The Chemokines CXC, CC and C in the Pathogenesis of COVID-19 Disease and as Surrogates of Vaccine-Induced Innate and Adaptive Protective Responses
Abstract
:1. Introduction
2. Methods
3. Bio-Structure and Functions of Chemokines
4. Chemokines and Pathologic Disorders
5. Chemokines and ARDS
6. Chemokines in Viral Diseases
7. Chemokines and COVID-19
7.1. CXC Chemokines and COVID-19
7.1.1. CXCL1
7.1.2. CXCL2
7.1.3. CXCL3
7.1.4. CXCL4
7.1.5. CXCL8
7.1.6. CXCL9
7.1.7. CXCL10
7.2. CC Chemokines and COVID-19
7.2.1. CCL2
7.2.2. CCL3, CCL4
7.2.3. CCL5
7.2.4. CCL0
7.2.5. CCL17
7.2.6. CCL19
7.2.7. CCL20
First Author | Country | Other Name | Chemokine Receptors | Technique Employed | Chemokine | Presentation on Immune Cells | Role in Immunity | Kind of Chemokine | Expression and Role in COVID-19 | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Hemmat N, et al. | Iran | (GRO-a) | CXCR2 | Clinical trial | CXCL1 | Mesenchymal stem cells (MSC), neutrophil, monocyte | Migration of neutrophils | CXC chemokine | CXCL1 enhance the neutrophilia condition in these patients by their overexpression | [48] |
Lee AC, et al. | USA | (GRO-a) | CXCR2 | Prospective Clinical trial | CXCL1 | MSC, neutrophil, monocyte | Migration of neutrophils | CXC chemokine | Smoking or vaping, by the dysregulation of key genes such as CXCL1, critically exacerbate COVID-19-related inflammation | [49] |
Islam A, et al. | Bangladesh | (GRO-b, MIP-2a) | CXCR2 | Retrospective clinical trial | CXCL2 | MSC, neutrophil, monocyte | Migration of neutrophils | CXC chemokine | Upregulation of the immune and cytokine signaling genes consisting of CXCL2 were determined in lungs | [50] |
Miyazawa M, et al. | Japan | (GRO-b, MIP-2a) | CXCR2 | Prospective clinical trial | CXCL2 | MSC, neutrophil, monocyte | Migration of neutrophils | CXC chemokine | A dangerous cycle of CCL2- and CXCL2-mediated inflammatory monocyte- and neutrophil-related apoptosis | [51] |
Loganathan T, et al. | India | GRO3 | CXCR2 | Prospective clinical trial | CXCL3 | MSC, neutrophil, monocyte | CXC chemokine | The up-regulated CXCL3 were recognized in early infection models of SARS-CoV-2. | [52] | |
Cai Z, et al. | USA | PF4 | CXCR3 | Review | CXCL4 | neutrophil, monocyte | CXC chemokine | CXCL4 can be a therapeutic alternative to the use of blocking antibodies within the COVID-19 remedies | [53] | |
Park JH, et al. | South Korea | (IL-8) | CXCR1 CXCR2 | Prospective clinical trial | CXCL8 | MSC, neutrophil, monocyte | Migration of neutrophils | CXC chemokine | In COVID-19, confirmed greater expression of pro-inflammatory cytokines and chemokines along with CXCL8. | [58] |
Abers MS, et al. | USA | (MIG) | CXCR3-A/B | Prospective clinical trial | CXCL9 | MSC, T cell, microvascular cells | Migration of Th1, CD8 and NK | CXC chemokine | Discovered several biomarkers such as CXCL9 that have been substantially related to mortality | [59] |
Tincati C, et al. | Italy | (IP-10) | CXCR3-A/B | Meta-analysis | CXCL9 | MSC, T cell, microvascular cells | Migration of Th1, CD8 and NK cells | CXC chemokine | COVID-19 patients displayed higher non-classical monocytes, plasma chemokines CXCL8, CXCL9, CXCL10 | [60] |
Cheemarla NR, et al. | USA New Haven | (IP-10) | CXCR3-A/B | Prospective clinical trial | CXCL10 | MSC, T cell, microvascular cells | Th1 response Migration of Th1, CD8 and NK cells | CXC chemokine | CXCL10 is increased for the duration of SARS-CoV-2 infection | [62] |
Runfeng L, et al. | China | (IP-10) | CXCR3-A/B | Prospective clinical trial | CXCL10 | MSC, T cell, microvascular cells | Th1 response Migration of Th1, CD8 and NK cells | CXC chemokine | The drug Lianhuaqingwen (LH)significantly decreased numerous seasoned-inflammatory cytokines as such CXCL-10/IP-10 manufacturing on the mRNA ranges | [63] |
Kempuraj D, et al. | USA | MCP-1 | CCR2 | Preprint study | CCL2 | MSC, monocyte, T cell, DC | Migration of inflammatory monocytes | CC chemokine | The hallmark of COVID-19 pathogenesis is with elevated levels of CCL2 | [64] |
Ray PR, et al. | USA | MCP-1 | CCR2 | Prospective clinical trial | CCL2 | MSC, monocyte, T cell, DC | Migration of inflammatory monocytes | CC chemokine | CCL2 inhibitor drugs for treating high risk or severe COVID-19 cases | [65] |
Ruan X, et al. | MCP-1 | CCR2 | Review | CCL2 | MSC, monocyte, T cell, DC | Migration of inflammatory monocytes | CC chemokine | Dayuanyin (DYY) treatment of COVID-19 via suppressing the inflammatory typhoon such as CCL2 and regulating immune characteristics | [66] | |
Gruber C et al. | USA | (MIP-1a) (MIP-1b) | CCR1, CCR5 | Prospective clinical trial | CCL3, CCL4 | MSC, monocyte, T cell, DC, HSC | Migration of macrophages and NK cells T cell/DCs interaction Migration of macrophages and NK cells T cell/DCs interaction | CC chemokine | Cytokine profiling identified elevated signatures of lymphocytic and myeloid chemotaxis and activation of CCL3, CCL4, and CDCP1 | [67] |
Xiong Y, et al. | China | (MIP-1a) (MIP-1b) | CCR1, CCR5 | Prospective clinical trial | CCL3, CCL4 | MSC, monocyte, T cell, DC, HSC | Migration of macrophages and NK cells T cell/DCs interaction Migration of macrophages and NK cellsT cell/DCs interaction | CC chemokine | Excess cytokine release consisting of CCL4/MIP1B and CCL3/MIP-1A In SARS-CoV-2 | [68] |
Trump S | Germany | (MIP-1a) (MIP-1b) | CCR1, CCR5 | Clinical trial (preprint) | CCL3, CCL4 | MSC, monocyte, T cell, DC, HSC | Migration of macrophages and NK cells T cell/DCs interaction Migration of macrophages and NK cells T cell/DCs interaction | CC chemokine | Exhibited higher expression of the pro-inflammatory cytokines CCL3 and CCL4 and the chemokine receptor CCR1 | [69] |
Patterson BK | USA | (RANTES) | CCR1, CCR3, CCR5 | Prospective clinical trial | CCL5 | MSC, T cell, DC | Migration of macrophages and NK cells | CC chemokine | Reported profound elevation of plasma IL-6 and CCL5 (RANTES), decreased CD8+ T cell levels, and SARS-CoV-2 plasma viremia. | [70] |
Takahashi T, et al. | USA | (RANTES) | CCR1, CCR3, CCR5 | Clinical trial | CCL5 | MSC, T cell, DC | Migration of macrophages and NK cells | CC chemokine | CCL5 increased | [71] |
Yao Z, et al. | China | (MIP-1 gamma), also called MIP-2 | CCR1 | Prospective clinical trial | CCL10 | monocytes and NK cells | Migration of macrophages and NK cells | CC chemokine | Enhancement of CCL10 | [72] |
Marco Chiarin, M, et al. | Italy | MIP | CCR1 | Prospective clinical trial | CCL10 | monocytes and NK cells | Migration of macrophages and NK cells | CC chemokine | Excessive tiers of CCL5 and CCL10 chemokines were detected | [73] |
Sugiyama M, et al. | Japan | TARC | CCR4 | Prospective clinical trial | CCL17 | MSC, T cell, macrophage, DC | T cell/DCs interaction Migration of monocytes | CC chemokine | Upregulated early post SARS-CoV-2 infection | [74] |
Balnis J, et al. | Albany | (MIP-3b) | CCR7 | Case report | CCL19 | T cell, macrophage, DC | T cell and DC homing to lymph node | CC chemokine | Higher plasma levels of Chemokine CCL19 | [75] |
Chua RL | Germany | (MIP-3a) | CCR6 | Comprehensive analysis | CCL20 | macrophage Neutrophils | Th17 responses | CC chemokine | Compared to moderate cases, critical cases exhibited stronger interactions between epithelial and immune cells, including inflammatory macrophages expressing CCL20. | [76] |
Katayama H, et al. | Japan | (MIP-3a) | CCR6 | Clinical trial | CCL20 | macrophage Neutrophils epithelial cells | Th17 responses | CC chemokine | Stimulates lung epithelial cells to express CCL20 and increased CCL20 | [77] |
Jain R, et al. | Dubai | CCR4 | Clinical trial | CCL22 | MSC, T cell, macrophage, DC | T cell/DCs interaction Migration of macrophages | CC chemokine | The excessive release of cytokines and chemokines such as CCL22 | [78] | |
Gruber C, et al. | USA | CCR4, CCR10 | Review | CCL22, CCL28 | MSC, T cell, macrophage, DC | T cell/DCs interaction Migration of macrophages | CC chemokine | Cytokine profiling identified elevated signatures of d mucosal immune dysregulation (IL-17A, CCL20, and CCL28). | [79] |
7.2.8. CCL22
7.2.9. CCL28
8. Chemokines and COVID-19 Vaccine Covaxin
9. Systemic Signature of IP-10/CXCL10 Chemokines after BNT162b2 mRNA Vaccine
10. Chemokines and Vaccine-Induced Immune Thrombotic Thrombocytopaenia
11. Interplay of Cell Mechanisms in COVID-19 Involving Cytokines
12. Different Chemokines in the Evolution of COVID-19
13. Limitations and Perspectives
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AGEs | Advanced glycation end products |
AIDS | Acquired immunodeficiency syndrome |
ARDS | Acute respiratory distress syndrome |
ARG1 | Arginase 1 |
BALT | bronchus-associated lymphoid tissue |
C1S | Complement C1s |
CCL2 | (C-C-motif) ligand 2 |
CRRT | Continuous renal replacement therapy |
CXCR4 | C-X-C Motif Chemokine Receptor 4 |
ECMO | Extra-corporeal membrane oxygenation |
ELANE | Elastase, Neutrophil Expressed |
GPCRs | G-protein coupled receptors |
HBV | Hepatitis B virus |
HIT | Heparin-induced thrombocytopenia |
HIV | Human immunodeficiency virus |
INF | Interferon |
IFIH1 | Interferon Induced with Helicase C Domain 1 |
IFI44 | Interferon Induced Protein 44 |
IL-6| | Interleukin 6 |
LPS | Lipo-polysaccharide |
MERS-CoV | Middle East respiratory syndrome coronavirus |
MIP | Macrophage Inflammatory Proteins |
MIS-C | Multisystem Inflammatory Syndrome in children |
NAPS2 | Not Another PDF Scanner 2 |
PF4 | Platelet factor 4 |
PTGS2 | Prostaglandin-Endoperoxide Synthase 2 |
RANTES | Regulated on Activation, Normal T Cell Expressed and Secreted |
ROS | Reactive Oxygen Species |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus-2 |
SLE | Systemic Lupus Erythematosus |
TNFRSF1A | TNF Receptor Superfamily Member 1A |
TNF | tumor necrosis factor |
TRM | tissue-resident reminiscence T |
TYMP | Thymidine Phosphorylase |
XIAP | X-linked inhibitor of apoptosis protein |
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Coperchini, F.; Chiovato, L.; Croce, L.; Magri, F.; Rotondi, M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020, 53, 25–32. [Google Scholar] [CrossRef]
- Chan, M.C.; Cheung, C.Y.; Chui, W.H.; Tsao, S.W.; Nicholls, J.M.; Chan, Y.O.; Chan, R.W.; Long, H.T.; Poon, L.L.; Guan, Y.; et al. Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells. Respir. Res. 2005, 6, 135. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.K.; Lam, C.W.K.; Wu, A.K.L.; Ip, W.K.; Lee, N.L.S.; Chan, I.H.S.; Lit, L.C.W.; Hui, D.S.C.; Chan, M.H.M.; Chung, S.S.C.; et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 2004, 136, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- D’Elia, R.V.; Harrison, K.; Oyston, P.C.; Lukaszewski, R.A.; Clark, G.C. Targeting the “cytokine storm” for therapeutic benefit. Clin. Vaccine Immunol. 2013, 20, 319–327. [Google Scholar] [CrossRef]
- Ben Salem, C. Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2017, 377, 1904. [Google Scholar]
- Guo, J.; Huang, F.; Liu, J.; Chen, Y.; Wang, W.; Cao, B.; Zou, C.; Liu, S.; Pan, J.; Bao, C.; et al. The Serum Profile of Hypercytokinemia Factors Identified in H7N9-Infected Patients can Predict Fatal Outcomes. Sci. Rep. 2015, 5, 10942. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, J.; Zhou, C.; Wu, Z.; Zhong, S.; Liu, J.; Luo, W.; Chen, T.; Qin, Q.; Deng, P. Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am. J. Respir. Crit. Care Med. 2005, 171, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Johrer, K.; Pleyer, L.; Olivier, A.; Maizner, E.; Zelle-Rieser, C.; Greil, R. Tumour-immune cell interactions modulated by chemokines. Expert Opin. Biol. Ther. 2008, 8, 269–290. [Google Scholar] [CrossRef] [PubMed]
- Darakhshan, S.; Fatehi, A.; Hassanshahi, G.; Mahmoodi, S.; Hashemi, M.S.; Karimabad, M.N. Serum concentration of angiogenic (CXCL1, CXCL12) and angiostasis (CXCL9, CXCL10) CXC chemokines are differentially altered in normal and gestational diabetes mellitus associated pregnancies. J. Diabetes Metab. Disord. 2019, 18, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Jamali, Z.; Nazari, M.; Khorramdelazad, H.; Hakimizadeh, E.; Mahmoodi, M.; Karimabad, M.N.; Hassanshahi, G.; Rezaeaian, M.; Balaei, P.; Derakhshan, S.; et al. Expression of CC chemokines CCL2, CCL5, and CCL11 is associated with duration of disease and complications in type-1 diabetes: A study on Iranian diabetic patients. Clin. Lab. 2013, 59, 993–1001. [Google Scholar] [CrossRef]
- Karimabad, M.N.; Falahati-Pour, S.K.; Hassanshahi, G. Significant role (s) of CXCL12 and the SDF-1 3′ a genetic variant in the pathogenesis of multiple sclerosis. Neuroimmunomodulation 2016, 23, 197–208. [Google Scholar] [CrossRef]
- Radman, M.; Hassanshahi, G.; Vazirinejad, R.; Arababadi, M.K.; Karimabad, M.N.; Khorramdelazad, H.; Rafatpanah, H.; Iranmanesh, F.; Hakimizadeh, E.; Ahmadi, Z. Serum levels of the CC chemokines CCL2, CCL5, and CCL11 in food allergic children with different clinical manifestations. Inflammation 2013, 36, 561–566. [Google Scholar] [CrossRef]
- Darakhshan, S.; Hassanshahi, G.; Mofidifar, Z.; Soltani, B.; Karimabad, M.N. CXCL9/CXCL10 angiostasis CXC-chemokines in parallel with the CXCL12 as an angiogenesis CXC-chemokine are variously expressed in pre-eclamptic-women and their neonates. Pregnancy Hypertens. 2019, 17, 36–42. [Google Scholar] [CrossRef]
- Fatehi, F.; Mollahosseini, M.; Hassanshahi, G.; Falahati-Pour, S.K.; Khorramdelazad, H.; Ahmadi, Z.; Noroozi Karimabad, M.; Farahmand, H. CC chemokines CCL2, CCL3, CCL4 and CCL5 are elevated in osteoporosis patients. J. Biomed. Res. 2017, 31, 468–470. [Google Scholar]
- Moosavi, S.R.; Khorramdelazad, H.; Amin, M.; Fatahpoor, S.; Moogooei, M.; Karimabad, M.N.; Jamali Paghale, M.; Vakilian, A.; Hassanshahi, G. The SDF-1 3’A genetic variation is correlated with elevated intra-tumor tissue and circulating concentration of CXCL12 in glial tumors: A study on Iranian anaplastic astrocytoma and glioblastoma multiforme patients. J. Mol. Neurosci. 2013, 50, 298–304. [Google Scholar] [CrossRef]
- Larionova, R.; Byvaltsev, K.; Kravtsova, O.; Takha, E.; Petrov, S.; Kazarian, G.; Valeeva, A.; Shuralev, E.; Mukminov, M.; Renaudineau, Y.; et al. SARS-CoV2 acute and post-active infection in the context of autoimmune and chronic inflammatory diseases. J. Transl. Autoimmun. 2022, 5, 100154. [Google Scholar] [CrossRef]
- Khalil, B.A.; Elemam, N.M.; Maghazachi, A.A. Chemokines and chemokine receptors during COVID-19 infection. Comput. Struct. Biotechnol. J. 2021, 19, 976–988. [Google Scholar] [CrossRef] [PubMed]
- Baggiolini, M. Chemokines and leukocyte traffic. Nature 1998, 392, 565–568. [Google Scholar] [CrossRef] [PubMed]
- Mackay, C.R. Chemokines: Immunology’s high impact factors. Nat. Immunol. 2001, 2, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Youn, B.-S.; Mantel, C.; Broxmeyer, H.E. Chemokines, chemokine receptors and hematopoiesis. Immunol. Rev. 2000, 177, 150–174. [Google Scholar] [CrossRef]
- Koch, A.E.; Polverini, P.J.; Kunkel, S.L.; Harlow, L.A.; DiPietro, L.A.; Elner, V.M.; Elner, S.G.; Strieter, R.M. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 1992, 258, 1798–1801. [Google Scholar] [CrossRef]
- Zlotnik, A.; Yoshie, O. Chemokines: A new classification system and their role in immunity. Immunity 2000, 12, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Handel, T.M.; Domaille, P.J. Heteronuclear (1H, 13C, 15N) NMR assignments and solution structure of the monocyte chemoattractant protein-1 (MCP-1) dimer. Biochemistry 1996, 35, 6569–6584. [Google Scholar] [CrossRef]
- Koenen, R.R.; Weber, C. Therapeutic targeting of chemokine interactions in atherosclerosis. Nat. Rev. Drug Discov. 2010, 9, 141–153. [Google Scholar] [CrossRef]
- Allen, S.J.; Crown, S.E.; Handel, T.M. Chemokine: Receptor structure, interactions, and antagonism. Annu. Rev. Immunol. 2007, 25, 787–820. [Google Scholar] [CrossRef]
- Van Raemdonck, K.; Van den Steen, P.E.; Liekens, S.; Van Damme, J.; Struyf, S. CXCR3 ligands in disease and therapy. Cytokine Growth Factor Rev. 2015, 26, 311–327. [Google Scholar] [CrossRef]
- Rajagopalan, L.; Rajarathnam, K. Structural basis of chemokine receptor function—A model for binding affinity and ligand selectivity. Biosci. Rep. 2006, 26, 325–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, G.; Yang, Y.; Du, Y.; Peng, F.; Hu, P.; Wang, R.; Yin, M.; Li, T.; Tu, L.; Sun, J.; et al. Clinical Pathway for Early Diagnosis of COVID-19: Updates from Experience to Evidence-Based Practice. Clin. Rev. Allergy Immunol. 2020, 59, 89–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.K.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol. 2016, 24, 490–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Wu, Z.; Li, J.W.; Zhao, H.; Wang, G.Q. Cytokine release syndrome in severe COVID-19: Interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int. J. Antimicrob. Agents 2020, 55, 105954. [Google Scholar] [CrossRef] [PubMed]
- Channappanavar, R.; Fehr, A.R.; Vijay, R.; Mack, M.; Zhao, J.; Meyerholz, D.K.; Perlman, S. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe 2016, 19, 181–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IIchikawa, A.; Kuba, K.; Morita, M.; Chida, S.; Tezuka, H.; Hara, H.; Sasaki, T.; Ohteki, T.; Ranieri, V.M.; dos Santos, C.C.; et al. CXCL10-CXCR3 enhances the development of neutrophil-mediated fulminant lung injury of viral and nonviral origin. Am. J. Respir. Crit. Care Med. 2013, 187, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Melchjorsen, J.; Sørensen, L.N.; Paludan, S.R. Expression and function of chemokines during viral infections: From molecular mechanisms to in vivo function. J. Leukoc. Biol. 2003, 74, 331–343. [Google Scholar] [CrossRef]
- Haller, O.; Kochs, G.; Weber, F. The interferon response circuit: Induction and suppression by pathogenic viruses. Virology 2006, 344, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Hertzog, P.J.; O’Neill, L.A.; Hamilton, J.A. The interferon in TLR signaling: More than just antiviral. Trends Immunol. 2003, 24, 534–539. [Google Scholar] [CrossRef]
- Weber, F.; Kochs, G.; Haller, O. Inverse interference: How viruses fight the interferon system. Viral Immunol. 2004, 17, 498–515. [Google Scholar] [CrossRef]
- Küng, E.; Coward, W.R.; Neill, D.R.; Malak, H.A.; Mühlemann, K.; Kadioglu, A.; Hilty, M.; Hathaway, L.J. The pneumococcal polysaccharide capsule and pneumolysin differentially affect CXCL8 and IL-6 release from cells of the upper and lower respiratory tract. PLoS ONE 2014, 9, e92355. [Google Scholar] [CrossRef] [PubMed]
- Henriquez, K.M.; Hayney, M.S.; Xie, Y.; Zhang, Z.; Barrett, B. Association of interleukin-8 and neutrophils with nasal symptom severity during acute respiratory infection. J. Med. Virol. 2015, 87, 330–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcami, A. Viral mimicry of cytokines, chemokines and their receptors. Nat. Rev. Immunol. 2003, 3, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Thiel, V.; Weber, F. Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev. 2008, 19, 121–132. [Google Scholar] [CrossRef]
- Rabinovici, R.; Zhang, D.; Su, Y.; Luo, X.; Zhao, Q.; Yang, J.H. MOB-1 and TNF-alpha interact to induce microvascular lung injury. Shock 2002, 18, 261–264. [Google Scholar] [CrossRef]
- Zemans, R.L.; Colgan, S.P.; Downey, G.P. Transepithelial migration of neutrophils: Mechanisms and implications for acute lung injury. Am. J. Respir. Cell Mol. Biol. 2009, 40, 519–535. [Google Scholar] [CrossRef] [Green Version]
- Sozzani, S.; Allavena, P.; Vecchi, A.; Van Damme, J.; Mantovani, A. Chemokine receptors: Interaction with HIV-1 and viral-encoded chemokines. Pharm. Acta Helv. 2000, 74, 305–312. [Google Scholar] [CrossRef]
- Neville, L.F.; Abdullah, F.; McDonnell, P.M.; Young, P.R.; Feuerstein, G.Z.; Rabinovici, R. Mob-1 expression in IL-2-induced ARDS: Regulation by TNF-alpha. Am. J. Physiol.-Lung Cell. Mol. Physiol. 1995, 269, L884–L890. [Google Scholar] [CrossRef]
- Calfee, C.S.; Ware, L.B.; Glidden, D.; Eisner, M.D.; Parsons, P.E.; Thompson, B.T.; Matthay, M.A. Use of risk reclassification with multiple biomarkers improves mortality prediction in acute lung injury. Crit. Care Med. 2011, 39, 711–717. [Google Scholar] [CrossRef]
- Hemmat, N.; Derakhshani, A.; Bannazadeh Baghi, H.; Silvestris, N.; Baradaran, B.; De Summa, S. Neutrophils, Crucial, or Harmful Immune Cells Involved in Coronavirus Infection: A Bioinformatics Study. Front. Genet. 2020, 11, 641. [Google Scholar] [CrossRef]
- Lee, A.C.; Chakladar, J.; Li, W.T.; Chen, C.; Chang, E.Y.; Wang-Rodriguez, J.; Ongkeko, W.M. Tobacco, but Not Nicotine and Flavor-Less Electronic Cigarettes, Induces ACE2 and Immune Dysregulation. Int. J. Mol. Sci. 2020, 21, 5513. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Khan, M.A.; Ahmed, R.; Hossain, M.S.; Kabir, S.M.T.; Islam, M.S.; Siddiki, A.M.A.M. Transcriptome of nasopharyngeal samples from COVID-19 patients and a comparative analysis with other SARS-CoV-2 infection models reveal disparate host responses against SARS-CoV-2. J. Transl. Med. 2021, 19, 32. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, M. Immunopathogenesis of SARS-CoV-2-induced pneumonia: Lessons from influenza virus infection. Inflamm. Regen. 2020, 40, 39. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, T.; Ramachandran, S.; Shankaran, P.; Nagarajan, D.; Mohan, S.S. Host transcriptome-guided drug repurposing for COVID-19 treatment: A meta-analysis based approach. PeerJ 2020, 8, e9357. [Google Scholar] [CrossRef]
- Cai, Z.; Greene, M.I.; Zhu, Z.; Zhang, H. Structural Features and PF4 Functions that Occur in Heparin-Induced Thrombocytopenia (HIT) Complicated by COVID-19. Antibodies 2020, 9, 52. [Google Scholar] [CrossRef]
- García-Laorden, M.I.; Lorente, J.A.; Flores, C.; Slutsky, A.S.; Villar, J. Biomarkers for the acute respiratory distress syndrome: How to make the diagnosis more precise. Ann. Transl. Med. 2017, 5, 283. [Google Scholar] [CrossRef] [Green Version]
- Fremont, R.D.; Koyama, T.; Calfee, C.S.; Wu, W.; Dossett, L.A.; Bossert, F.R.; Mitchell, D.; Wickersham, N.; Bernard, G.R.; Matthay, M.A.; et al. Acute lung injury in patients with traumatic injuries: Utility of a panel of biomarkers for diagnosis and pathogenesis. J. Trauma 2010, 68, 1121. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, S.; Haslett, C.; Strieter, R.; Kunkel, S.; Walz, A.; Robertson, C.; Carter, D.; Pollok, A.; Grant, I. Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet 1993, 341, 643–647. [Google Scholar] [CrossRef] [Green Version]
- Folkesson, H.; Matthay, M.; Hebert, C.; Broaddus, V. Acid aspiration-induced lung injury in rabbits is mediated by interleukin-8-dependent mechanisms. J. Clin. Investig. 1995, 96, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Lee, H.K. Re-analysis of Single Cell Transcriptome Reveals That the NR3C1-CXCL8-Neutrophil Axis Determines the Severity of COVID-19. Front. Immunol. 2020, 11, 2145. [Google Scholar] [CrossRef]
- Abers, M.S.; Delmonte, O.M.; Ricotta, E.E.; Fintzi, J.; Fink, D.L.; de Jesus, A.A.A.; Zarember, K.A.; Alehashemi, S.; Oikonomou, V.; Desai, J.V.; et al. An immune-based biomarker signature is associated with mortality in COVID-19 patients. JCI Insight 2021, 6, e144455. [Google Scholar] [CrossRef] [PubMed]
- Tincati, C.; Cannizzo, E.S.; Giacomelli, M.; Badolato, R.; d’Arminio Monforte, A.; Marchetti, G. Heightened Circulating Interferon-Inducible Chemokines, and Activated Pro-Cytolytic Th1-Cell Phenotype Features COVID-19 Aggravation in the Second Week of Illness. Front. Immunol. 2020, 11, 580987. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.; Li, L.; Wang, X.; Sun, J.; Xue, X.; Xiao, Y.; Zhang, M.; Ao, T.; Wang, J. CXCL10/IP-10 neutralization can ameliorate lipopolysaccharide-induced acute respiratory distress syndrome in rats. PLoS ONE 2017, 12, e0169100. [Google Scholar] [CrossRef] [Green Version]
- Cheemarla, N.R.; Brito, A.F.; Fauver, J.R.; Alpert, T.; Vogels, C.B.F.; Omer, S.B.; Ko, A.I.; Grubaugh, N.D.; Landry, M.L.; Foxman, E.F. Host response-based screening to identify undiagnosed cases of COVID-19 and expand testing capacity. medRxiv 2020. [Google Scholar] [CrossRef]
- Li, R.; Hou, Y.; Huang, J.; Pan, W.; Ma, Q.; Shi, Y.; Li, C.; Zhao, J.; Jia, Z.; Jiang, H. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol. Res. 2020, 156, 104761. [Google Scholar]
- Kempuraj, D.; Selvakumar, G.P.; Ahmed, M.E.; Raikwar, S.P.; Thangavel, R.; Khan, A.; Zaheer, S.A.; Iyer, S.S.; Burton, C.; James, D.; et al. COVID-19, Mast Cells, Cytokine Storm, Psychological Stress, and Neuroinflammation. Neuroscientist 2020, 26, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.R.; Wangzhou, A.; Ghneim, N.; Yousuf, M.S.; Paige, C.; Tavares-Ferreira, D.; Mwirigi, J.M.; Shiers, S.; Sankaranarayanan, I.; McFarland, A.J.; et al. A pharmacological interactome between COVID-19 patient samples and human sensory neurons reveals potential drivers of neurogenic pulmonary dysfunction. Brain Behav. Immun. 2020, 89, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.; Du, P.; Zhao, K.; Huang, J.; Xia, H.; Dai, D.; Huang, S.; Cui, X.; Liu, L.; Zhang, J. Mechanism of Dayuanyin in the treatment of coronavirus disease 2019 based on network pharmacology and molecular docking. Chin. Med. 2020, 15, 62. [Google Scholar] [CrossRef] [PubMed]
- Gruber, C.N.; Patel, R.S.; Trachtman, R.; Lepow, L.; Amanat, F.; Krammer, F.; Wilson, K.M.; Onel, K.; Geanon, D.; Tuballes, K.; et al. Mapping Systemic Inflammation and Antibody Responses in Multisystem Inflammatory Syndrome in Children (MIS-C). medRxiv 2020. [Google Scholar] [CrossRef]
- Xiong, Y.; Liu, Y.; Cao, L.; Wang, D.; Guo, M.; Jiang, A.; Guo, D.; Hu, W.; Yang, J.; Tang, Z.; et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg. Microbes Infect. 2020, 9, 761–770. [Google Scholar] [CrossRef]
- Trump, S.; Lukassen, S.; Anker, M.S.; Chua, R.L.; Liebig, J.; Thürmann, L.; Corman, V.M.; Binder, M.; Loske, J.; Klasa, C.; et al. Hypertension delays viral clearance and exacerbates airway hyperinflammation in patients with COVID-19. Nat. Biotechnol. 2021, 39, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Patterson, B.K.; Seethamraju, H.; Dhody, K.; Corley, M.J.; Kazempour, K.; Lalezari, J.; Pang, A.P.S.; Sugai, C.; Francisco, E.B.; Pise, A.; et al. Disruption of the CCL5/RANTES-CCR5 Pathway Restores Immune Homeostasis and Reduces Plasma Viral Load in Critical COVID-19. medRxiv 2020. [Google Scholar] [CrossRef]
- Takahashi, T.; Wong, P.; Ellingson, M.K.; Lucas, C.; Klein, J.; Israelow, B.; Silva, J.; Oh, J.E.; Mao, T.; Tokuyama, M.; et al. Sex differences in immune responses to SARS-CoV-2 that underlie disease outcomes. medRxiv 2020. [Google Scholar] [CrossRef]
- Yao, Z.; Zheng, Z.; Wu, K.; Junhua, Z. Immune environment modulation in pneumonia patients caused by coronavirus: SARS-CoV, MERS-CoV and SARS-CoV-2. Aging 2020, 12, 7639–7651. [Google Scholar] [CrossRef]
- Chiarini, M.; Paghera, S.; Moratto, D.; Rossi, N.; Giacomelli, M.; Badolato, R.; Capra, R.; Imberti, L. Immunologic characterization of a immunosuppressed multiple sclerosis patient that recovered from SARS-CoV-2 infection. J. Neuroimmunol. 2020, 345, 577282. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, M.; Kinoshita, N.; Ide, S.; Nomoto, H.; Nakamoto, T.; Saito, S.; Ishikane, M.; Kutsuna, S.; Hayakawa, K.; Hashimoto, M.; et al. Serum CCL17 level becomes a predictive marker to distinguish between mild/moderate and severe/critical disease in patients with COVID-19. Gene 2021, 766, 145145. [Google Scholar] [CrossRef] [PubMed]
- Balnis, J.; Adam, A.P.; Chopra, A.; Chieng, H.C.; Drake, L.A.; Martino, N.; Ramos, R.B.; Feustel, P.J.; Overmyer, K.A.; Shishkova, E.; et al. Unique inflammatory profile is associated with higher SARS-CoV-2 acute respiratory distress syndrome (ARDS) mortality. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2021, 320, R250–R257. [Google Scholar] [CrossRef]
- Chua, R.L.; Lukassen, S.; Trump, S.; Hennig, B.P.; Wendisch, D.; Pott, F.; Debnath, O.; Thürmann, L.; Kurth, F.; Völker, M.T.; et al. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. Nat. Biotechnol. 2020, 38, 970–979. [Google Scholar] [CrossRef]
- Katayama, H. Can immunological manipulation defeat SARS-CoV-2? Why G-CSF induced neutrophil expansion is worth a clinical trial: G-CSF treatment against COVID-19. BioEssays 2021, 43, e2000232. [Google Scholar] [CrossRef]
- Jain, R.; Ramaswamy, S.; Harilal, D.; Uddin, M.; Loney, T.; Nowotny, N.; Alsuwaidi, H.; Varghese, R.; Deesi, Z.; Alkhajeh, A.; et al. Host transcriptomic profiling of COVID-19 patients with mild, moderate, and severe clinical outcomes. Comput. Struct. Biotechnol. J. 2020, 19, 153–160. [Google Scholar] [CrossRef]
- Kumar, N.P.; Banurekha, V.V.; Kumar, C.P.G.; Nancy, A.; Padmapriyadarsini, C.; Mary, A.S.; Devi, K.R.U.; Murhekar, M.; Babu, S. Prime-Boost Vaccination with Covaxin/BBV152 Induces Heightened Systemic Cytokine and Chemokine Responses. Front. Immunol. 2021, 12, 752397. [Google Scholar] [CrossRef] [PubMed]
- Griffith, J.W.; Sokol, C.L.; Luster, A.D. Chemokines and chemokine receptors: Positioning cells for host defense and immunity. Annu. Rev. Immunol. 2014, 32, 659–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergamaschi, C.; Pandit, H.; A Nagy, B.; Stellas, D.; Jensen, S.M.; Bear, J.; Cam, M.; Valentin, A.; A Fox, B.; Felber, B.K.; et al. Heterodimeric IL-15 delays tumor growth and promotes intratumoral CTL and dendritic cell accumulation by a cytokine network involving XCL1, IFN-γ, CXCL9 and CXCL10. J. Immunother. Cancer. 2020, 8, e000599. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, E.; Bonduelle, O.; Soria, A.; Loulergue, P.; Rousseau, A.; Cachanado, M.; Bonnabau, H.; Thiebaut, R.; Tchitchek, N.; Behillil, S.; et al. Innate gene signature distinguishes humoral versus cytotoxic responses to influenza vaccination. J. Clin. Investig. 2019, 129, 1960–1971. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, C.; Terpos, E.; Rosati, M.; Angel, M.; Bear, J.; Stellas, D.; Karaliota, S.; Apostolakou, F.; Bagratuni, T.; Patseas, D.; et al. Systemic IL-15, IFN-γ, and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients. Cell Rep. 2021, 36, 109504. [Google Scholar] [CrossRef] [PubMed]
- Kantarcioglu, B.; Darki, A.; Siddiqui, F.; Hoppensteadt, D.; Lewis, J.; Krämer, R.; Adiguzel, C.; Fareed, J. The Relevance of Anti-PF4 Antibody Isotypes and Endogenous Glycosaminoglycans and their Relationship with Inflammatory Biomarkers in Pulmonary Embolism Patients. Clin. Appl. Thromb./Hemost. 2022, 28, 10760296221091770. [Google Scholar] [CrossRef]
- Hasegawa, S.; Tashiro, N.; Matsubara, T.; Furukawa, S.; Ra, C. A comparison of FcepsilonRI-mediated RANTES release from human platelets between allergic patients and healthy individuals. Int. Arch. Allergy Immunol. 2001, 125 (Suppl. S1), 42–47. [Google Scholar] [CrossRef]
- Hasegawa, S.; Pawankar, R.; Suzuki, K.; Nakahata, T.; Furukawa, S.; Okumura, K.; Ra, C. Functional expression of the high affinity receptor for IgE (FcepsilonRI) in human platelets and its’ intracellular expression in human megakaryocytes. Blood 1999, 93, 2543–2551. [Google Scholar] [CrossRef]
- Kounis, N.G.; Koniari, I.; de Gregorio, C.; Assimakopoulos, S.F.; Velissaris, D.; Hung, M.Y.; Mplani, V.; Saba, L.; Brinia, A.; Kouni, S.N.; et al. COVID-19 Disease, Women’s Predominant Non-Heparin Vaccine-Induced Thrombotic Thrombocytopenia and Kounis Syndrome: A Passepartout Cytokine Storm Interplay. Biomedicines 2021, 9, 959. [Google Scholar] [CrossRef]
- Harrison, A.G.; Lin, T.; Wang, P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol. 2020, 41, 1100–1115. [Google Scholar] [CrossRef]
- Bohn, M.K.; Hall, A.; Sepiashvili, L.; Jung, B.; Steele, S.; Adeli, K. Pathophysiology of COVID-19: Mechanisms Underlying Disease Severity and Progression. Physiology 2020, 35, 288–301. [Google Scholar] [CrossRef] [PubMed]
- García-Pérez, B.E.; González-Rojas, J.A.; Salazar, M.I.; Torres-Torres, C.; Castrejón-Jiménez, N.S. Taming the Autophagy as a Strategy for Treating COVID-19. Cells 2020, 9, 2679. [Google Scholar] [CrossRef] [PubMed]
- Nazinitsky, A.; Rosenthal, K.S. Cytokine storms: Systemic disasters of infectious diseases. Infect. Dis. Clin. Pract. 2010, 8, 188–192. [Google Scholar] [CrossRef]
- Merad, M.; Martin, J.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol. 2020, 20, 355–362. [Google Scholar] [CrossRef]
- Lau, S.K.P.; Lau, C.C.Y.; Chan, K.-H.; Li, C.P.Y.; Chen, H.; Jin, D.-Y.; Chan, J.F.W.; Woo, P.C.Y.; Yuen, K.-Y. Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment. J. Gen. Virol. 2013, 94 Pt 12, 2679–2690. [Google Scholar] [CrossRef]
- Yen, Y.T.; Liao, F.; Hsiao, C.H.; Kao, C.L.; Chen, Y.C.; Wu-Hsieh, B.A. Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. J. Virol. 2006, 80, 2684–2693. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.P.; Blet, A.; Smyth, D.; Li, H. The Science Underlying COVID-19: Implications for the Cardiovascular System. Circulation 2020, 142, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhou, T.; Hu, J.; Liu, Y.; Jin, S.; Wu, J.; Guan, X.; Cui, J. Autophagy Activation Induces p62-Dependent Autophagic Degradation of Dengue Virus Capsid Protein During Infection. Front. Microbiol. 2022, 13, 889693. [Google Scholar] [CrossRef]
- Liu, X.; Cao, H.; Li, J.; Wang, B.; Zhang, P.; Zhang, X.D.; Liu, Z.; Yuan, H.; Zhan, Z. Autophagy induced by DAMPs facilitates the inflammation response in lungs undergoing ischemia-reperfusion injury through promoting TRAF6 ubiquitination. Cell Death Differ. 2017, 24, 683–693. [Google Scholar] [CrossRef] [Green Version]
- Chi, Y.; Ge, Y.; Wu, B.; Zhang, W.; Wu, T.; Wen, T.; Liu, J.; Guo, X.; Huang, C.; Jiao, Y.; et al. Serum cytokine and chemokine profile in relation to the severity of coronavirus disease 2019 in China. J. Infect. Dis. 2020, 222, 746–754. [Google Scholar] [CrossRef]
- Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.-C.; Uhl, S.; Hoagland, D.; Møller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 2020, 181, 1036–1045.e9. [Google Scholar] [CrossRef] [PubMed]
- Proudfoot, A.E.I. Chemokine receptors: Multifaceted therapeutic targets. Nat. Rev. Immunol. 2002, 2, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef]
- Buszko, M.; Park, J.-H.; Verthelyi, D.; Sen, R.; Young, H.A.; Rosenberg, A.S. The dynamic changes in cytokine responses in COVID-19: A snapshot of the current state of knowledge. Nat. Immunol. 2020, 21, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.-S.; Shu, T.; Kang, L.; Wu, D.; Zhou, X.; Liao, B.-W.; Sun, X.-L.; Zhou, X.; Wang, Y.-Y. Temporal profiling of plasma cytokines, chemokines and growth factors from mild, severe and fatal COVID-19 patients. Signal Transduct. Target. Ther. 2020, 5, 100. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, L.; Zhang, P.; Li, K.; Liang, L.; Sun, J.; Xu, B.; Dai, Y.; Li, X.; Zhang, C.; et al. Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease. JCI Insight 2020, 5, e139834. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Jiang, L.; Li, X.; Lin, F.; Wang, Y.; Li, B.; Jiang, T.; An, W.; Liu, S.; Liu, H.; et al. Clinical and pathological investigation of patients with severe COVID-19. JCI Insight 2020, 5, e138070. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, C.; Li, J.; Yuan, J.; Wei, J.; Huang, F.; Wang, F.; Li, G.; Li, Y.; Xing, L.; et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J. Allergy Clin. Immunol. 2020, 146, 119–127.e4. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karimabad, M.N.; Hassanshahi, G.; Kounis, N.G.; Mplani, V.; Roditis, P.; Gogos, C.; Lagadinou, M.; Assimakopoulos, S.F.; Dousdampanis, P.; Koniari, I. The Chemokines CXC, CC and C in the Pathogenesis of COVID-19 Disease and as Surrogates of Vaccine-Induced Innate and Adaptive Protective Responses. Vaccines 2022, 10, 1299. https://doi.org/10.3390/vaccines10081299
Karimabad MN, Hassanshahi G, Kounis NG, Mplani V, Roditis P, Gogos C, Lagadinou M, Assimakopoulos SF, Dousdampanis P, Koniari I. The Chemokines CXC, CC and C in the Pathogenesis of COVID-19 Disease and as Surrogates of Vaccine-Induced Innate and Adaptive Protective Responses. Vaccines. 2022; 10(8):1299. https://doi.org/10.3390/vaccines10081299
Chicago/Turabian StyleKarimabad, Mojgan Noroozi, Gholamhossein Hassanshahi, Nicholas G. Kounis, Virginia Mplani, Pavlos Roditis, Christos Gogos, Maria Lagadinou, Stelios F. Assimakopoulos, Periklis Dousdampanis, and Ioanna Koniari. 2022. "The Chemokines CXC, CC and C in the Pathogenesis of COVID-19 Disease and as Surrogates of Vaccine-Induced Innate and Adaptive Protective Responses" Vaccines 10, no. 8: 1299. https://doi.org/10.3390/vaccines10081299
APA StyleKarimabad, M. N., Hassanshahi, G., Kounis, N. G., Mplani, V., Roditis, P., Gogos, C., Lagadinou, M., Assimakopoulos, S. F., Dousdampanis, P., & Koniari, I. (2022). The Chemokines CXC, CC and C in the Pathogenesis of COVID-19 Disease and as Surrogates of Vaccine-Induced Innate and Adaptive Protective Responses. Vaccines, 10(8), 1299. https://doi.org/10.3390/vaccines10081299