia, J.; Heller, B.; Morris, J.; Huhn, G.; Cardona, J.; Mocherla, B.; Stosor, V.; et al. Effect of Bamlanivimab as Monotherapy or in Combination with Etesevimab on Viral Load in Patients with Mild to Moderate COVID-19: A Randomized Clinical Trial. JAMA 2021, 325, 632–644. [Google Scholar] [CrossRef]
- Drugs, J.T.M. An EUA for bamlanivimab and etesevimab for COVID-19. Med. Lett. Drugs Ther. 2021, 63, 49–50. [Google Scholar]
- Weinreich, D.M.; Sivapalasingam, S.; Norton, T.; Ali, S.; Gao, H.; Bhore, R.; Musser, B.J.; Soo, Y.; Rofail, D.; Im, J.; et al. REGN–COV2, a Neutralizing Antibody Cocktail, in Outpatients with COVID-19. N. Engl. J. Med. 2020, 384, 238–251. [Google Scholar] [CrossRef]
- Gupta, A.; Gonzalez–Rojas, Y.; Juarez, E.; Casal, M.C.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Effect of Sotrovimab on Hospitalization or Death Among High–risk Patients With Mild to Moderate COVID-19: A Randomized Clinical Trial. JAMA 2022, 327, 1236–1246. [Google Scholar] [CrossRef]
- Salama, C.; Han, J.; Yau, L.; Reiss, W.G.; Kramer, B.; Neidhart, J.D.; Criner, G.J.; Kaplan-Lewis, E.; Baden, R.; Pandit, L.; et al. Tocilizumab in Patients Hospitalized with Covid–19 Pneumonia. N. Engl. J. Med. 2021, 384, 20–30. [Google Scholar] [CrossRef]
- McCreary, E.K.; Kip, K.E.; Collins, K.; Minnier, T.E.; Snyder, G.M.; Steiner, A.; Meyers, R.; Borneman, T.; Adam, M.; Thurau, L.; et al. Evaluation of Bebtelovimab for Treatment of Covid–19 During the SARS–CoV–2 Omicron Variant Era. Open. Forum. Infect. Dis. 2022, 9, ofac517. [Google Scholar] [CrossRef]
- Shertel, T.; Lange, N.W.; Salerno, D.M. Bebtelovimab for Treatment of COVID-19 in Ambulatory Solid Organ Transplant Recipients. Transplantation 2022, 106, e463–e464. [Google Scholar] [CrossRef]
- Bansal, V.; Mahapure, K.S.; Mehra, I.; Bhurwal, A.; Tekin, A.; Singh, R.; Gupta, I.; Rathore, S.S.; Khan, H.; Deshpande, S.; et al. Mortality Benefit of Convalescent Plasma in COVID-19: A Systematic Review and Meta–Analysis. Front. Med. 2021, 8, 624. [Google Scholar] [CrossRef]
- Janiaud, P.; Axfors, C.; Schmitt, A.M.; Gloy, V.; Ebrahimi, F.; Hepprich, M.; Smith, E.R.; Haber, N.A.; Khanna, N.; Moher, D.; et al. Association of Convalescent Plasma Treatment with Clinical Outcomes in Patients with COVID-19: A Systematic Review and Meta–analysis. JAMA 2021, 325, 1185–1195. [Google Scholar] [CrossRef]
- Prasad, M.; Seth, T.; Elavarasi, A. Efficacy and Safety of Convalescent Plasma for COVID-19: A Systematic Review and Meta–analysis. Indian J. Hematol. Blood Transfus. 2021, 37, 347–365. [Google Scholar] [CrossRef]
- Korley, F.K.; Durkalski–Mauldin, V.; Yeatts, S.D.; Schulman, K.; Davenport, R.D.; Dumont, L.J.; El Kassar, N.; Foster, L.D.; Hah, J.M.; Jaiswal, S.; et al. Early Convalescent Plasma for High–Risk Outpatients with COVID-19. N. Engl. J. Med. 2021, 385, 1951–1960. [Google Scholar] [CrossRef]
- Savarino, A.; Di Trani, L.; Donatelli, I.; Cauda, R.; Cassone, A. New insights into the antiviral effects of chloroquine. Lancet Infect. Dis. 2006, 6, 67–69. [Google Scholar] [CrossRef]
- Yan, Y.; Zou, Z.; Sun, Y.; Li, X.; Xu, K.-F.; Wei, Y.; Jin, N.; Jiang, C. Anti–malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res. 2013, 23, 300–302. [Google Scholar] [CrossRef] [Green Version]
- Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J. 2005, 2, 69. [Google Scholar] [CrossRef]
- Martins, R.R.; Santana, V.G.; Souza, D.L. New CT finding (the target sign) in three patients with COVID-19 pneumonia. J. Bras. Pneumol. 2020, 46, e20200413. [Google Scholar] [CrossRef]
- Ledford, H. Chloroquine hype is derailing the search for coronavirus treatments. Nature 2020, 580, 573. [Google Scholar] [CrossRef]
- Adawi, M.; Bragazzi, N.L.; McGonagle, D.; Watad, S.; Mahroum, N.; Damiani, G.; Conic, R.; Bridgewood, C.; Mahagna, H.; Giacomelli, L.; et al. Immunogenicity, safety and tolerability of anti–pneumococcal vaccination in systemic lupus erythematosus patients: An evidence–informed and PRISMA compliant systematic review and meta–analysis. Autoimmun. Rev. 2019, 18, 73–92. [Google Scholar] [CrossRef]
- Oscanoa, T.J.; Vidal, X.; Kanters, J.K. Frequency of Long QT in Patients with SARS–CoV–2 Infection Treated with Hydroxychloroquine: A Meta–analysis. Int. J. Antimicrob. Agents 2020, 56, 106212. [Google Scholar] [CrossRef]
- Arévalo, A.P.; Pagotto, R.; Pórfido, J.L.; Daghero, H.; Segovia, M.; Yamasaki, K.; Varela, B.; Hill, M.; Verdes, J.M.; Duhalde Vega, M.; et al. Ivermectin reduces in vivo coronavirus infection in a mouse experimental model. Sci. Rep. 2021, 11, 7132. [Google Scholar] [CrossRef]
- Bo, Y.Y.; Liang, L.D.; Hua, Y.J.; Zhao, Z.; Liang, C.Z.J.B. High–purity DNA extraction from animal tissue using picking in the TRIzol–based method. Biotechniques 2020, 70, 186–190. [Google Scholar] [CrossRef]
- Ci, X.; Li, H.; Yu, Q.; Zhang, X.; Yu, L.; Chen, N.; Song, Y.; Deng, X. Avermectin exerts anti–inflammatory effect by downregulating the nuclear transcription factor kappa–B and mitogen–activated protein kinase activation pathway. Fundam. Clin. Pharmacol. 2009, 23, 449–455. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; Barroso, J.; McCarty, M. Ivermectin may be a clinically useful anti–inflammatory agent for late–stage COVID-19. Open Heart 2020, 7, e001350. [Google Scholar] [CrossRef]
- Lehrer, S.; Rheinstein, P.H. Ivermectin Docks to the SARS–CoV–2 Spike Receptor–binding Domain Attached to ACE2. Vivo 2020, 34, 3023–3026. [Google Scholar] [CrossRef]
- Abdulamir, A.S.; Gorial, F.I.; Saadi, S.J.; Maulood, M.F.; Hashim, H.A.; Abdulrrazaq, M.K. Effectiveness and Safety of Niclosamaide as Add–on Therapy to the Standard of Care Measures in COVID-19 Management: Randomized controlled clinical trial. Ann. Med. Surg. 2021, 69, 102779. [Google Scholar] [CrossRef]
- Okumuş, N.; Demirtürk, N.; Cetinkaya, R.A.; Güner, R.; Avcı, İ.Y.; Orhan, S.; Konya, P.; Şaylan, B.; Karalezli, A.; Yamanel, L.; et al. Evaluation of the effectiveness and safety of adding ivermectin to treatment in severe COVID-19 patients. BMC Infect. Dis. 2021, 21, 411. [Google Scholar] [CrossRef]
- Ravikirti; Roy, R.; Pattadar, C.; Raj, R.; Agarwal, N.; Biswas, B.; Manjhi, P.K.; Rai, D.K.; Shyama; Kumar, A.; et al. Evaluation of Ivermectin as a Potential Treatment for Mild to Moderate COVID-19: A Double–Blind Randomized Placebo Controlled Trial in Eastern India. J. Pharm. Pharm. Sci. 2021, 24, 343–350. [Google Scholar] [CrossRef]
- Jurgeit, A.; McDowell, R.; Moese, S.; Meldrum, E.; Schwendener, R.; Greber, U.F. Niclosamide Is a Proton Carrier and Targets Acidic Endosomes with Broad Antiviral Effects. PLOS Pathog. 2012, 8, e1002976. [Google Scholar] [CrossRef] [Green Version]
- Pindiprolu, S.K.S.S.; Pindiprolu, S.H. Plausible mechanisms of Niclosamide as an antiviral agent against COVID-19. Med. Hypotheses 2020, 140, 109765. [Google Scholar] [CrossRef]
- Liu, J.; Li, D.; Mei, J.; Wu, L.; Chen, F.; Liu, Y.; Lang, X.; Yuan, G.; Zhao, Y. Analysis of prescription and medication rules of traditional Chinese medicine in the treatment of the coronavirus disease 2019 based on traditional Chinese medicine inheritance support platform. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2022, 34, 454–458. (In Chinese) [Google Scholar]
- Li, Y.; Liu, X.; Guo, L. Traditional Chinese herbal medicine for treating novel coronavirus (COVID-19) pneumonia: Protocol for a systematic review and meta–analysis. Syst. Rev. 2020, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.; Xu, M.; Wang, G.; Lv, J.; Ma, X.; Guo, Y.; Zhang, D.; Yang, H.; Jiang, W.; Deng, F.; et al. The efficiency and safety of high–dose vitamin C in patients with COVID-19: A retrospective cohort study. Aging 2021, 13, 7020–7034. [Google Scholar] [CrossRef]
- Huang, L.; Wang, L.; Tan, J.; Liu, H.; Ni, Y. High–dose vitamin C intravenous infusion in the treatment of patients with COVID-19: A protocol for systematic review and meta–analysis. Medicine 2021, 100, e25876. [Google Scholar] [CrossRef]
- Rawat, D.; Roy, A.; Maitra, S.; Shankar, V.; Khanna, P.; Baidya, D.K. Vitamin D supplementation and COVID-19 treatment: A systematic review and meta–analysis. Diabetes. Metab. Syndr. 2021, 15, 102189. [Google Scholar] [CrossRef]
- Szarpak, L.; Pruc, M.; Gasecka, A.; Jaguszewski, M.J.; Michalski, T.; Peacock, F.W.; Smereka, J.; Pytkowska, K.; Filipiak, K.J. Should we supplement zinc in COVID-19 patients? Evidence from a meta–analysis. Pol. Arch. Intern. Med. 2021, 131, 802–807. [Google Scholar] [CrossRef]
- Mullard, A. COVID-19 vaccines buoy hope. Nat. Rev. Drug Discov. 2021, 20, 8. [Google Scholar] [CrossRef]
- Lurie, N.; Saville, M.; Hatchett, R.; Halton, J. Developing Covid–19 Vaccines at Pandemic Speed. N. Engl. J. Med. 2020, 382, 1969–1973. [Google Scholar] [CrossRef]
- Agus, D.B.; Nguyen, A.; Sall, A.A. COVID-19 and other adult vaccines can drive global disease prevention. Lancet 2022, Preprint. [Google Scholar] [CrossRef]
- Immunology, F. Vaccines only partially protect against Long COVID. Nat. Rev. Immunol. 2022, 22, 410. [Google Scholar]
- Mullard, A. COVID-19 vaccines start moving into advanced trials. Nat. Rev. Drug Discov. 2020, 19, 435. [Google Scholar] [CrossRef]
- Okada, Y.; Sakai, R.; Sato-Fitoussi, M. Potential Triggers for Thrombocytopenia and/or Hemorrhage by the BNT162b2 Vaccine, Pfizer–BioNTech. Front. Med. 2021, 8, 751598. [Google Scholar] [CrossRef]
- Callaghan, C.J.; Mumford, L.; Curtis, R.M.K. Real–world Effectiveness of the Pfizer–BioNTech BNT162b2 and Oxford–AstraZeneca ChAdOx1–S Vaccines Against SARS–CoV–2 in Solid Organ and Islet Transplant Recipients. Transplantation 2022, 106, 436–446. [Google Scholar] [CrossRef]
- Abdelnabi, R.; Foo, C.S.; Zhang, X.; Lemmens, V.; Maes, P.; Slechten, B.; Raymenants, J.; André, E.; Weynand, B.; Dallemier, K.; et al. The omicron (B.1.1.529) SARS–CoV–2 variant of concern does not readily infect Syrian hamsters. Antivir. Res. 2022, 198, 105253. [Google Scholar] [CrossRef]
- Thompson, M.G.; Burgess, J.L.; Naleway, A.L. Prevention and Attenuation of COVID-19 with the BNT162b2 and mRNA–1273 Vaccines. N. Engl. J. Med. 2021, 385, 320–329. [Google Scholar] [CrossRef]
- John, B.V.; Deng, Y.; Scheinberg, A. Association of BNT162b2 mRNA and mRNA–1273 Vaccines With COVID-19 Infection and Hospitalization among Patients with Cirrhosis. JAMA Intern. Med. 2021, 181, 1306–1314. [Google Scholar] [CrossRef]
- Yechezkel, M.; Mofaz, M.; Painsky, A.; Patalon, T.; Gazit, S.; Shmueli, E.; Yamin, D. Safety of the fourth COVID-19 BNT162b2 mRNA (second booster) vaccine: A prospective and retrospective cohort study. Lancet Respir. Med. 2022, 18, S2213–S2600. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, R.; Qiao, S. Omicron SARS–CoV–2 Neutralization from Inactivated and ZF2001 Vaccines. N. Engl. J. Med. 2022, 387, 277–280. [Google Scholar] [CrossRef]
- Pajon, R.; Doria–Rose, N.A.; Shen, X. SARS–CoV–2 Omicron Variant Neutralization after mRNA–1273 Booster Vaccination. N. Engl. J. Med. 2022, 386, 1088–1091. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Follmann, D.; Neuzil, K.M.; August, A.; Clouting, H.; Fortier, G.; Deng, W.; Han, S.; et al. Phase 3 Trial of mRNA–1273 during the Delta–Variant Surge. N. Engl. J. Med. 2021, 385, 2485–2487. [Google Scholar] [CrossRef]
- Sheng, W.H.; Chang, S.Y.; Lin, P.H. Immune response and safety of heterologous ChAdOx1–nCoV–19/mRNA–1273 vaccination compared with homologous ChAdOx1–nCoV–19 or homologous mRNA–1273 vaccination. J. Formos. Med. Assoc. 2022, 121, 766–777. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, Y.; Mandel, M.; Bar–On, Y.M. Waning Immunity after the BNT162b2 Vaccine in Israel. N. Engl. J. Med. 2021, 385, e85. [Google Scholar] [CrossRef] [PubMed]
- Madhi, S.A.; Baillie, V.; Cutland, C.L. Efficacy of the ChAdOx1 nCoV–19 COVID-19 Vaccine against the B.1.351 Variant. N. Engl. J. Med. 2021, 384, 1885–1898. [Google Scholar] [CrossRef] [PubMed]
- Schultz, N.H.; Sørvoll, I.H.; Michelsen, A.E.; Munthe, L.A.; Lund-Johansen, F.; Ahlen, M.T.; Wiedmann, M.; Aamodt, A.-H.; Skattør, T.H.; Tjønnfjord, G.E.; et al. Thrombosis and Thrombocytopenia after ChAdOx1 nCoV–19 Vaccination. N. Engl. J. Med. 2021, 384, 2124–2130. [Google Scholar] [CrossRef] [PubMed]
- Scully, M.; Singh, D.; Lown, R. Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV–19 Vaccination. N. Engl. J. Med. 2021, 384, 2202–2211. [Google Scholar] [CrossRef]
- Doria-Rose, N.; Suthar, M.S.; Makowski, M.; O’Connell, S.; McDermott, A.B.; Flach, B.; Ledgerwood, J.E.; Mascola, J.R.; Graham, B.S.; Lin, B.C.; et al. Antibody Persistence through 6 Months after the Second Dose of mRNA–1273 Vaccine for COVID-19. N. Engl. J. Med. 2021, 384, 2259–2261. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B. Efficacy and Safety of the mRNA–1273 SARS–CoV–2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Klein, S.L.; Creisher, P.S.; Burd, I. COVID-19 vaccine testing in pregnant females is necessary. J. Clin. Investig. 2021, 131, e147553. [Google Scholar] [CrossRef]
- Richardson, C.D. Heterologous ChAdOx1–nCoV19–BNT162b2 vaccination provides superior immunogenicity against COVID-19. Lancet Respir. Med. 2021, 9, 1207–1209. [Google Scholar] [CrossRef]
- Rome, B.N.; Avorn, J. Drug Evaluation during the COVID-19 Pandemic. N. Engl. J. Med. 2020, 382, 2282–2284. [Google Scholar] [CrossRef]
- Hui, D.S.; I Azhar, E.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; McHugh, T.D.; Memish, Z.A.; Drosten, C.; et al. The continuing 2019–nCoV epidemic threat of novel coronaviruses to global health–The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 2020, 91, 264–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, A.C.P.; Li, X.; Lau, S.K.P.; Woo, P.C.Y. Global Epidemiology of Bat Coronaviruses. Viruses 2019, 11, 174. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.S.; Zhang, C. What to do next to control the 2019–nCoV epidemic? Lancet 2020, 395, 391–393. [Google Scholar] [CrossRef] [PubMed]
Vaccine | Platform | Manufacturer | Description |
---|---|---|---|
BNT162b2 | Nucleoside-modified mRNA | BioNTech Manufacturing GmbH (Mainz, Germany) | Neo-coronavirus infectious disease (COVID-19) vaccine candidate BNT162b2 was created by BioNTech and Pfizer and given intramuscularly. It is composed of lipid nanoparticles and nucleoside-modified mRNA that encodes the pinched mutant protein of SARS-CoV-2. |
AZD1222 | Recombinant ChAdOx1 adenoviral vector encoding the spike protein, the antigen of SARS-CoV-2 | AstraZeneca (Cambridge, England) | It uses a replication-deficient adenovirus that can infect chimpanzees as a vector. The genetic material of the novel coronavirus (SARS-CoV-2) stinger protein is present in it, which enables the body to produce the surface stinger protein after vaccination and develop immunity against the novel coronavirus. |
ChAdOx1_nCoV-19 | Recombinant ChAdOx1 adenoviral vector encoding the spike protein, the antigen of SARS-CoV-2 | Serum Institute of India Pvt., Ltd. (Pune, India) | The vaccine is a chimpanzee adenovirus vector (ChAdOx1) expressing the SARS-CoV-2 spike protein. |
Ad26.COV2.S | Recombinant, replication-incompetent adenovirus type 26 (Ad26) vectored vaccine encoding the SARS-CoV-2 spike (S) protein | Janssen–Cilag International NV (Beerse, Belgium) | The SARS-CoV-2 stinger protein is delivered into host cells by an adenovirus serotype 26 (Ad26), a common cold virus, and then stimulates the body to increase its immune response to COVID-19. However, thrombocytopenic thrombosis is an uncommon adverse effect of vaccination. |
mRNA-1273 | mRNA-based vaccine encapsulated in a lipid nanoparticle (LNP) | Moderna Biotech (Cambridge, United States) | mRNA-1273 is a messenger ribonucleic acid (mRNA) vaccine against a novel coronavirus that acts against the stinger protein of the virus. |
SARS-CoV-2 Vaccine (Vero Cell) | Inactivated, produced in Vero cells | Beijing Institute of Biological Products Co., Ltd. (BIBP) (Beijing, China) | The vaccine is an inactivated viral vaccine that stimulates somatic immunity and has high vaccine protection but requires a late booster. |
CoV2373 | Recombinant nanoparticle prefusion spike protein formulated with Matrix-M™ adjuvant | Novavax (Gaithersburg, United States) | NVX-CoV2372 is Novavax’s vaccine candidate against SARS-CoV-2, the virus that causes the new coronavirus. The vaccine incorporates Novavax’s proprietary saponin-based Matrix-M™ adjuvant, which enhances antigen presentation in local lymph nodes by enabling the adjuvant to stimulate antigen-presenting cells to enter the injection site to enhance the immune response and produce high levels of neutralizing antibody production. |
Ad5-nCoV | Recombinant novel coronavirus vaccine (adenovirus type 5 vector) | CanSinoBIO (Tianjin, China) | Ad5-nCoV is the gene for the neo-coronavirus S protein built into the adenovirus genome. The outer shell remains the normal outer shell protein of the adenovirus, but the genes inside contain the genes encoding the neo-coronavirus S protein. Therefore, when the adenovirus infects the host cell, it releases all the genes encoding the neo-coronavirus S protein into the host cell and synthesizes the S protein in the cytoplasm, which stimulates a series of immune responses. |
Sputnik V | Human adenovirus vector-based COVID-19 vaccine | Russian Direct (Moscow, Russia) | The Sputnik vector vaccine is based on adenovirus DNA, in which the SARS-CoV-2 coronavirus gene is integrated. Adenovirus is a “container” to deliver the coronavirus gene to cells and synthesizes the SARS-CoV-2 virus’s envelope proteins, “introducing” the immune system to a potential enemy. |
SCB-2019 | Novel recombinant SARS-CoV-2 spike (S)–trimer fusion protein | Clover Biopharmaceuticals (Shanghai, China) | SCB-2019 is a protein subunit vaccine candidate containing a stable trimeric form of the spike (S) protein (S-trimer) and two different adjuvants. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Yuan, H.; Yang, Z.; Hu, X.; Mahmmod, Y.S.; Zhu, X.; Zhao, C.; Zhai, J.; Zhang, X.-X.; Luo, S.; et al. SARS-CoV-2: An Updated Review Highlighting Its Evolution and Treatments. Vaccines 2022, 10, 2145. https://doi.org/10.3390/vaccines10122145
Zhang X, Yuan H, Yang Z, Hu X, Mahmmod YS, Zhu X, Zhao C, Zhai J, Zhang X-X, Luo S, et al. SARS-CoV-2: An Updated Review Highlighting Its Evolution and Treatments. Vaccines. 2022; 10(12):2145. https://doi.org/10.3390/vaccines10122145
Chicago/Turabian StyleZhang, Xirui, Hao Yuan, Zipeng Yang, Xiaoyu Hu, Yasser S. Mahmmod, Xiaojing Zhu, Cuiping Zhao, Jingbo Zhai, Xiu-Xiang Zhang, Shengjun Luo, and et al. 2022. "SARS-CoV-2: An Updated Review Highlighting Its Evolution and Treatments" Vaccines 10, no. 12: 2145. https://doi.org/10.3390/vaccines10122145
APA StyleZhang, X., Yuan, H., Yang, Z., Hu, X., Mahmmod, Y. S., Zhu, X., Zhao, C., Zhai, J., Zhang, X. -X., Luo, S., Wang, X. -H., Xue, M., Zheng, C., & Yuan, Z. -G. (2022). SARS-CoV-2: An Updated Review Highlighting Its Evolution and Treatments. Vaccines, 10(12), 2145. https://doi.org/10.3390/vaccines10122145