Booster COVID-19 Vaccines for Immune-Mediated Inflammatory Disease Patients: A Systematic Review and Meta-Analysis of Efficacy and Safety
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection of Articles
2.3. Extraction of Data
2.4. Risk of Bias Assessment
2.5. Analysis of Data
3. Results
3.1. Risk of Bias Assessment
3.2. Seroconversion in Non-Responders Elicited Following Booster Dose
3.3. Rise in Antibody Levels after Booster Dose
3.4. Increased Seroprotection against COVID-19 Variants of Significance
3.5. Reactogenicity and Adverse Events after the Booster Dose
3.6. Publication Bias, Influence and Sensitivity Analysis
4. Discussion
4.1. Efficacy, Necessity, and Safety of a Booster Dose
4.2. Factors Predicting Non-Response after a Booster Dose
4.3. Limitations of Review
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hyrich, K.L.; Machado, P.M. Rheumatic disease and COVID-19: Epidemiology and outcomes. Nat. Rev. Rheumatol. 2021, 17, 71–72. [Google Scholar] [CrossRef]
- Marques, C.D.L.; Kakehasi, A.M.; Pinheiro, M.M.; Mota, L.M.H.; Albuquerque, C.P.; Silva, C.R.; Santos, G.P.J.; Reis-Neto, E.T.; Matos, P.; Devide, G.; et al. High levels of immunosuppression are related to unfavourable outcomes in hospitalised patients with rheumatic diseases and COVID-19: First results of ReumaCoV Brasil registry. RMD Open 2021, 7, e001461. [Google Scholar] [CrossRef] [PubMed]
- Furer, V.; Rondaan, C.; Heijstek, M.W.; Agmon-Levin, N.; van Assen, S.; Bijl, M.; Breedveld, F.C.; D’Amelio, R.; Dougados, M.; Kapetanovic, M.C.; et al. 2019 update of EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann. Rheum. Dis. 2020, 79, 39–52. [Google Scholar] [CrossRef]
- Van Aalst, M.; Langedijk, A.C.; Spijker, R.; de Bree, G.J.; Grobusch, M.P.; Goorhuis, A. The effect of immunosuppressive agents on immunogenicity of pneumococcal vaccination: A systematic review and meta-analysis. Vaccine 2018, 36, 5832–5845. [Google Scholar] [CrossRef] [PubMed]
- Firinu, D.; Perra, A.; Campagna, M.; Littera, R.; Fenu, G.; Meloni, F.; Cipri, S.; Sedda, F.; Conti, M.; Miglianti, M.; et al. Evaluation of antibody response to BNT162b2 mRNA COVID-19 vaccine in patients affected by immune-mediated inflammatory diseases up to 5 months after vaccination. Clin. Exp. Med. 2021, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zheng, Y.; Chen, X. Drugs for Autoimmune Inflammatory Diseases: From Small Molecule Compounds to Anti-TNF Biologics. Front. Pharmacol. 2017, 8, 460. [Google Scholar] [CrossRef]
- Sepriano, A.; Kerschbaumer, A.; Smolen, J.S.; van der Heijde, D.; Dougados, M.; van Vollenhoven, R.; McInnes, I.B.; Bijlsma, J.W.; Burmester, G.R.; Maarten de Wit, M.; et al. Safety of synthetic and biological DMARDs: A systematic literature review informing the 2019 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 2020, 79, 760–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenberg, R.A.; Jawad, A.F.; Boyer, J.; Maurer, K.; McDonald, K.; Prak, E.T. Rituximab-treated patients have a poor response to influenza vaccination. J. Clin. Immunol. 2013, 33, 388–396. [Google Scholar] [CrossRef] [Green Version]
- Vijenthira, A.; Gong, I.; Betschel, S.D.; Cheung, M.; Hicks, L.K. Vaccine response following anti-CD20 therapy: A systematic review and meta-analysis of 905 patients. Blood Adv. 2021, 5, 2624–2643. [Google Scholar] [CrossRef] [PubMed]
- Kelly, H.; Sokola, B.; Abboud, H. Safety and efficacy of COVID-19 vaccines in multiple sclerosis patients. J. Neuroimmunol. 2021, 356, 577599. [Google Scholar] [CrossRef] [PubMed]
- Nagel, J.; Saxne, T.; Geborek, P.; Bengtsson, A.A.; Jacobsen, S.; Svaerke Joergensen, C. Treatment with belimumab in systemic lupus erythematosus does not impair antibody response to 13-valent pneumococcal conjugate vaccine. Lupus 2017, 26, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.A.; Curtis, J.R.; Winthrop, K.L. Impact of disease-modifying antirheumatic drugs on vaccine immunogenicity in patients with inflammatory rheumatic and musculoskeletal diseases. Ann. Rheum. Dis. 2021, 80, 1255–1265. [Google Scholar] [CrossRef] [PubMed]
- Barbhaiya, M.; Levine, J.M.; Bykerk, V.P.; Jannat-Khah, D.; Mandl, L.A. Systemic rheumatic disease flares after SARS-CoV-2 vaccination among rheumatology outpatients in New York City. Ann. Rheum. Dis. 2021, 80, 1352–1354. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.R.Y.B.; Wong, S.Y.; Chai, L.Y.A.; Lee, S.C.; Lee, M.X.; Muthiah, M.D.; Tay, S.H.; Teo, C.B.; Tan, B.K.J.; Chan, Y.H.; et al. Efficacy of covid-19 vaccines in immunocompromised people: Systematic review and meta-analysis. BMJ 2022, 376, e068632. [Google Scholar] [CrossRef]
- Lee, A.R.Y.B.; Wong, S.Y.; Chai, L.Y.A.; Lee, S.C.; Lee, M.; Muthiah, M.D.; Tay, S.H.; Teo, C.B.; Tan, B.K.J.; Chan, Y.H.; et al. Efficacy of COVID-19 vaccines in immunocompromised patients: A systematic review and meta-analysis. medRxiv 2021. [Google Scholar] [CrossRef]
- American College of Rheumatology. COVID-19 Vaccine Clinical Guidance Summary for Patients with Rheumatic and Musculoskeletal Diseases. Rheumatology.org. 2022. Available online: https://www.rheumatology.org/Portals/0/Files/COVID-19-Vaccine-Clinical-Guidance-Rheumatic-Diseases-Summary.pdf (accessed on 27 January 2022).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Kuek, A.; Hazleman, B.L.; Ostör, A.J. Immune-mediated inflammatory diseases (IMIDs) and biologic therapy: A medical revolution. Postgrad. Med. J. 2007, 83, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Munn, Z.; Moola, S.; Riitano, D.; Lisy, K. The development of a critical appraisal tool for use in systematic reviews addressing questions of prevalence. Int. J. Health Policy Manag. 2014, 3, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Munn, Z.; Barker, T.H.; Moola, S.; Tufanaru, C.; Stern, C.; McArthur, A. Methodological quality of case series studies: An introduction to the JBI critical appraisal tool. JBI Evid. Synth. 2020, 18, 2127–2133. [Google Scholar] [CrossRef]
- Simon, D.; Tascilar, K.; Fagni, F.; Schmidt, K.; Krönke, G.; Kleyer, A.; Ramming, A.; Schoenau, V.; Bohr, D.; Knitza, J.; et al. Efficacy and safety of SARS-CoV-2 revaccination in non-responders with immune-mediated inflammatory disease. Ann. Rheum. Dis. 2021. [Google Scholar] [CrossRef]
- Schmiedeberg, K.; Vuilleumier, N.; Pagano, S.; Albrich, W.C.; Ludewig, B.; Kempis, J.V. Efficacy and tolerability of a third dose of an mRNA anti-SARS-CoV-2 vaccine in patients with rheumatoid arthritis with absent or minimal serological response to two previous doses. Lancet Rheumatol. 2022, 4, e11–e13. [Google Scholar] [CrossRef]
- Schell, T.L.; Knutson, K.L.; Saha, S.; Wald, A.; Phan, H.S.; Almasry, M.; Chun, K.; Grimes, I.; Lutz, M.; Hayney, M.S.; et al. Humoral Immunogenicity of Three COVID-19 mRNA Vaccine Doses in Patients with Inflammatory Bowel Disease. medRxiv 2021. [Google Scholar] [CrossRef]
- Jyssum, I.; Kared, H.; Tran, T.T.; Tveter, A.T.; Provan, S.A.; Sexton, J.; Jørgensen, K.K.; Jahnsen, J.; Kro, G.B.; Warren, D.J.; et al. Humoral and cellular immune responses to two and three doses of SARS-CoV-2 vaccines in rituximab-treated patients with rheumatoid arthritis: A prospective, cohort study. Lancet Rheumatol. 2021, 4, e177–e187. [Google Scholar] [CrossRef]
- Speer, C.; Töllner, M.; Benning, L.; Klein, K.; Bartenschlager, M.; Nusshag, C.; Kälble, F.; Reichel, P.; Schnitzler, P.; Zeier, M.; et al. Third COVID-19 vaccine dose with BNT162b2 in patients with ANCA-associated vasculitis. Ann. Rheum. Dis. 2022, 81, 593–595. [Google Scholar] [CrossRef] [PubMed]
- Sidler, D.; Born, A.; Schietzel, S.; Horn, M.P.; Aeberli, D.; Amsler, J.; Möller, B.; Njue, L.M.; Medri, C.; Angelillo-Scherrer, A.; et al. Longitudinal analysis of antibody trajectories and humoral responses to a third dose of mRNA vaccines against SARS-CoV-2 in patients with a history of anti-CD20 therapy (RituxiVac 2.0). medRxiv 2021. [Google Scholar] [CrossRef]
- Hadjadj, J.; Planas, D.; Ouedrani, A.; Buffier, S.; Delage, L.; Nguyen, Y.; Bruel, T.; Stolzenberg, M.; Staropoli, I.; Ermak, N.; et al. Immunogenicity of BNT162b2 vaccine against the Alpha and Delta variants in immunocompromised patients with systemic inflammatory diseases. Ann. Rheum. Dis. 2022; online ahead of print. [Google Scholar]
- Yang, L.M.; Costales, C.; Ramanathan, M.; Bulterys, P.L.; Murugesan, K.; Schroers-Martin, J.; Alizadeh, A.A.; Boyd, S.D.; Brown, J.M.; Nadeau, K.C.; et al. Cell-mediated and humoral immune response to SARS-CoV-2 vaccination and booster dose in immunosuppressed patients. medRxiv 2022. [Google Scholar] [CrossRef]
- Bonelli, M.; Mrak, D.; Tobudic, S.; Sieghart, D.; Koblischke, M.; Mandl, P.; Kornek, B.; Simader, E.; Radner, H.; Perkmann, T.; et al. Additional heterologous versus homologous booster vaccination in immunosuppressed patients without SARS-CoV-2 antibody seroconversion after primary mRNA vaccination: A randomised controlled trial. Ann. Rheum. Dis. 2022, 81, 687–694. [Google Scholar] [CrossRef]
- Achtnichts, L.; Jakopp, B.; Oberle, M.; Nedeltchev, K.; Fux, C.A.; Sellner, J. Humoral Immune Response after the Third SARS-CoV-2 mRNA Vaccination in CD20 Depleted People with Multiple Sclerosis. Vaccines 2021, 9, 1470. [Google Scholar] [CrossRef]
- Madelon, N.; Heikkilä, N.; Sabater Royo, I.; Fontannaz, P.; Breville, G.; Lauper, K.; Goldstein, R.; Grifoni, A.; Sette, A.; Siegrist, C.; et al. Omicron-Specific Cytotoxic T-Cell Responses After a Third Dose of mRNA COVID-19 Vaccine Among Patients with Multiple Sclerosis Treated with Ocrelizumab. JAMA Neurol. 2022, 79, 399–404. [Google Scholar] [CrossRef]
- Dreyer-Alster, S.; Menascu, S.; Mandel, M.; Shirbint, E.; Magalashvili, D.; Dolev, M.; Flechter, S.; Givon, U.; Guber, D.; Stern, Y.; et al. COVID-19 vaccination in patients with multiple sclerosis: Safety and humoral efficacy of the third booster dose. J. Neurol. Sci. 2022, 434, 120155. [Google Scholar] [CrossRef]
- Mallory, R.; Formica, N.; Pfeiffer, S.; Wilkinson, B.; Marcheschi, A.; Albert, G.; McFall, H.; Robinson, M.; Plested, J.S.; Zhu, M.; et al. Immunogenicity and Safety Following a Homologous Booster Dose of a SARS-CoV-2 recombinant spike protein vaccine (NVX-CoV2373): A Phase 2 Randomized Placebo-Controlled Trial. medRxiv 2021. [Google Scholar] [CrossRef]
- Connolly, C.M.; Teles, M.; Frey, S.; Boyarsky, B.J.; Alejo, J.L.; Werbel, W.A.; Albayda, J.; Christopher-Stine, L.; Garonzik-Wang, J.; Segev, D.L.; et al. Booster-dose SARS-CoV-2 vaccination in patients with autoimmune disease: A case series. Ann. Rheum. Dis. 2022, 81, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Assawasaksakul, T.; Sathitratanacheewin, S.; Vichaiwattana, P.; Wanlapakorn, N.; Poovorawan, Y.; Kittanamongkolchai, W. Immunogenicity, safety and reactogenicity of a heterogeneous booster following the CoronaVac inactivated SARS-CoV-2 vaccine in patients with SLE: A case series. RMD Open 2021, 7, e002019. [Google Scholar] [CrossRef] [PubMed]
- Felten, R.; Gallais, F.; Schleiss, C.; Chatelus, E.; Javier, R.-M.; Pijnenburg, L.; Sordet, C.; Sibilia, J.; Arnaud, L.; Fafi-Kremer, S.; et al. Cellular and humoral immunity after the third dose of SARS-CoV-2 vaccine in patients treated with rituximab. Lancet Rheumatol. 2022, 4, e13–e16. [Google Scholar] [CrossRef]
- Kant, S.; Azar, A.; Geetha, D. Antibody response to COVID-19 booster vaccine in rituximab-treated patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Kidney Int. 2021. [Google Scholar] [CrossRef] [PubMed]
- Achiron, A.; Mandel, M.; Dreyer-Alster, S.; Harari, G.; Gurevich, M. Humoral SARS-COV-2 IgG decay within 6 months in COVID-19 healthy vaccinees: The need for a booster vaccine dose? Eur. J. Intern. Med. 2021, 94, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Geisen, U.M.; Sümbül, M.; Tran, F.; Berner, D.K.; Reid, H.M.; Vullriede, L.; Ciripoi, M.; Longardt, A.C.; Hoff, P.; Morrison, P.J.; et al. Humoral protection to SARS-CoV2 declines faster in patients on TNF alpha blocking therapies. RMD Open 2021, 7, e002008. [Google Scholar] [CrossRef]
- Arnold, J.; Winthrop, K.; Emery, P. COVID-19 vaccination and antirheumatic therapy. Rheumatology 2021, 60, 3496–3502. [Google Scholar] [CrossRef]
- Magliulo, D.; Wade, S.D.; Kyttaris, V.C. Immunogenicity of SARS-CoV-2 vaccination in rituximab-treated patients: Effect of timing and immunologic parameters. Clin. Immunol. 2022, 234, 108897. [Google Scholar] [CrossRef]
- Elkayam, O.; Bashkin, A.; Mandelboim, M.; Litinsky, I.; Comaheshter, D.; Levartovsky, D.; Mendelson, E.; Wigler, I.; Caspi, D.; Paran, D. The effect of infliximab and timing of vaccination on the humoral response to influenza vaccination in patients with rheumatoid arthritis and ankylosing spondylitis. Semin. Arthritis Rheum. 2010, 39, 442–447. [Google Scholar] [CrossRef]
- Brill, L.; Rechtman, A.; Zveik, O.; Haham, N.; Oiknine-Djian, E.; Wolf, D.G.; Levin, N.; Raposo, C.; Vaknin-Dembinsky, A. Humoral and T-Cell Response to SARS-CoV-2 Vaccination in Patients with Multiple Sclerosis Treated with Ocrelizumab. JAMA Neurol. 2021, 78, 1510–1514. [Google Scholar] [CrossRef] [PubMed]
- Madelon, N.; Lauper, K.; Breville, G.; Sabater Royo, I.; Goldstein, R.; Andrey, D.O.; Grifoni, A.; Sette, A.; Kaiser, L.; Siegrist, C.; et al. Robust T cell responses in anti-CD20 treated patients following COVID-19 vaccination: A prospective cohort study. Clin. Infect. Dis. 2021. [Google Scholar] [CrossRef] [PubMed]
- Guerrieri, S.; Lazzarin, S.; Zanetta, C.; Nozzolillo, A.; Filippi, M.; Moiola, L. Serological response to SARS-CoV-2 vaccination in multiple sclerosis patients treated with fingolimod or ocrelizumab: An initial real-life experience. J. Neurol. 2022, 269, 39–43. [Google Scholar]
- Sieiro Santos, C.; Antolin, S.C.; Moriano Morales, C.M.; Herrero, J.G.; Alvarez, E.D.; Ortega, F.R.; de Morales, J.G.R. Immune responses to mRNA vaccines against SARS-CoV-2 in patients with immune-mediated inflammatory rheumatic diseases. RMD Open 2022, 8, e001898. [Google Scholar] [CrossRef]
- Munro, A.P.S.; Janani, L.; Cornelius, V.; Aley, P.K.; Babbage, G.; Baxter, D.; Bula, M.; Cathie, K.; Chatterjee, K.; Dodd, K.; et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): A blinded, multicentre, randomised, controlled, phase 2 trial. Lancet 2021, 398, 2258–2276. [Google Scholar] [CrossRef]
- Atmar, R.L.; Lyke, K.E.; Deming, M.E.; Jackson, L.A.; Branche, A.R.; Sahly, H.M.E.; Rostad, C.A.; Martin, J.M.; Johnston, C.; Rupp, R.E.; et al. Heterologous SARS-CoV-2 Booster Vaccinations-Preliminary Report. medRxiv 2021. [Google Scholar] [CrossRef]
- Zuo, F.; Abolhassani, H.; Du, L.; Piralla, A.; Bertoglio, F.; de Campos-Mata, L.; Wan, H.; Schubert, M.; Wang, Y.; Sun, R.; et al. Heterologous immunization with inactivated vaccine followed by mRNA booster elicits strong humoral and cellular immune responses against the SARS-CoV-2 Omicron variant. medRxiv 2022. [Google Scholar] [CrossRef]
- Reindl-Schwaighofer, R.; Heinzel, A.; Mayrdorfer, M.; Jabbour, R.; Hofbauer, T.M.; Merrelaar, A.; Eder, M.; Regele, F.; Doberer, K.; Specht, P.; et al. Comparison of SARS-CoV-2 Antibody Response 4 Weeks After Homologous vs. Heterologous Third Vaccine Dose in Kidney Transplant Recipients: A Randomized Clinical Trial. JAMA Intern. Med. 2022, 182, 165–171. [Google Scholar] [CrossRef]
Study | Study Design | Primary Series Received | Booster Vaccine | IMIDs | Treatment Received | Seroconversion Threshold | Age *, Years | Days * between Booster Dose and Primary Series |
---|---|---|---|---|---|---|---|---|
Simon et al. [21] | Observational | BNT162b2 or AZD1222 | BNT162b2 or AZD1222 | 66 total: | 5 TNF | SARS-CoV-2 spike protein IgG OD450nm > 1.1 | Mean (SD): 63.3 (14) | RTX: 93 Non-RTX: 69 |
2 IL-17 | ||||||||
1 IL-6 | ||||||||
1 IL-1 | ||||||||
33 RTX | ||||||||
30 RA | 5 CD80/86 | |||||||
4 SA | 22 csDMARD | |||||||
13 CTD | 30 steroids | |||||||
14 vasculitis | 7 JAKi | |||||||
5 others | 1 Integrin α4β7 | |||||||
Schmiedeberg et al. [22] | Observational | BNT162b2 | BNT162b2 | 17 RA | 5 combined csDMARD and biologics | SARS-CoV-2 S1 IgG > 133U/mL | Not reported | Not reported |
1 csDMARD monotherapy | ||||||||
3 biologic monotherapy | ||||||||
3 JAKi monotherapy | ||||||||
Schell et al. [23] | Observational | BNT162b2 or mRNA-1273 | BNT62b2 or mRNA-1273 | 85 total | 3 ASA | Anti-spike IgG, cutoff not reported | 48 (38–60) | 149 (132–167) |
55 CD | 21 vedolizumab monotherapy | |||||||
6 thiopurine | ||||||||
31 anti-TNF mono | ||||||||
12 anti-TNF combination | ||||||||
30 UC | 9 ustekinumab monotherapy or combination | |||||||
2 tofacitinib monotherapy | ||||||||
1 steroids | ||||||||
Jyssum et al. [24] | Observational | BNT162b2 or mRNA-1273 | BNT162b2 or mRNA-1273 | 49 RA | 16 RTX monotherapy | anti-RBD > 70 AU/mL | 62 (56–67) | Not reported |
5 steroids | ||||||||
22 MTX | ||||||||
Speer et al. [25] | Observational | BNT162b2 | BNT162b2 | 21 ANCA vasculitis | 4 only steroids | Viral neutralisation > 30% | 71 (59–74) | 103 |
9 Azathioprine or MMF | ||||||||
8 RTX ± azathioprine or MMF ± steroids | ||||||||
Sidler et al. [26] | Observational | BNT162b2 | BNT162b2 or mRNA-1273 | Not reported | Anti-CD20 therapies (RTX or ocrelizumab) | Anti-SARS-CoV-2 IgG s/c ratio > 1.1 | 66 (50–72) (Anti-S1 negative patients) 58 (43–71) (Anti-S1 positive patients) | 5 months |
Hadjadj et al. [27] | Observational | BNT162b2 | BNT162b2 | 56 total: | 19 MTX | anti-SARS-CoV-2 IgG > 1.1 BAU/mL, IgA > 0.2 BAU/mL | 52 (37.8–66.3) | 102 |
5 azathioprine | ||||||||
18 vasculitis | 12 MMF | |||||||
15 SLE | 3 CYC | |||||||
7 SS | 6 anti-TNF | |||||||
2 Sjogren’s | 22 RTX | |||||||
5 myositis | 3 tocilizumab | |||||||
3 arthritis | 1 belimumab | |||||||
6 others | 15 HCQ | |||||||
Yang et al. [28] | Observational | BNT162b2, mRNA-1273 or Ad26.COV2.S | BNT162b2, mRNA-1273 or Ad26.COV2.S | 35 with various IMIDs | 8 anti-CD20 antibodies | Anti-S1 IgG OD ratio > 1.1 | 55 (38–63) | Not reported |
2 S1P modulators | ||||||||
9 MMF | ||||||||
10 steroids | ||||||||
1 untreated | ||||||||
Bonelli et al. [29] | Observational | BNT162b2 or mRNA-1273 | BNT162b2, mRNA-1273 or AZD1222 | 55 total: | 10 MTX | Anti-RBD IgG > 0.8 BAU/mL | Patients receiving viral vector vaccines: 60.9 Patients receiving mRNA vaccines: 58.9 | Not reported |
6 MMF | ||||||||
21 arthritis | 5 azathioprine | |||||||
16 CTD | 4 leflunamide | |||||||
8 vasculitis | 4 HCQ | |||||||
6 MS | 2 Ig therapy | |||||||
4 IgG4 | 15 steroids | |||||||
Achtnichts et al. [30] | Observational | BNT162b2 or mRNA-1273 | BNT162b2 or mRNA-1273 | 16 MS | 16 RTX or ocrelizumab | Anti-RBD > 100 AU/mL | Mean (SD): 51 (12.3) | 104.3 (Range: 46–211) |
Madelon et al. [31] | Observational | BNT162b2 or mRNA-1273 | BNT162b2 or mRNA-1273 | 20 MS | 20 ocrelizumab | Not reported | 45.8 (37.8–53.3) | 187 (156–203) |
Dreyer-Alster et al. [32] | Observational | BNT162b2 | BNT162b2 | 211 MS in total | 53 untreated | Anti-S1 >35.2 BAU/ml | 18–55 years: 121 > 55 years: 90 | 66 (54–84) |
6 beta-interferons | ||||||||
2 glatiramer acetate | ||||||||
19 teriflunomide | ||||||||
35 MS with serology data available | 9 dimethyl fumarate | |||||||
17 natalizumab | ||||||||
25 fingolimod | ||||||||
65 ocrelizumab | ||||||||
211 MS with safety data available | 4 alemtuzumab | |||||||
7 cladribine | ||||||||
1 RTX | ||||||||
3 intravenous immunoglobulins | ||||||||
Mallory et al. [33] | Randomised trial | NVX-CoV2373 | NVX-CoV2373 | Various | Various | Inhibition concentration > 50% | 57 | 189 |
Connolly et al. [34] | Case series | BNT162b2, mRNA-1273 or Ad26.COV2.S | BNT162b2, mRNA-1273 or Ad26.COV2.S | 18 total: | Various | Anti-RBD > 500 U/mL | 55 (44–65) | 77 |
1 MS | ||||||||
2 IBD | ||||||||
6 myositis | ||||||||
1 SLE | ||||||||
2 autoimmune hepatitis | ||||||||
3 arthritis | ||||||||
1 sarcoid | ||||||||
2 others | ||||||||
Assawasaksakul et al. [35] | Case series | CoronaVac | BNT162b2 or AZD1222 | 8 SLE | Azathioprine, cyclosporin, MMF, steroids, tacrolimus | Inhibition > 35% | 28 (22–45.5) | 92 |
Felten et al. [36] | Case series | BNT162b2, mRNA-1273 or AZD1222 | BNT162b2 or mRNA-1273 | 10 total: | RTX-containing regimens | Anti-RBD IgG > 7.1 AU/mL | 72 (67–79.5) | 65 |
9 RA | ||||||||
1 Stiff-person syndrome | ||||||||
Kant et al. [37] | Case series | BNT162b2, mRNA-1273 or Ad26.COV2.S | BNT162b2, mRNA-1273 or Ad26.COV2.S | 15 ANCA vasculitis | RTX-containing regimens | Anti-spike S1 IgG, cutoff not reported | 69 (63.5–73) | Not reported |
Variable | Cohorts | N in Subgroup | Pooled Risk with Random Effects (95% CI) | I2 (%) | Test for Subgroup Effect (p-Value) |
---|---|---|---|---|---|
Treatment | |||||
Anti-CD20 | 9 | 226 | 0.25 (0.17–0.36) | 50.7 | < 0.0001 |
Non-anti-CD20 | 6 | 114 | 0.81 (0.72–0.87) | 0.0 | |
Disease | |||||
Only RA | 3 | 76 | 0.51 (0.12–0.89) | 90.0 | 0.0286 |
Only SLE | 1 | 8 | 0.94 (0.50–1.00) | NIL | |
Only ANCA vasculitis | 2 | 36 | 0.53 (0.37–0.68) | 0.0 | |
Only MS | 1 | 16 | 0.06 (0.01–0.34) | NIL | |
Age | |||||
<50 | 1 | 8 | 0.94 (0.50–1.00) | NIL | 0.0571 |
50–65 | 7 | 269 | 0.36 (0.20–0.56) | 86.8 | |
>65 | 3 | 46 | 0.52 (0.38–0.66) | 0.0 | |
Vaccine type | |||||
Only mRNA | 6 | 163 | 0.34 (0.16–0.58) | 83.5 | 0.0049 |
Only viral vector | 1 | 27 | 0.22 (0.10–0.41) | NIL |
Study * | Antibody and Value Measured | Days Post Primary Series | Pre-Booster Titre (IQR) † | Days Post Booster | Post-Booster Titre (IQR) † | Fold Increase ‡ |
---|---|---|---|---|---|---|
Schmiedeberg et al. [22] | Anti-S1 antibody level (U/mL) | - | 19.5 (0.45–48) | 14 | 2500 (798–2500) | 128.21 |
Schell et al. [23] | Anti-RBD antibody titre | 32 (29–34) | 31 (16–61) | 37 (32–47) | 68 (32–147) | 2.19 |
Jyssum et al. [24] | Anti-RBD antibody titre (AU/mL) | 7–10 | 3 (2–18) | 21 | Rise: 0.96 (0.05–27.38) | - |
Speer et al. [25] | Anti-S1 IgG index | 103 (72–126) | 0.1 (0.1–1.8) | 21 | 5.6 (0.5–150) | 56 |
Speer et al. [25] | Neutralising surrogate antibodies | 103 (72–126) | 9 (0–35) | 21 | 56 (4–94) | 6.2 |
Yang et al. [28] | Anti-S1 antibody (OD ratio) | 14 | 1.2 (0.2–5.2) | At least 7 | 3.3 (1.0–7.9) | 2.75 |
Yang et al. [28] | ACE2 blocking (%) | 14 | 0.0 (0.0–10.2) | At least 7 | 9.0 (0.0–42.5) | NA |
Madelon et al. [31] | Anti-RBD antibody titre (U/mL) | - | GMT: 3.5 | 30 | GMT: 57.9 | 16.5 |
Dreyer-Alster et al. (Cladribine) [32] | Anti-S1 antibody titre (BAU/mL) | At least 6 months | GMT: 686.3 | 0–3 months | GMT: 2345.6 | 3.42 |
Dreyer-Alster et al. (Glatiramer acetate) [32] | Anti-S1 antibody titre (BAU/mL) | At least 6 months | GMT: 581.9 | 0–3 months | GMT: 2530.1 | 4.35 |
Dreyer-Alster et al. (Diroximelfumarate) [32] | Anti-S1 antibody titre (BAU/mL) | At least 6 months | GMT: 335.7 | 0–3 months | GMT: 5830.4 | 17.37 |
Dreyer-Alster et al. (Immunoglobulins) [32] | Anti-S1 antibody titre (BAU/mL) | At least 6 months | GMT: 145.8 | 0–3 months | GMT: 5077.4 | 34.82 |
Dreyer-Alster et al. (Natalizumab) [32] | Anti-S1 antibody titre (BAU/mL) | At least 6 months | GMT: 286.6 | 0–3 months | GMT: 2161.4 | 7.54 |
Dreyer-Alster et al. (Dimethyl fumarate) [32] | Anti-S1 antibody titre (BAU/mL) | At least 6 months | GMT: 181.8 | 0–3 months | GMT: 2255.6 | 12.41 |
Dreyer-Alster et al. (Teriflunomide) [32] | Anti-S1 antibody titre (BAU/mL) | At least 6 months | GMT: 373.7 | 0–3 months | GMT: 2331.2 | 6.24 |
Mallory et al. [33] | Serum IgG against ancestral SARS-CoV-2 (EU) | 14 | 43905 | 28 | 204367 | 4.65 |
Connolly et al. [34] | Anti-RBD antibody level (U/mL) | 77 | <0.4 (<0.4–222) | 30 (27–36) | 2500 (885–2500) | >6250 |
Assawasaksakul et al. [35] | Anti-RBD antibody level (U/mL) | - | 83.3 (31.6–341.6) | 14 | 19,986 (15,079–59,735) | 239.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, A.R.Y.B.; Wong, S.Y.; Tay, S.H. Booster COVID-19 Vaccines for Immune-Mediated Inflammatory Disease Patients: A Systematic Review and Meta-Analysis of Efficacy and Safety. Vaccines 2022, 10, 668. https://doi.org/10.3390/vaccines10050668
Lee ARYB, Wong SY, Tay SH. Booster COVID-19 Vaccines for Immune-Mediated Inflammatory Disease Patients: A Systematic Review and Meta-Analysis of Efficacy and Safety. Vaccines. 2022; 10(5):668. https://doi.org/10.3390/vaccines10050668
Chicago/Turabian StyleLee, Ainsley Ryan Yan Bin, Shi Yin Wong, and Sen Hee Tay. 2022. "Booster COVID-19 Vaccines for Immune-Mediated Inflammatory Disease Patients: A Systematic Review and Meta-Analysis of Efficacy and Safety" Vaccines 10, no. 5: 668. https://doi.org/10.3390/vaccines10050668
APA StyleLee, A. R. Y. B., Wong, S. Y., & Tay, S. H. (2022). Booster COVID-19 Vaccines for Immune-Mediated Inflammatory Disease Patients: A Systematic Review and Meta-Analysis of Efficacy and Safety. Vaccines, 10(5), 668. https://doi.org/10.3390/vaccines10050668