Immunological Evaluation of Goats Immunized with a Commercial Vaccine against Johne’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Treatment Groups
2.2. Interferon Gamma Assay
2.3. Cell Culture
2.4. Flow Cytometry Assay
2.5. Map-Lambda ZAP Expression Library Construction and Screening
2.6. SDS-PAGE Gel Electrophoresis and Electrotransfer of Proteins
2.7. Dot Blot and Immunoblot Assays
2.8. Statistical Analysis
3. Results
3.1. Secretion of IFN-γ in Vaccinated, Infected and Control Goats
3.2. T Cell Subpopulations
3.3. Map Antigens Detected Post Vaccination
3.3.1. Map-Phage Expression Library Screen to Identify Reactive Antigens
3.3.2. Dot Blot Analysis to Identify Reactive Antigens
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bannantine, J.P.; Hines, M.E., 2nd; Bermudez, L.E.; Talaat, A.M.; Sreevatsan, S.; Stabel, J.R.; Chang, Y.F.; Coussens, P.M.; Barletta, R.G.; Davis, W.C.; et al. A rational framework for evaluating the next generation of vaccines against Mycobacterium avium subspecies paratuberculosis. Front. Cell Infect. Microbiol. 2014, 4, 126. [Google Scholar] [CrossRef] [PubMed]
- Lamont, E.A.; Talaat, A.M.; Coussens, P.M.; Bannantine, J.P.; Grohn, Y.T.; Katani, R.; Li, L.L.; Kapur, V.; Sreevatsan, S. Screening of Mycobacterium avium subsp. paratuberculosis mutants for attenuation in a bovine monocyte-derived macrophage model. Front. Cell Infect. Microbiol. 2014, 4, 87. [Google Scholar] [CrossRef] [PubMed]
- Bannantine, J.P.; Everman, J.L.; Rose, S.J.; Babrak, L.; Katani, R.; Barletta, R.G.; Talaat, A.M.; Grohn, Y.T.; Chang, Y.F.; Kapur, V.; et al. Evaluation of eight live attenuated vaccine candidates for protection against challenge with virulent Mycobacterium avium subspecies paratuberculosis in mice. Front. Cell Infect. Microbiol. 2014, 4, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hines, M.E., 2nd; Turnquist, S.E.; Ilha, M.R.; Rajeev, S.; Jones, A.L.; Whittington, L.; Bannantine, J.P.; Barletta, R.G.; Grohn, Y.T.; Katani, R.; et al. Evaluation of novel oral vaccine candidates and validation of a caprine model of Johne’s disease. Front. Cell Infect. Microbiol. 2014, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Hines, M.E., 2nd; Stabel, J.R.; Sweeney, R.W.; Griffin, F.; Talaat, A.M.; Bakker, D.; Benedictus, G.; Davis, W.C.; de Lisle, G.W.; Gardner, I.A.; et al. Experimental challenge models for Johne’s disease: A review and proposed international guidelines. Vet. Microbiol. 2007, 122, 197–222. [Google Scholar] [CrossRef] [PubMed]
- Stewart, D.J.; Vaughan, J.A.; Stiles, P.L.; Noske, P.J.; Tizard, M.L.; Prowse, S.J.; Michalski, W.P.; Butler, K.L.; Jones, S.L. A long-term bacteriological and immunological study in Holstein-Friesian cattle experimentally infected with Mycobacterium avium subsp. paratuberculosis and necropsy culture results for Holstein-Friesian cattle, Merino sheep and Angora goats. Vet. Microbiol. 2007, 122, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Shippy, D.C.; Lemke, J.J.; Berry, A.; Nelson, K.; Hines, M.E., 2nd; Talaat, A.M. Superior Protection from Live-Attenuated Vaccines Directed against Johne’s Disease. Clin. Vaccine Immunol. 2017, 24, e00478-16. [Google Scholar] [CrossRef] [Green Version]
- Berry, A.; Wu, C.W.; Venturino, A.J.; Talaat, A.M. Biomarkers for Early Stages of Johne’s Disease Infection and Immunization in Goats. Front. Microbiol. 2018, 9, 2284. [Google Scholar] [CrossRef]
- Sharma, S.; Gautam, A.K.; Singh, S.V.; Chaubey, K.K.; Rose, M.K.; Bangar, Y.; Gururaj, K. In vivo kinetics of peripheral cellular immune responses in Mycobacterium avium subspecies paratuberculosis (MAP) infected and vaccinated goats. Comp. Immunol. Microbiol. Infect. Dis. 2021, 79, 101710. [Google Scholar] [CrossRef]
- Stabel, J.R. Host responses to Mycobacterium avium subsp. paratuberculosis: A complex arsenal. Anim Health Res. Rev. 2006, 7, 61–70. [Google Scholar] [CrossRef]
- Coussens, P.M.; Verman, N.; Coussens, M.A.; Elftman, M.D.; McNulty, A.M. Cytokine gene expression in peripheral blood mononuclear cells and tissues of cattle infected with Mycobacterium avium subsp. paratuberculosis: Evidence for an inherent proinflammatory gene expression pattern. Infect. Immun. 2004, 72, 1409–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannantine, J.P.; Stabel, J.R. Identification of two Mycobacterium avium subspecies paratuberculosis gene products differentially recognised by sera from rabbits immunised with live mycobacteria but not heat-killed mycobacteria. J. Med. Microbiol. 2001, 50, 795–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannantine, J.P.; Paustian, M.L.; Waters, W.R.; Stabel, J.R.; Palmer, M.V.; Li, L.; Kapur, V. Profiling bovine antibody responses to Mycobacterium avium subsp. paratuberculosis infection by using protein arrays. Infect. Immun. 2008, 76, 739–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannantine, J.P.; Stabel, J.R.; Bayles, D.O.; Geisbrecht, B.V. Characteristics of an extensive Mycobacterium avium subspecies paratuberculosis recombinant protein set. Protein Expr. Purif. 2010, 72, 223–233. [Google Scholar] [CrossRef]
- Bannantine, J.P.; Waters, W.R.; Stabel, J.R.; Palmer, M.V.; Li, L.; Kapur, V.; Paustian, M.L. Development and use of a partial Mycobacterium avium subspecies paratuberculosis protein array. Proteomics 2008, 8, 463–474. [Google Scholar] [CrossRef]
- Tian, G.; Tang, F.; Yang, C.; Zhang, W.; Bergquist, J.; Wang, B.; Mi, J.; Zhang, J. Quantitative dot blot analysis (QDB), a versatile high throughput immunoblot method. Oncotarget 2017, 8, 58553–58562. [Google Scholar] [CrossRef] [Green Version]
- Gioffre, A.; Echeverria-Valencia, G.; Arese, A.; Morsella, C.; Garbaccio, S.; Delgado, F.; Zumarraga, M.; Paolicchi, F.; Cataldi, A.; Romano, M.I. Characterization of the Apa antigen from M. avium subsp. paratuberculosis: A conserved Mycobacterium antigen that elicits a strong humoral response in cattle. Vet. Immunol. Immunopathol. 2009, 132, 199–208. [Google Scholar] [CrossRef]
- Facciuolo, A.; Kelton, D.F.; Mutharia, L.M. Novel secreted antigens of Mycobacterium paratuberculosis as serodiagnostic biomarkers for Johne’s disease in cattle. Clin. Vaccine Immunol. 2013, 20, 1783–1791. [Google Scholar] [CrossRef] [Green Version]
- Bannantine, J.P.; Lingle, C.K.; Stabel, J.R.; Ramyar, K.X.; Garcia, B.L.; Raeber, A.J.; Schacher, P.; Kapur, V.; Geisbrecht, B.V. MAP1272c encodes an NlpC/P60 protein, an antigen detected in cattle with Johne’s disease. Clin. Vaccine Immunol. 2012, 19, 1083–1092. [Google Scholar] [CrossRef]
- Stabel, J.R. Transitions in immune responses to Mycobacterium paratuberculosis. Vet. Microbiol. 2000, 77, 465–473. [Google Scholar] [CrossRef]
- Stabel, J.R. Johne’s disease: A hidden threat. J. Dairy Sci. 1998, 81, 283–288. [Google Scholar] [CrossRef]
- Kim, W.S.; Kim, J.S.; Shin, M.K.; Shin, S.J. A novel Th1-type T-cell immunity-biasing effect of malate dehydrogenase derived from Mycobacterium avium subspecies paratuberculosis via the activation of dendritic cells. Cytokine 2018, 104, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.J.; Evanson, O.A.; Souza, C.D. Mucosal immune response in cattle with subclinical Johne’s disease. Vet. Pathol. 2006, 43, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Begg, D.J.; de Silva, K.; Carter, N.; Plain, K.M.; Purdie, A.; Whittington, R.J. Does a Th1 over Th2 dominancy really exist in the early stages of Mycobacterium avium subspecies paratuberculosis infections? Immunobiology 2011, 216, 840–846. [Google Scholar] [CrossRef]
- Koets, A.; Rutten, V.; Hoek, A.; van Mil, F.; Muller, K.; Bakker, D.; Gruys, E.; van Eden, W. Progressive bovine paratuberculosis is associated with local loss of CD4(+) T cells, increased frequency of gamma delta T cells, and related changes in T-cell function. Infect. Immun. 2002, 70, 3856–3864. [Google Scholar] [CrossRef] [Green Version]
- Stabel, J.R. Cytokine secretion by peripheral blood mononuclear cells from cows infected with Mycobacterium paratuberculosis. Am. J. Vet. Res. 2000, 61, 754–760. [Google Scholar] [CrossRef]
- Begg, D.J.; O’Brien, R.; Mackintosh, C.G.; Griffin, J.F. Experimental infection model for Johne’s disease in sheep. Infect. Immun. 2005, 73, 5603–5611. [Google Scholar] [CrossRef] [Green Version]
- Stabel, J.R.; Waters, W.R.; Bannantine, J.P.; Lyashchenko, K. Mediation of host immune responses after immunization of neonatal calves with a heat-killed Mycobacterium avium subsp. paratuberculosis vaccine. Clin. Vaccine Immunol. 2011, 18, 2079–2089. [Google Scholar] [CrossRef] [Green Version]
- Dantzler, K.W.; de la Parte, L.; Jagannathan, P. Emerging role of gammadelta T cells in vaccine-mediated protection from infectious diseases. Clin. Transl. Immunology 2019, 8, e1072. [Google Scholar] [CrossRef] [Green Version]
- Basile, J.I.; Liu, R.; Mou, W.; Gao, Y.; Carow, B.; Rottenberg, M.E. Mycobacteria-Specific T Cells Are Generated in the Lung During Mucosal BCG Immunization or Infection With Mycobacterium tuberculosis. Front. Immunol. 2020, 11, 566319. [Google Scholar] [CrossRef]
- Stabel, J.R.; Bannantine, J.P.; Hostetter, J.M. Comparison of Sheep, Goats, and Calves as Infection Models for Mycobacterium avium subsp. paratuberculosis. Vet. Immunol. Immunopathol. 2020, 225, 110060. [Google Scholar] [CrossRef] [PubMed]
- Bannantine, J.P.; Huntley, J.F.; Miltner, E.; Stabel, J.R.; Bermudez, L.E. The Mycobacterium avium subsp. paratuberculosis 35 kDa protein plays a role in invasion of bovine epithelial cells. Microbiology 2003, 149, 2061–2069. [Google Scholar] [CrossRef] [PubMed]
- Secott, T.E.; Lin, T.L.; Wu, C.C. Fibronectin attachment protein is necessary for efficient attachment and invasion of epithelial cells by Mycobacterium avium subsp. paratuberculosis. Infect. Immun. 2002, 70, 2670–2675. [Google Scholar] [CrossRef] [Green Version]
- Secott, T.E.; Lin, T.L.; Wu, C.C. Mycobacterium avium subsp. paratuberculosis fibronectin attachment protein facilitates M-cell targeting and invasion through a fibronectin bridge with host integrins. Infect. Immun. 2004, 72, 3724–3732. [Google Scholar] [CrossRef] [Green Version]
- Cho, D.; Sung, N.; Collins, M.T. Identification of proteins of potential diagnostic value for bovine paratuberculosis. Proteomics 2006, 6, 5785–5794. [Google Scholar] [CrossRef] [PubMed]
- Souza, G.S.; Rodrigues, A.B.; Gioffre, A.; Romano, M.I.; Carvalho, E.C.; Ventura, T.L.; Lasunskaia, E.B. Apa antigen of Mycobacterium avium subsp. paratuberculosis as a target for species-specific immunodetection of the bacteria in infected tissues of cattle with paratuberculosis. Vet. Immunol. Immunopathol. 2011, 143, 75–82. [Google Scholar] [CrossRef]
- Li, L.; Bannantine, J.P.; Campo, J.J.; Randall, A.; Grohn, Y.T.; Katani, R.; Schilling, M.; Radzio-Basu, J.; Kapur, V. Identification of sero-reactive antigens for the early diagnosis of Johne’s disease in cattle. PLoS ONE 2017, 12, e0184373. [Google Scholar] [CrossRef] [Green Version]
- Bannantine, J.P.; Campo, J.J.; Li, L.; Randall, A.; Pablo, J.; Praul, C.A.; Raygoza Garay, J.A.; Stabel, J.R.; Kapur, V. Identification of Novel Seroreactive Antigens in Johne’s Disease Cattle Using the Mycobacterium tuberculosis Protein Array. Clin. Vaccine Immunol. 2017. [Google Scholar] [CrossRef] [Green Version]
- Betts, J.C.; Lukey, P.T.; Robb, L.C.; McAdam, R.A.; Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 2002, 43, 717–731. [Google Scholar] [CrossRef]
- Li, L.; Munir, S.; Bannantine, J.P.; Sreevatsan, S.; Kanjilal, S.; Kapur, V. Rapid expression of Mycobacterium avium subsp. paratuberculosis recombinant proteins for antigen discovery. Clin. Vaccine Immunol. 2007, 14, 102–105. [Google Scholar] [CrossRef] [Green Version]
- Bannantine, J.P.; Lingle, C.K.; Adam, P.R.; Ramyar, K.X.; McWhorter, W.J.; Stabel, J.R.; Picking, W.D.; Geisbrecht, B.V. NlpC/P60 domain-containing proteins of Mycobacterium avium subspecies paratuberculosis that differentially bind and hydrolyze peptidoglycan. Protein Sci. 2016, 25, 840–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stabel, J.R.; Bannantine, J.P. Reduced tissue colonization of Mycobacterium avium subsp. paratuberculosis in neonatal calves vaccinated with a cocktail of recombinant proteins. Vaccine 2021, 39, 3131–3140. [Google Scholar] [CrossRef] [PubMed]
- Ates, L.S. New insights into the mycobacterial PE and PPE proteins provide a framework for future research. Mol. Microbiol. 2020, 113, 4–21. [Google Scholar] [CrossRef] [PubMed]
- Bannantine, J.P.; Stabel, J.R.; Lippolis, J.D.; Reinhardt, T.A. Membrane and Cytoplasmic Proteins of Mycobacterium avium subspecies paratuberculosis that Bind to Novel Monoclonal Antibodies. Microorganisms 2018, 6, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antigen | mAb Clone | Isotype | Working Concentration b (μg/mL) | Specificity |
---|---|---|---|---|
CD1 | TH97A | IgG2a | 10 | Dendritic cell |
CD4 | GC50A | IgM | 14 | T-helper cell |
CD8 | CACT80C | IgG1 | 14 | T-cytotoxic/suppessor cell |
N12 | CACTB6A | IgM | 14 | γδ-cell receptor |
B cell | GB26A | IgM | 7 | Total B cell |
CD14 | CAM66A | IgM | 10 | Monocyte |
CD25 | CACT116A | IgG1 | 15 | Regulatory marker |
CD28 | TE1A | IgM | 15 | Activation marker |
CD45RO | GC42A | IgG1 | 10 | Memory/activation marker |
CD44 | BAG40A | IgG1 | 10 | Memory marker |
CD62L | DUI-29 | IgG1 | 10 | Memory marker |
CD172a | DH59B | IgG1 | 10 | Dendritic cells |
Clone | Treatment | Antigen | Description | Size (kDa) |
---|---|---|---|---|
g1 | Both | MAP_1569 ModD | Hypothetical protein | 36.1 |
g2 | Both | MAP_1569 ModD | Hypothetical protein | 36.1 |
g3 | Both | MAP_1569 ModD | Hypothetical protein | 36.1 |
g4 | Both | MAP_1272c | Hypothetical protein | 29.2 |
g5 | Both | MAP_1569 ModD | Hypothetical protein | 36.1 |
g6 | Both | MAP_1569 ModD | Hypothetical protein | 36.1 |
g7 | Both | MAP_1569 ModD | Hypothetical protein | 36.1 |
g8 | Both | MAP_1569 ModD | Hypothetical protein | 36.1 |
g9 | Both | MAP_1272c | Hypothetical protein | 29.2 |
gv-1 | Vaccinated | MAP_0585 | Hypothetical protein | 34.4 |
gv-2 | Vaccinated | MAP_3420c | PPE family protein | 38.6 |
gv-3 | Vaccinated | MAP_1561c | FAD-dependent oxidoreductase | 49.6 |
gv-4 | Vaccinated | MAP_3420c | PPE family protein | 38.6 |
gv-5 | Vaccinated | MAP_0585 | Hypothetical protein | 34.4 |
gv-6 | Vaccinated | MAP_1561c | FAD-dependent oxidoreductase | 49.6 |
gv-7 | Vaccinated | MAP_0585 | Hypothetical protein | 34.4 |
gv-8 | Vaccinated | MAP_3185 | PPE family protein | 36.4 |
gv-9 | Vaccinated | MAP_3420c | PPE family protein | 38.6 |
gv-10 | Vaccinated | MAP_3185 | PPE family protein | 36.4 |
gv-11 | Vaccinated | MAP_0585 | Hypothetical protein | 34.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bannantine, J.P.; Stabel, J.R.; Kapur, V. Immunological Evaluation of Goats Immunized with a Commercial Vaccine against Johne’s Disease. Vaccines 2022, 10, 518. https://doi.org/10.3390/vaccines10040518
Bannantine JP, Stabel JR, Kapur V. Immunological Evaluation of Goats Immunized with a Commercial Vaccine against Johne’s Disease. Vaccines. 2022; 10(4):518. https://doi.org/10.3390/vaccines10040518
Chicago/Turabian StyleBannantine, John P., Judith R. Stabel, and Vivek Kapur. 2022. "Immunological Evaluation of Goats Immunized with a Commercial Vaccine against Johne’s Disease" Vaccines 10, no. 4: 518. https://doi.org/10.3390/vaccines10040518
APA StyleBannantine, J. P., Stabel, J. R., & Kapur, V. (2022). Immunological Evaluation of Goats Immunized with a Commercial Vaccine against Johne’s Disease. Vaccines, 10(4), 518. https://doi.org/10.3390/vaccines10040518