Pivotal Shigella Vaccine Efficacy Trials—Study Design Considerations from a Shigella Vaccine Trial Design Working Group
Abstract
:1. Introduction
2. Phase 3 Efficacy Clinical Trial Design Considerations
2.1. Indication
2.2. Age of Administration
2.3. Clinical Case Definition
2.4. Microbiologic Case Definition
2.5. Primary Endpoint
2.6. Primary Endpoint Ascertainment
2.7. Secondary Endpoints
2.8. Trial Power
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Platts-Mills, J.A.; Juma, J.; Kabir, F.; Nkeze, J.; Okoi, C.; Operario, D.J.; Uddin, J.; Ahmed, S.; Alonso, P.L.; et al. Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: A reanalysis of the GEMS case-control study. Lancet 2016, 388, 1291–1301. [Google Scholar] [CrossRef]
- Platts-Mills, J.A.; Liu, J.; Rogawski, E.T.; Kabir, F.; Lertsethtakarn, P.; Siguas, M.; Khan, S.S.; Praharaj, I.; Murei, A.; Nshama, R.; et al. Use of quantitative molecular diagnostic methods to assess the aetiology, burden, and clinical characteristics of diarrhoea in children in low-resource settings: A reanalysis of the MAL-ED cohort study. Lancet Glob. Health 2018, 6, e1309–e1318. [Google Scholar] [CrossRef] [Green Version]
- Pholwat, S.; Liu, J.; Taniuchi, M.; Haque, R.; Alam, M.M.; Faruque, A.S.G.; Ferdous, T.; Ara, R.; Platts-Mills, J.A.; Houpt, E.R. Use of Molecular Methods To Detect Shigella and Infer Phenotypic Resistance in a Shigella Treatment Study. J. Clin. Microbiol. 2022, 60, e0177421. [Google Scholar] [CrossRef] [PubMed]
- Schnee, A.E.; Haque, R.; Taniuchi, M.; Uddin, M.J.; Alam, M.M.; Liu, J.; Rogawski, E.T.; Kirkpatrick, B.; Houpt, E.R.; Petri, W.A., Jr.; et al. Identification of Etiology-Specific Diarrhea Associated With Linear Growth Faltering in Bangladeshi Infants. Am. J. Epidemiol. 2018, 187, 2210–2218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Platts-Mills, J.A.; Houpt, E.R.; Liu, J.; Zhang, J.; Guindo, O.; Sayinzoga-Makombe, N.; McMurry, T.L.; Elwood, S.; Langendorf, C.; Grais, R.F.; et al. Etiology and Incidence of Moderate-to-Severe Diarrhea in Young Children in Niger. J. Pediatric Infect. Dis. Soc. 2021, 10, 1062–1070. [Google Scholar] [CrossRef]
- Praharaj, I.; Platts-Mills, J.A.; Taneja, S.; Antony, K.; Yuhas, K.; Flores, J.; Cho, I.; Bhandari, N.; Revathy, R.; Bavdekar, A.; et al. Diarrheal Etiology and Impact of Coinfections on Rotavirus Vaccine Efficacy Estimates in a Clinical Trial of a Monovalent Human-Bovine (116E) Oral Rotavirus Vaccine, Rotavac, India. Clin. Infect. Dis. 2019, 69, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Collaborators, G.B.D. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018, 18, 1211–1228. [Google Scholar] [CrossRef] [Green Version]
- Rogawski, E.T.; Liu, J.; Platts-Mills, J.A.; Kabir, F.; Lertsethtakarn, P.; Siguas, M.; Khan, S.S.; Praharaj, I.; Murei, A.; Nshama, R.; et al. Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: Longitudinal analysis of results from the MAL-ED cohort study. Lancet Glob. Health 2018, 6, e1319–e1328. [Google Scholar] [CrossRef] [Green Version]
- Nasrin, D.; Blackwelder, W.C.; Sommerfelt, H.; Wu, Y.; Farag, T.H.; Panchalingam, S.; Biswas, K.; Saha, D.; Hossain, M.J.; Sow, S.O.; et al. Pathogens associated with linear growth faltering in children with diarrhea and impact of antibiotic treatment: The Global Enteric Multicenter Study. J. Infect. Dis. 2021, 224, S848–S855. [Google Scholar] [CrossRef]
- World Health Organization. Preferred Product Characteristics for Vaccines against Shigella; WHO: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/who-preferred-product-characteristics-for-vaccines-against-shigella (accessed on 25 December 2021).
- Livio, S.; Strockbine, N.A.; Panchalingam, S.; Tennant, S.M.; Barry, E.M.; Marohn, M.E.; Antonio, M.; Hossain, A.; Mandomando, I.; Ochieng, J.B.; et al. Shigella Isolates From the Global Enteric Multicenter Study Inform Vaccine Development. Clin. Infect. Dis. 2014, 59, 933–941. [Google Scholar] [CrossRef]
- World Health Organization. Guidance for the Development of Evidence-Based Vaccination Related Recommendations. v8. 2017. Available online: https://www.who.int/immunization/sage/Guidelines_development_recommendations.pdf (accessed on 25 December 2021).
- MacLennan, C.A.; Talaat, K.R.; Kaminski, R.W.; Cohen, D.; Riddle, M.S.; Giersing, B.K. Critical needs in advancing Shigella vaccines for global health. J. Infect. Dis. 2021. [Google Scholar] [CrossRef] [PubMed]
- Kotloff, K.L.; Blackwelder, W.C.; Nasrin, D.; Nataro, J.P.; Farag, T.H.; van Eijk, A.; Adegbola, R.A.; Alonso, P.L.; Breiman, R.F.; Faruque, A.S.; et al. The Global Enteric Multicenter Study (GEMS) of diarrheal disease in infants and young children in developing countries: Epidemiologic and clinical methods of the case/control study. Clin. Infect. Dis. 2012, 55 (Suppl. S4), S232–S245. [Google Scholar] [CrossRef] [Green Version]
- Porter, C.K.; Gutierrez, R.L.; Kotloff, K.L. Clinical endpoints for efficacy studies. Vaccine 2019, 37, 4814–4822. [Google Scholar] [CrossRef]
- Kotloff, K.L.; Platts-Mills, J.A.; Nasrin, D.; Roose, A.; Blackwelder, W.C.; Levine, M.M. Global burden of diarrheal diseases among children in developing countries: Incidence, etiology, and insights from new molecular diagnostic techniques. Vaccine 2017, 35, 6783–6789. [Google Scholar] [CrossRef] [PubMed]
- Black, S.; Shinefield, H.; Fireman, B.; Lewis, E.; Ray, P.; Hansen, J.R.; Elvin, L.; Ensor, K.M.; Hackell, J.; Siber, G.; et al. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. Pediatr. Infect. Dis. J. 2000, 19, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Vesikari, T.; Matson, D.O.; Dennehy, P.; Van Damme, P.; Santosham, M.; Rodriguez, Z.; Dallas, M.J.; Heyse, J.F.; Goveia, M.G.; Black, S.B.; et al. Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine. N. Engl. J. Med. 2006, 354, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Formal, S.B.; Oaks, E.V.; Olsen, R.E.; Wingfield-Eggleston, M.; Snoy, P.J.; Cogan, J.P. Effect of prior infection with virulent Shigella flexneri 2a on the resistance of monkeys to subsequent infection with Shigella sonnei. J. Infect. Dis. 1991, 164, 533–537. [Google Scholar] [CrossRef]
- Kotloff, K.L.; Riddle, M.S.; Platts-Mills, J.A.; Pavlinac, P.; Zaidi, A.K.M. Shigellosis. Lancet 2018, 391, 801–812. [Google Scholar] [CrossRef]
- Noriega, F.R.; Liao, F.M.; Maneval, D.R.; Ren, S.; Formal, S.B.; Levine, M.M. Strategy for cross-protection among Shigella flexneri serotypes. Infect. Immun. 1999, 67, 782–788. [Google Scholar] [CrossRef] [Green Version]
- Rogawski McQuade, E.T.; Liu, J.; Kang, G.; Kosek, M.N.; Lima, A.A.M.; Bessong, P.O.; Samie, A.; Haque, R.; Mduma, E.R.; Shrestha, S.; et al. Protection From Natural Immunity Against Enteric Infections and Etiology-Specific Diarrhea in a Longitudinal Birth Cohort. J. Infect. Dis. 2020, 222, 1858–1868. [Google Scholar] [CrossRef]
- Herrington, D.A.; Van de Verg, L.; Formal, S.B.; Hale, T.L.; Tall, B.D.; Cryz, S.J.; Tramont, E.C.; Levine, M.M. Studies in volunteers to evaluate candidate Shigella vaccines: Further experience with a bivalent Salmonella typhi-Shigella sonnei vaccine and protection conferred by previous Shigella sonnei disease. Vaccine 1990, 8, 353–357. [Google Scholar] [CrossRef]
- Ferreccio, C.; Prado, V.; Ojeda, A.; Cayyazo, M.; Abrego, P.; Guers, L.; Levine, M.M. Epidemiologic patterns of acute diarrhea and endemic Shigella infections in children in a poor periurban setting in Santiago, Chile. Am. J. Epidemiol. 1991, 134, 614–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.O.; Sur, D.; Breiman, R.F.; et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef]
- Pavlinac, P.B.; Platts-Mills, J.A.; Tickell, K.D.; Liu, J.; Juma, J.; Kabir, F.; Nkeze, J.; Okoi, C.; Operario, D.J.; Uddin, J.; et al. The Clinical Presentation of Culture-positive and Culture-negative, Quantitative Polymerase Chain Reaction (qPCR)-Attributable Shigellosis in the Global Enteric Multicenter Study and Derivation of a Shigella Severity Score: Implications for Pediatric Shigella Vaccine Trials. Clin. Infect. Dis. 2021, 73, e569–e579. [Google Scholar] [CrossRef]
- Huskins, W.C.; Griffiths, J.K.; Faruque, A.S.; Bennish, M.L. Shigellosis in neonates and young infants. J. Pediatr. 1994, 125, 14–22. [Google Scholar] [CrossRef]
- World Health Organization. WHO Recommends Groundbreaking Malaria Vaccine for Children at Risk. Available online: https://www.who.int/news/item/06-10-2021-who-recommends-groundbreaking-malaria-vaccine-for-children-at-risk (accessed on 22 October 2021).
- Chisenga, C.C.; Bosomprah, S.; Simuyandi, M.; Mwila-Kazimbaya, K.; Chilyabanyama, O.N.; Laban, N.M.; Bialik, A.; Asato, V.; Meron-Sudai, S.; Frankel, G.; et al. Shigella-specific antibodies in the first year of life among Zambian infants: A longitudinal cohort study. PLoS ONE 2021, 16, e0252222. [Google Scholar] [CrossRef]
- Passwell, J.H.; Ashkenazi, S.; Banet-Levi, Y.; Ramon-Saraf, R.; Farzam, N.; Lerner-Geva, L.; Even-Nir, H.; Yerushalmi, B.; Chu, C.; Shiloach, J.; et al. Age-related efficacy of Shigella O-specific polysaccharide conjugates in 1-4-year-old Israeli children. Vaccine 2010, 28, 2231–2235. [Google Scholar] [CrossRef]
- Talaat, K.R.; Alaimo, C.; Martin, P.; Bourgeois, A.L.; Dreyer, A.M.; Kaminski, R.W.; Porter, C.K.; Chakraborty, S.; Clarkson, K.A.; Brubaker, J.; et al. Human challenge study with a Shigella bioconjugate vaccine: Analyses of clinical efficacy and correlate of protection. EBioMedicine 2021, 66, 103310. [Google Scholar] [CrossRef]
- Jin, C.; Gibani, M.M.; Moore, M.; Juel, H.B.; Jones, E.; Meiring, J.; Harris, V.; Gardner, J.; Nebykova, A.; Kerridge, S.A.; et al. Efficacy and immunogenicity of a Vi-tetanus toxoid conjugate vaccine in the prevention of typhoid fever using a controlled human infection model of Salmonella Typhi: A randomised controlled, phase 2b trial. Lancet 2017, 390, 2472–2480. [Google Scholar] [CrossRef] [Green Version]
- Armah, G.E.; Sow, S.O.; Breiman, R.F.; Dallas, M.J.; Tapia, M.D.; Feikin, D.R.; Binka, F.N.; Steele, A.D.; Laserson, K.F.; Ansah, N.A.; et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: A randomised, double-blind, placebo-controlled trial. Lancet 2010, 376, 606–614. [Google Scholar] [CrossRef]
- Ruuska, T.; Vesikari, T. Rotavirus disease in Finnish children: Use of numerical scores for clinical severity of diarrhoeal episodes. Scand. J. Infect. Dis. 1990, 22, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Clark, H.F.; Borian, F.E.; Bell, L.M.; Modesto, K.; Gouvea, V.; Plotkin, S.A. Protective effect of WC3 vaccine against rotavirus diarrhea in infants during a predominantly serotype 1 rotavirus season. J. Infect. Dis. 1988, 158, 570–587. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Penataro Yori, P.; Paredes Olortegui, M.; Caulfield, L.E.; Sack, D.A.; Fischer-Walker, C.; Black, R.E.; Kosek, M. An instrument for the assessment of diarrhoeal severity based on a longitudinal community-based study. BMJ Open 2014, 4, e004816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, A.C.; Glavis-Bloom, J.; Modi, P.; Nasrin, S.; Rege, S.; Chu, C.; Schmid, C.H.; Alam, N.H. Empirically Derived Dehydration Scoring and Decision Tree Models for Children With Diarrhea: Assessment and Internal Validation in a Prospective Cohort Study in Dhaka, Bangladesh. Glob. Health Sci. Pract. 2015, 3, 405–418. [Google Scholar] [CrossRef] [Green Version]
- Freedman, S.B.; Eltorky, M.; Gorelick, M.; Pediatric Emergency Research Canada Gastroenteritis Study, G. Evaluation of a gastroenteritis severity score for use in outpatient settings. Pediatrics 2010, 125, e1278–e1285. [Google Scholar] [CrossRef]
- Lee, G.O.; Richard, S.A.; Kang, G.; Houpt, E.R.; Seidman, J.C.; Pendergast, L.L.; Bhutta, Z.A.; Ahmed, T.; Mduma, E.R.; Lima, A.A.; et al. A Comparison of Diarrheal Severity Scores in the MAL-ED Multisite Community-Based Cohort Study. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 466–473. [Google Scholar] [CrossRef] [Green Version]
- Omore, R.; Tate, J.E.; O’Reilly, C.E.; Ayers, T.; Williamson, J.; Moke, F.; Schilling, K.A.; Awuor, A.O.; Jaron, P.; Ochieng, J.B.; et al. Epidemiology, Seasonality and Factors Associated with Rotavirus Infection among Children with Moderate-to-Severe Diarrhea in Rural Western Kenya, 2008–2012: The Global Enteric Multicenter Study (GEMS). PLoS ONE 2016, 11, e0160060. [Google Scholar] [CrossRef]
- MacLennan, C.A.; Riddle, M.S.; Chen, W.H.; Talaat, K.R.; Jain, V.; Bourgeois, A.L.; Frenck, R.; Kotloff, K.; Porter, C.K. Consensus Report on Shigella Controlled Human Infection Model: Clinical Endpoints. Clin. Infect. Dis. 2019, 69, S591–S595. [Google Scholar] [CrossRef]
- World Health Organization. Chart Booklet: Integrated Management of Childhood Illness; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Levine, M.M.; Kotloff, K.L.; Nataro, J.P.; Muhsen, K. The Global Enteric Multicenter Study (GEMS): Impetus, rationale, and genesis. Clin. Infect. Dis. 2012, 55 (Suppl. S4), S215–S224. [Google Scholar] [CrossRef] [Green Version]
- Farag, T.H.; Nasrin, D.; Wu, Y.; Muhsen, K.; Blackwelder, W.C.; Sommerfelt, H.; Panchalingam, S.; Nataro, J.P.; Kotloff, K.L.; Levine, M.M. Some epidemiologic, clinical, microbiologic, and organizational assumptions that influenced the design and performance of the Global Enteric Multicenter Study (GEMS). Clin. Infect. Dis. 2012, 55 (Suppl. S4), S225–S231. [Google Scholar] [CrossRef]
- Zaman, K.; Dang, D.A.; Victor, J.C.; Shin, S.; Yunus, M.; Dallas, M.J.; Podder, G.; Vu, D.T.; Le, T.P.; Luby, S.P.; et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: A randomised, double-blind, placebo-controlled trial. Lancet 2010, 376, 615–623. [Google Scholar] [CrossRef]
- Bhandari, N.; Rongsen-Chandola, T.; Bavdekar, A.; John, J.; Antony, K.; Taneja, S.; Goyal, N.; Kawade, A.; Kang, G.; Rathore, S.S.; et al. Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian infants: A randomised, double-blind, placebo-controlled trial. Lancet 2014, 383, 2136–2143. [Google Scholar] [CrossRef] [Green Version]
- Phase 1-2, Randomized, Multi-Center, Double-Blind, Placebo-Controlled, Safety, Immunogenicity, and Efficacy Study in Healthy Adults of Intramuscular Norovirus Bivalent Virus-like Particle Vaccine in Experimental Human Norovirus GII.4 Disease. Available online: https://clinicaltrials.gov/ct2/show/NCT01609257 (accessed on 2 September 2021).
- Freedman, S.B.; Xie, J.; Nettel-Aguirre, A.; Pang, X.L.; Chui, L.; Williamson-Urquhart, S.; Schnadower, D.; Schuh, S.; Sherman, P.M.; Lee, B.E.; et al. A randomized trial evaluating virus-specific effects of a combination probiotic in children with acute gastroenteritis. Nat. Commun. 2020, 11, 2533. [Google Scholar] [CrossRef] [PubMed]
- Schnadower, D.; Tarr, P.I.; Casper, T.C.; Gorelick, M.H.; Dean, J.M.; O’Connell, K.J.; Mahajan, P.; Levine, A.C.; Bhatt, S.R.; Roskind, C.G.; et al. Lactobacillus rhamnosus GG versus Placebo for Acute Gastroenteritis in Children. N. Engl. J. Med. 2018, 379, 2002–2014. [Google Scholar] [CrossRef] [PubMed]
- PATH. Vesikari Clinical Severity Scoring System Manual. 2011. Available online: https://www.path.org/resources/vesikari-clinical-severity-scoring-system-manual/ (accessed on 25 December 2021).
- Fang, F.C.; Patel, R. 2017 Infectious Diseases Society of America Infectious Diarrhea Guidelines: A View From the Clinical Laboratory. Clin. Infect. Dis. 2017, 65, 1974–1976. [Google Scholar] [CrossRef]
- Shane, A.L.; Mody, R.K.; Crump, J.A.; Tarr, P.I.; Steiner, T.S.; Kotloff, K.; Langley, J.M.; Wanke, C.; Warren, C.A.; Cheng, A.C.; et al. 2017 Infectious Diseases Society of America Clinical Practice Guidelines for the Diagnosis and Management of Infectious Diarrhea. Clin. Infect. Dis. 2017, 65, 1963–1973. [Google Scholar] [CrossRef]
- Prakash, V.P.; LeBlanc, L.; Alexander-Scott, N.E.; Skidmore, J.; Simmons, D.; Quilliam, D.; Chapin, K.C. Use of a culture-independent gastrointestinal multiplex PCR panel during a Shigellosis outbreak: Considerations for clinical laboratories and public health. J. Clin. Microbiol. 2015, 53, 1048–1049. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Pholwat, S.; Zhang, J.; Taniuchi, M.; Haque, R.; Alam, M.; Ochieng, J.B.; Jones, J.A.; Platts-Mills, J.A.; Tennant, S.M.; et al. Evaluation of Molecular Serotyping Assays for Shigella flexneri Directly on Stool Samples. J. Clin. Microbiol. 2021, 59, e02455-20. [Google Scholar] [CrossRef]
- Rts, S.C.T.P. Efficacy and safety of the RTS,S/AS01 malaria vaccine during 18 months after vaccination: A phase 3 randomized, controlled trial in children and young infants at 11 African sites. PLoS Med. 2014, 11, e1001685. [Google Scholar] [CrossRef] [Green Version]
- Rogawski McQuade, E.T.; Shaheen, F.; Kabir, F.; Rizvi, A.; Platts-Mills, J.A.; Aziz, F.; Kalam, A.; Qureshi, S.; Elwood, S.; Liu, J.; et al. Epidemiology of Shigella infections and diarrhea in the first two years of life using culture-independent diagnostics in 8 low-resource settings. PLoS Negl. Trop. Dis. 2020, 14, e0008536. [Google Scholar] [CrossRef]
- Kotloff, K.L.; Nasrin, D.; Blackwelder, W.C.; Wu, Y.; Farag, T.; Panchalingham, S.; Sow, S.O.; Sur, D.; Zaidi, A.K.M.; Faruque, A.S.G.; et al. The incidence, aetiology, and adverse clinical consequences of less severe diarrhoeal episodes among infants and children residing in low-income and middle-income countries: A 12-month case-control study as a follow-on to the Global Enteric Multicenter Study (GEMS). Lancet Glob. Health 2019, 7, e568–e584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogawski, E.T.; Platts-Mills, J.A.; Seidman, J.C.; John, S.; Mahfuz, M.; Ulak, M.; Shrestha, S.K.; Soofi, S.B.; Yori, P.P.; Mduma, E.; et al. Use of antibiotics in children younger than two years in eight countries: A prospective cohort study. Bull. World Health Organ. 2016, 95, 49–61. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Pocket Book of Hospital Care for Children: Guidelines for the Management of Common Illnesses with Limited Resources; WHO: Geneva, Switzerland, 2005. [Google Scholar]
- Nasrin, D.; Wu, Y.; Blackwelder, W.C.; Farag, T.H.; Saha, D.; Sow, S.O.; Alonso, P.L.; Breiman, R.F.; Sur, D.; Faruque, A.S.G.; et al. Health care seeking for childhood diarrhea in developing countries: Evidence from seven sites in Africa and Asia. Am. J. Trop. Med. Hyg. 2013, 89, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
|
Score Component | Modified Vesikari Score |
---|---|
Duration of diarrhea | 1–4 days (1 point) 5 days (2 points) ≥6 days (3 points) |
Max number of stool in 24 h period | 1–3 diarrheal stools (1 point) 4–5 diarrheal stools (2 points) ≥6 diarrheal stools (3 points) |
Duration of vomiting | 1 day (1 point) 2 days (2 points) ≥3 days (3 points) |
Max number of vomiting episodes in 24 h period | 1 (1 point) 2–4 (2 points) ≥5 (3 points) |
Maximum recorded temperature | Rectally: 37.1–38.4 °C (1 point) 38.5–38.9 °C (2 points) ≥39.0 °C (3 points) Axillary: 36.6–37.9 °C (1 point) 38.0–38.4 °C (2 points) ≥38.5 °C (3 points) |
Dehydration (based on WHO-defined dehydration categories) | None (0 points) Some (2 points) Severe (3 points) |
Treatment | None (0 points) Rehydration (1 point) Hospitalization (2 points) |
Score categories | Mild illness (0–6 points) Moderate illness (7–10 points) Severe illness (≥11 points) [Total out of 20 points] |
Case Definition | Diagnostic Specificity of Primary Endpoint | Expected Incidence from GEMS (per 100 Child Years) | Total Trial Size Required § | |||
---|---|---|---|---|---|---|
Assuming 100% Medical Attendance | Assuming 25% Medical Attendance # | |||||
2 Years of Follow-Up | 1 Year of Follow-Up | 2 Years of Follow-Up | 1 Year of Follow-Up | |||
Vesikari ≥ 11 or dysentery | All Shigella; culture | 1.3 * | 5973 | 12,056 | 24,224 | 48,556 |
All Shigella; qPCR | 3.1 † | 2413 | 4935 | 9979 | 20,068 | |
Vaccine-preventable (VP) Shigella; culture | 0.8 ‡ | 9291 | 18,693 | 37,497 | 75,101 | |
VP Shigella; qPCR | 2.0 ‡ | 3868 | 7845 | 15,800 | 31,711 | |
VP Shigella; qPCR, assuming only 80% typable | 1.6 ‡,§§ | 4814 | 9739 | 19,589 | 39,288 | |
Vesikari ≥ 9 or dysentery | All Shigella; culture | 1.6 ** | 4851 | 9812 | 19,732 | 39,576 |
All Shigella; qPCR | 3.8 †† | 1947 | 4004 | 8118 | 16,346 | |
VP Shigella; culture | 1.0 ‡ | 7557 | 15,224 | 30,556 | 61,222 | |
VP Shigella; qPCR | 2.4 ‡ | 3133 | 6378 | 12,863 | 25,839 | |
VP Shigella; qPCR, assuming only 80% typable | 2.0 ‡,§§ | 3905 | 7922 | 15,952 | 32,017 | |
Vesikari ≥ 7 or dysentery | All Shigella; culture | 1.7 *,** | 4607 | 9326 | 18,762 | 37,631 |
All Shigella; qPCR | 4.0 †,†† | 1846 | 3802 | 7715 | 15,539 | |
VP Shigella; culture | 1.1 ‡ | 7181 | 14,472 | 29,053 | 58,219 | |
VP Shigella; qPCR | 2.5 ‡ | 2974 | 6059 | 12,228 | 24,567 | |
VP Shigella; qPCR, assuming only 80% typable | 2.1 ‡,§§ | 3709 | 7528 | 15,167 | 30,444 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlinac, P.B.; Rogawski McQuade, E.T.; Platts-Mills, J.A.; Kotloff, K.L.; Deal, C.; Giersing, B.K.; Isbrucker, R.A.; Kang, G.; Ma, L.-F.; MacLennan, C.A.; et al. Pivotal Shigella Vaccine Efficacy Trials—Study Design Considerations from a Shigella Vaccine Trial Design Working Group. Vaccines 2022, 10, 489. https://doi.org/10.3390/vaccines10040489
Pavlinac PB, Rogawski McQuade ET, Platts-Mills JA, Kotloff KL, Deal C, Giersing BK, Isbrucker RA, Kang G, Ma L-F, MacLennan CA, et al. Pivotal Shigella Vaccine Efficacy Trials—Study Design Considerations from a Shigella Vaccine Trial Design Working Group. Vaccines. 2022; 10(4):489. https://doi.org/10.3390/vaccines10040489
Chicago/Turabian StylePavlinac, Patricia B., Elizabeth T. Rogawski McQuade, James A. Platts-Mills, Karen L. Kotloff, Carolyn Deal, Birgitte K. Giersing, Richard A. Isbrucker, Gagandeep Kang, Lyou-Fu Ma, Calman A. MacLennan, and et al. 2022. "Pivotal Shigella Vaccine Efficacy Trials—Study Design Considerations from a Shigella Vaccine Trial Design Working Group" Vaccines 10, no. 4: 489. https://doi.org/10.3390/vaccines10040489
APA StylePavlinac, P. B., Rogawski McQuade, E. T., Platts-Mills, J. A., Kotloff, K. L., Deal, C., Giersing, B. K., Isbrucker, R. A., Kang, G., Ma, L. -F., MacLennan, C. A., Patriarca, P., Steele, D., & Vannice, K. S. (2022). Pivotal Shigella Vaccine Efficacy Trials—Study Design Considerations from a Shigella Vaccine Trial Design Working Group. Vaccines, 10(4), 489. https://doi.org/10.3390/vaccines10040489