Efficacy and Safety of COVID-19 Vaccine in Patients on Renal Replacement Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population of the Study
2.2. Methods
2.3. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Antibody Response
3.3. Antibody Titer
3.4. Safety and Protection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Askari, H.; Sanadgol, N.; Azarnezhad, A.; Tajbakhsh, A.; Rafiei, H.; Safarpour, A.R.; Gheibihayat, S.M.; Raeis-Abdollahi, E.; Savardashtaki, A.; Ghanbariasad, A.; et al. Kidney diseases and COVID-19 infection: Causes and effect, supportive therapeutics and nutritional perspectives. Heliyon 2021, 7, e06008. [Google Scholar] [CrossRef] [PubMed]
- Hoxha, E.; Suling, A.; Turner, J.E.; Haubitz, M.; Floege, J.; Huber, T.B.; Galle, J.C. COVID-19 prevalence and mortality in chronic dialysis patients. Dtsch. Arztebl. Int. 2021, 118, 195–196. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Luo, R.; Wang, K.; Zhang, M.; Wang, Z.; Dong, L.; Li, J.; Yao, Y.; Ge, S.; Xu, G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020, 97, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Diao, B.; Lv, X.; Liang, W.; Zhu, J.; Liu, L.; Zhang, S.; Shen, B.; Wang, H. COVID-19 in hemodialysis (HD) patients: Report from one HD center in Wuhan, China. medRxiv 2020. [Google Scholar] [CrossRef]
- Emami, A.; Javanmardi, F.; Pirbonyeh, N.; Akbari, A. Prevalence of underlying diseases in hospitalized patients with COVID-19: A systematic review and meta-analysis. Arch. Acad. Emerg. Med. 2020, 8, e35. [Google Scholar]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Major, R.; Selvaskandan, H.; Makkeyah, Y.M.; Hull, K.; Kuverji, A.; Graham-Brown, M. The exclusion of patients with CKD in prospectively registered interventional trials for COVID-19—A rapid review of international registry data. J. Am. Soc. Nephrol. 2020, 31, 2250–2252. [Google Scholar] [CrossRef]
- Francis, A.; Baigent, C.; Ikizler, T.A.; Cockwell, P.; Jha, V. The urgent need to vaccinate dialysis patients against severe acute respiratory syndrome coronavirus 2: A call to action. Kidney Int. 2021, 99, 791–793. [Google Scholar] [CrossRef]
- Krueger, K.M.; Ison, M.G.; Ghossein, C. Practical guide to vaccination in all stages of CKD, including patients treated by dialysis or kidney transplantation. Am. J. Kidney Dis. 2020, 75, 417–425. [Google Scholar] [CrossRef]
- Liu, L.; Wang, P.; Nair, M.S.; Yu, J.; Rapp, M.; Wang, Q.; Luo, Y.; Chan, J.F.-W.; Sahi, V.; Figueroa, A.; et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 2020, 584, 450–456. [Google Scholar] [CrossRef]
- Xiong, X.; Qu, K.; Ciazynska, K.A.; Hosmillo, M.; Carter, A.P.; Ebrahimi, S.; Ke, Z.; Scheres, S.H.W.; Bergamaschi, L.; Grice, G.L.; et al. A thermostable, closed SARS-CoV-2 spike protein trimer. Nat. Struct. Mol. Biol. 2020, 27, 934–941. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.M.; Tam, A.R.; Chan, K.W.; Ma, M.K.M.; Hung, I.F.N.; Yap, D.Y.H.; Chan, T.M. Immunogenicity and safety of COVID-19 vaccines in patients receiving renal replacement therapy: A systematic review and meta-analysis. Front. Med. 2022, 9, 827859. [Google Scholar] [CrossRef]
- Yanay, N.B.; Freiman, S.; Shapira, M.; Wishahi, S.; Hamze, M.; Elhaj, M.; Zaher, M.; Armaly, Z. Experience with SARS-CoV-2 BNT162b2 mRNA vaccine in dialysis patients. Kidney Int. 2021, 99, 1496–1498. [Google Scholar] [CrossRef] [PubMed]
- Grupper, A.; Sharon, N.; Finn, T.; Cohen, R.; Israel, M.; Agbaria, A.; Rechavi, Y.; Schwartz, I.F.; Schwartz, D.; Lellouch, Y.; et al. Humoral response to the Pfizer BNT162b2 vaccine in patients undergoing maintenance hemodialysis. Clin. J. Am. Soc. Nephrol. 2021, 16, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Agur, T.; Ben-Dor, N.; Goldman, S.; Lichtenberg, S.; Herman-Edelstein, M.; Yahav, D.; Rozen-Zvi, B.; Zingerman, B. Antibody response to mRNA SARS-CoV-2 vaccine among dialysis patients—A prospective cohort study. Nephrol. Dial. Transplant. 2021, 36, 1347–1349. [Google Scholar] [CrossRef]
- Frantzen, L.; Cavaille, G.; Thibeaut, S.; El-Haik, Y. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in a hemodialysis cohort. Nephrol. Dial. Transplant. 2021, 36, 1756–1757. [Google Scholar] [CrossRef]
- Longlune, N.; Nogier, M.B.; Miedougé, M.; Gabilan, C.; Cartou, C.; Seigneuric, B.; Del Bello, A.; Marion, O.; Faguer, S.; Izopet, J.; et al. High immunogenicity of a messenger RNA-based vaccine against SARS-CoV-2 in chronic dialysis patients. Nephrol. Dial. Transplant. 2021, 36, 1704–1709. [Google Scholar] [CrossRef]
- Rincon-Arevalo, H.; Choi, M.; Stefanski, A.L.; Halleck, F.; Weber, U.; Szelinski, F.; Jahrsdörfer, B.; Schrezenmeier, H.; Ludwig, C.; Sattler, A.; et al. Impaired humoral immunity to SARS-CoV-2 BNT162b2 vaccine in kidney transplant recipients and dialysis patients. Sci. Immunol. 2021, 6, eabj1031. [Google Scholar] [CrossRef]
- Attias, P.; Sakhi, H.; Rieu, P.; Soorkia, A.; Assayag, D.; Bouhroum, S.; Nizard, P.; El Karoui, K. Antibody response to the BNT162b2 vaccine in maintenance hemodialysis patients. Kidney Int. 2021, 99, 1490–1492. [Google Scholar] [CrossRef]
- Speer, C.; Göth, D.; Benning, L.; Buylaert, M.; Schaier, M.; Grenz, J.; Nusshag, C.; Kälble, F.; Kreysing, M.; Reichel, P.; et al. Early humoral responses of hemodialysis patients after COVID-19 vaccination with BNT162b2. Clin. J. Am. Soc. Nephrol. 2021, 16, 1073–1082. [Google Scholar] [CrossRef]
- Yau, K.; Abe, K.T.; Naimark, D.; Oliver, M.J.; Perl, J.; Leis, J.A.; Bolotin, S.; Tran, V.; Mullin, S.I.; Shadowitz, E.; et al. Evaluation of the SARS-CoV-2 antibody response to the BNT162b2 vaccine in patients undergoing hemodialysis. JAMA Netw. Open. 2021, 4, e2123622. [Google Scholar] [CrossRef] [PubMed]
- Schrezenmeier, E.; Bergfeld, L.; Hillus, D.; Lippert, J.-D.; Weber, U.; Tober-Lau, P.; Landgraf, I.; Schwarz, T.; Kappert, K.; Stefanski, A.-L.; et al. Immunogenicity of COVID-19 Tozinameran vaccination in patients on chronic dialysis. Front. Immunol. 2021, 12, 690698. [Google Scholar] [CrossRef] [PubMed]
- Boyarsky, B.J.; Werbel, W.A.; Avery, R.K.; Tobian, A.A.R.; Massie, A.B.; Segev, D.L.; Garonzik-Wang, J.M. Immunogenicity of a single dose of SARS-CoV-2 messenger RNA vaccine in solid organ transplant recipients. JAMA 2021, 325, 1784–1786. [Google Scholar] [CrossRef] [PubMed]
- Benotmane, I.; Gautier-Vargas, G.; Cognard, N.; Olagne, J.; Heibel, F.; Braun-Parvez, L.; Martzloff, J.; Perrin, P.; Moulin, B.; Fafi-Kremer, S.; et al. Weak anti-SARS-CoV-2 antibody response after the first injection of an mRNA COVID-19 vaccine in kidney transplant recipients. Kidney Int. 2021, 99, 1487–1489. [Google Scholar] [CrossRef] [PubMed]
- Rozen-Zvi, B.; Yahav, D.; Agur, T.; Zingerman, B.; Ben-Zvi, H.; Atamna, A.; Tau, N.; Mashraki, T.; Nesher, E.; Rahamimov, R. Antibody response to SARS-CoV-2 mRNA vaccine among kidney transplant recipients: A prospective cohort study. Clin. Microbiol. Infect. 2021, 27, 1173.e1–1173.e4. [Google Scholar] [CrossRef] [PubMed]
- Tsapepas, D.; Paget, K.; Mohan, S.; Cohen, D.J.; Husain, S.A. Clinically significant COVID-19 following SARS-CoV-2 vaccination in kidney transplant recipients. Am. J. Kidney Dis. 2021, 78, 314–317. [Google Scholar] [CrossRef]
- Fujieda, K.; Tanaka, A.; Kikuchi, R.; Takai, N.; Saito, S.; Yasuda, Y.; Fujita, T.; Kato, M.; Furuhashi, K.; Maruyama, S. Antibody response to double SARS-CoV-2 mRNA vaccination in Japanese kidney transplant recipients. Sci. Rep. 2022, 12, 6850. [Google Scholar] [CrossRef]
- Kolb, T.; Fischer, S.; Muller, L.; Lubke, N.; Hillebrandt, J.; Andree, M.; Schmitz, M.; Schmidt, C.; Küçükköylü, S.; Koster, L.; et al. Impaired immune response to SARS-CoV-2 vaccination in dialysis patients and in kidney transplant recipients. Kidney360 2021, 2, 1491–1498. [Google Scholar] [CrossRef]
- Ou, M.T.; Boyarsky, B.J.; Chiang, T.P.Y.; Bae, S.; Werbel, W.A.; Avery, R.K.; Tobian, A.A.R.; Massie, A.B.; Segev, D.L.; Garonzik-Wang, J.M. Immunogenicity and reactogenicity after SARS-CoV-2 mRNA vaccination in kidney transplant recipients taking belatacept. Transplantation 2021, 105, 2119–2123. [Google Scholar] [CrossRef]
- Chavarot, N.; Ouedrani, A.; Marion, O.; Leruez-Ville, M.; Vilain, E.; Baaziz, M.; Del Bello, A.; Burger, C.; Sberro-Soussan, R.; Martinez, F.; et al. Poor anti-SARS-CoV-2 humoral and T-cell responses after 2 injections of mRNA vaccine in kidney transplant recipients treated with belatacept. Transplantation 2021, 105, e94–e95. [Google Scholar] [CrossRef]
- Sanders, J.F.; Bemelman, F.J.; Messchendorp, A.L.; Baan, C.C.; van Baarle, D.; van Binnendijk, R.; Diavatopoulos, D.A.; Frölke, S.C.; Geers, D.; GeurtsvanKessel, C.H.; et al. The RECOVAC immune-response study: The immunogenicity, tolerability, and safety of COVID-19 vaccination in patients with chronic kidney disease, on dialysis, or living with a kidney transplant. Transplantation 2022, 106, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Hod, T.; Ben-David, A.; Olmer, L.; Levy, I.; Ghinea, R.; Mor, E.; Lustig, Y.; Rahav, G. Humoral response of renal transplant recipients to the BNT162b2 SARS-CoV-2 mRNA vaccine using both RBD IgG and neutralizing antibodies. Transplantation 2021, 105, e234–e243. [Google Scholar] [CrossRef] [PubMed]
- Connolly, C.M.; Chiang, T.P.-Y.; Boyarsky, B.J.; Ruddy, J.A.; Teles, M.; Alejo, J.L.; Massie, A.; Werbel, W.A.; Shah, A.A.; Christopher-Stine, L.; et al. Temporary hold of mycophenolate augments humoral response to SARS-CoV-2 vaccination in patients with rheumatic and musculoskeletal diseases: A case series. Ann. Rheum. Dis. 2022, 81, 293–295. [Google Scholar] [CrossRef]
- Regele, F.; Heinzel, A.; Hu, K.; Raab, L.; Eskandary, F.; Faé, I.; Zelzer, S.; Böhmig, G.A.; Bond, G.; Fischer, G.; et al. Stopping of mycophenolic acid in kidney transplant recipients for 2 weeks peri-vaccination does not increase response to SARS-CoV-2 vaccination—A non-randomized, controlled pilot study. Front. Med. 2022, 9, 914424. [Google Scholar] [CrossRef]
- Lustig, Y.; Sapir, E.; Regev-Yochay, G.; Cohen, C.; Fluss, R.; Olmer, L.; Indenbaum, V.; Mandelboim, M.; Doolman, R.; Amit, S.; et al. BNT162b2 COVID-19 vaccine and correlates of humoral immune responses and dynamics: A prospective, single-center, longitudinal cohort study in health-care workers. Lancet Respir. Med. 2021, 9, 999–1009. [Google Scholar] [CrossRef]
- Watanabe, M.; Balena, A.; Tuccinardi, D.; Tozzi, R.; Risi, R.; Masi, D.; Caputi, A.; Rossetti, R.; Spoltore, M.E.; Filippi, V.; et al. Central obesity, smoking habit, and hypertension are associated with lower antibody titres in response to COVID-19 mRNA vaccine. Diabetes Metab. Res. Rev. 2022, 38, e3465. [Google Scholar] [CrossRef] [PubMed]
- Pellini, R.; Venuti, A.; Pimpinelli, F.; Abril, E.; Blandino, G.; Campo, F.; Conti, L.; De Virgilio, A.; De Marco, F.; Domenico, E.G.; et al. Initial observations on age, gender, BMI and hypertension in antibody responses to SARS-CoV-2 BNT162b2 vaccine. eClinicalMedicine 2021, 36, 100928. [Google Scholar] [CrossRef]
- Kageyama, T.; Ikeda, K.; Tanaka, S.; Taniguchi, T.; Igari, H.; Onouchi, Y.; Kaneda, A.; Matsushita, K.; Hanaoka, H.; Nakada, T.-A.; et al. Antibody responses to BNT162b2 mRNA COVID-19 vaccine and their predictors among healthcare workers in a tertiary referral hospital in Japan. Clin. Microbiol. Infect. 2021, 27, 1861.e1–1861.e5. [Google Scholar] [CrossRef]
- Nomura, Y.; Sawahata, M.; Nakamura, Y.; Kurihara, M.; Koike, R.; Katsube, O.; Hagiwara, K.; Niho, S.; Masuda, N.; Tanaka, T.; et al. Age and smoking predict antibody titres at 3 months after the second dose of the BNT162b2 COVID-19 Vaccine. Vaccines 2021, 9, 1042. [Google Scholar] [CrossRef]
- Hahn, W.O.; Wiley, Z. COVID-19 vaccines. Infect. Dis. Clin. North Am. 2022, 36, 481–494. [Google Scholar] [CrossRef]
- Kaiser, R.A.; Haller, M.C.; Apfalter, P.; Kerschner, H.; Cejka, D. Comparison of BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) SARS-CoV-2 mRNA vaccine immunogenicity in dialysis patients. Kidney Int. 2021, 100, 697–698. [Google Scholar] [CrossRef] [PubMed]
- Karoui, K.E.; Vriese, A.S.D. COVID-19 in dialysis: Clinical impact, immune response, prevention, and treatment. Kidney Int. 2022, 101, 883–894. [Google Scholar] [CrossRef] [PubMed]
Patients Clinical Features | HD | PD | TX | |
---|---|---|---|---|
Age (years) | 69 ± 12 | 63 ± 11 | 60 ± 11 | |
Male% (n) | 66% (98) | 60% (12) | 69% (29) | |
Treatment vintage (months) | 59.3 ± 55.3 | 37 ± 17 | 12.6 ± 7.9 | |
ESRD etiology % (n) | Not Known | 26.4% (39) | 15% (3) | 23.8% (10) |
Diabetes | 25.7% (38) | 15% (3) | 2.4% (1) | |
Hypertensive | 17.6% (26) | 20% (4) | 14.3% (6) | |
Urologic disease | 6.8% (10) | - | 9.5% (4) | |
ADPKD | 5.4% (8) | 20% (4) | 2.4% (1) | |
IgA N | 3.4% (5) | 15% (3) | 16.7% (7) | |
Membranous N. | 2.7% (4) | - | - | |
MPGN | 2% (3) | - | 7.1% (3) | |
FSGS | - | - | 11.9% (5) | |
Myeloma | 2% (3) | - | - | |
Amyloidosis | 1.4% (2) | - | - | |
Vasculitis | 1.4% (2) | - | - | |
Other genetic diseases | - | - | 7.1% (3) | |
Others | 5.4% (8) | 15% (3) | 4.8% (2) | |
Comorbidities % (n) | Hypertension | 86.5% (128) | 95% (19) | 97.6% (41) |
Diabetes | 33.1% (49) | 20% (4) | 19% (8) | |
Heart disease | 31.8% (47) | 30% (6) | 7.1% (3) | |
COPD | 20.9% (31) | - | - | |
Neoplasia | 11.5% (17) | - | - | |
Immunosuppressive therapy % (n) | Steroids | 80.9% (34) | ||
Cyclosporine | 71.4% (10) | |||
Tacrolimus | 23.8% (10) | |||
Mycophenolate | 71.4% (30) | |||
Azathioprine | 11.9% (5) | |||
Everolimus | 11.9% (5) | |||
Unspecified | 6.1% (9) | 5% (1) | - |
Patients Clinical Features | Non-Responders | Responders | p | ||
---|---|---|---|---|---|
Age (years) | 68 ± 13.9 | 66.4 ± 12.7 | ns | ||
Gender | Males | 18% (25) | 82% (114) | ns | |
Females | 16.9% (12) | 83.1% (59) | |||
RRT | HD | 10.1% (15) | 89.9% (133) | <0.001 | |
PD | 10% (2) | 90% (18) | |||
TX | 47.6% (20) | 52.4% (22) | |||
Comorbidities | Hypertension % (n) | Yes | 19.7% (37) | 80.3% (151) | 0.022 |
No | 0 | 100 (22) | |||
Heart disease%(n) | Yes | 12.5% (7) | 87.5% (49) | ns | |
No | 19.5% (30) | 80.5% (124) | |||
Immunosuppressive therapy% (n) | Yes | 44.2% (23) | 55.8% (29) | <0.001 | |
No | 8.9% (14) | 91.1% (144) | |||
Prior COVID-19 | Yes | 0 | 100% (6) | ns | |
No | 18.1% (37) | 81.9% (167) | |||
Pre-vaccine titer%(n) | Positive | 0 | 100% (20) | 0.030 | |
Negative | 19.5% (37) | 80.5% (153) |
Non-Responders | Responders | p | ||
---|---|---|---|---|
Immunosuppressive therapy | 3 drugs | 51.6% (16) | 48.4% (15) | ns |
2 drugs | 36.4% (4) | 63.6% (7) | ||
Steroids | Yes | 47.1% (16) | 52.9% (18) | ns |
No | 50% (4) | 50% (4) | ||
Cyclosporine | Yes | 50% (15) | 50% (15) | ns |
No | 41.7% (5) | 58.3% (7) | ||
Tacrolimus | Yes | 50% (5) | 50% (5) | ns |
No | 46.9% (15) | 53.1% (17) | ||
Mycophenolate | Yes | 60% (18) | 40% (12) | 0.011 |
No | 16.7% (2) | 83% (18) | ||
Azathioprine | Yes | 20% (1) | 80% (4) | ns |
No | 51.4% (19) | 48.6% (18) | ||
Everolimus | Yes | 20% (1) | 80% (4) | ns |
No | 51.4% (19) | 48.6% (18) |
Patients Clinical Features | Ab Titer (BAU/mL) | p | ||
---|---|---|---|---|
Age (years) | 0.016 | |||
Gender | Males | 600 (1582.5–223) | 0.958 | |
Females | 663 (1400–229) | |||
RRT | HD | 537 (39,600–36.3) | 0.055 | |
PD | 775 (9610–103) | |||
TX | 1050 (36,300–35.8) | |||
Comorbidities | Hypertension | Yes | 616 (1440–229) | 0.748 |
No | 910 (1720–169.75) | |||
Heart disease | Yes | 600 (1490–285) | 0.745 | |
No | 644 (1592.5–221) | |||
Diabetes | Yes | 559 (1190–210) | 0.519 | |
No | 645 (1592.5–221) | |||
Immunosuppressive therapy | Yes | 821 (6605–94.75) | 0.535 | |
No | 605 (1437.5–229.5) | |||
Prior COVID-19 | Yes | 1550 (11,047.5–729.75) | 0.034 | |
No | 600 (1450–224) | |||
Pre-vaccine titer | Positive | 7885 (11,485–1967.5) | <0.001 | |
Negative | 485 (1190–209.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frittoli, M.; Cassia, M.; Barassi, A.; Ciceri, P.; Galassi, A.; Conte, F.; Cozzolino, M.G. Efficacy and Safety of COVID-19 Vaccine in Patients on Renal Replacement Therapy. Vaccines 2022, 10, 1395. https://doi.org/10.3390/vaccines10091395
Frittoli M, Cassia M, Barassi A, Ciceri P, Galassi A, Conte F, Cozzolino MG. Efficacy and Safety of COVID-19 Vaccine in Patients on Renal Replacement Therapy. Vaccines. 2022; 10(9):1395. https://doi.org/10.3390/vaccines10091395
Chicago/Turabian StyleFrittoli, Michela, Matthias Cassia, Alessandra Barassi, Paola Ciceri, Andrea Galassi, Ferruccio Conte, and Mario Gennaro Cozzolino. 2022. "Efficacy and Safety of COVID-19 Vaccine in Patients on Renal Replacement Therapy" Vaccines 10, no. 9: 1395. https://doi.org/10.3390/vaccines10091395
APA StyleFrittoli, M., Cassia, M., Barassi, A., Ciceri, P., Galassi, A., Conte, F., & Cozzolino, M. G. (2022). Efficacy and Safety of COVID-19 Vaccine in Patients on Renal Replacement Therapy. Vaccines, 10(9), 1395. https://doi.org/10.3390/vaccines10091395