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Abstract: Pattern recognition plays a critical role in integrative bioinformatics to determine the
structural patterns of proteins of viruses such as SARS-CoV-2. This study identifies the pattern
of SARS-CoV-2 proteins to depict the structure–function relationships of the protein alphabets of
SARS-CoV-2 and COVID-19. The assembly enumeration algorithm, Anisotropic Network Model,
Gaussian Network Model, Markovian Stochastic Model, and image comparison protein-like alpha-
bets were used. The distance score was the lowest with 22 for “I” and highest with 40 for “9”.
For post-processing and decision, two protein alphabets “C” (PDB ID: 6XC3) and “S” (PDB ID:
7OYG) were evaluated to understand the structural, functional, and evolutionary relationships,
and we found uniqueness in the functionality of proteins. Here, models were constructed using
“SARS-CoV-2 proteins” (12 numbers) and “non-SARS-CoV-2 proteins” (14 numbers) to create two
words, “SARS-CoV-2” and “COVID-19”. Similarly, we developed two slogans: “Vaccinate the world
against COVID-19” and “Say no to SARS-CoV-2”, which were made with the proteins structure. It
might generate vaccine-related interest to broad reader categories. Finally, the evolutionary pro-
cess appears to enhance the protein structure smoothly to provide suitable functionality shaped by
natural selection.

Keywords: pattern recognition; protein-like alphabets; SARS-CoV-2 proteins; image comparison;
structural symmetry

1. Introduction

Nature has created an enormous diversity of patterns in diverse life forms. To un-
derstand the archetype, pattern recognition has been used by scientists to depict the
structural and prototype similarities, and only then can the classification from noisy data
to distinguishable data be smoothly completed by using structural designs, statistical in-
puts, big data analytics, and image inspections computational investigations [1–3]. There
are several steps involved in pattern recognition, which include information collection,
data segmentation and classification, feature extraction, post-processing, and decision
making (Figure 1A).

Pattern recognition is a predominant area in statistics, where scientists use data to
develop theories, generate models, and apply methods for dimensional reduction, clus-
tering, and classification through various approaches. Similarly, density estimation is one
of the significant areas of statistical pattern recognition that uses normal-based models,
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normal mixture models, and Bayesian methods to estimate datasets for final application to
recognize patterns [4,5].
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Figure 1. The schematic diagram shows the study and the applied algorithms in the study. (A) The 
flowchart shows the general steps of pattern recognition and our performed process. (B) Schematic 
diagram shows the different methods applied in this study. (C) The illustration shows the different 
algorithms involved in this study and their features. 
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In computer science, pattern recognition is essential, since scientists often apply big 
data and image analysis, plus computer graphics, to discover hidden messages [6,7]. 
However, pattern recognition is a challenging task because it is not easy to locate a 
rhythm from the noisy data. However, several algorithms are being applied in pattern 
recognition, which include clustering, machine learning, deep learning, multi-linear 
subspace learning, and deep learning [8–15]. 

Although pattern recognition in bio-science is complicated, reports showed that bi-
oinformatics could play a significant role in solving the existing difficulties [16–18]. An 
example is pattern recognition in the structures of proteins as they form the foundation 
for life. Computational algorithms could help to predict the information from 3D struc-
tures by analyzing the naturally evolved proteins and their pattern similarities to better 
understand the evolutionary history [19,20]. 

Researchers have been trying to solve the structure of SARS-CoV-2 proteins ever 
since the start of the pandemic [21,22]. As of 8 September 2021, 1449 3D macro-molecular 
structural forms of SARS-CoV-2 have been solved and deposited in PDB. SARS-CoV-2 
variants are developing due to diversified mutations [23–29]. During the SARS-CoV-2 
mutation, the robustness and plasticity of the proteins change, which affects the overall 
functionality of the domains, especially the functional mechanisms of proteins [30]. To 
understand the evolution of viral variants, protein information fetching is essential. 
Therefore, it is critical to recognize the pattern in SARS-CoV-2 protein 3D structure 

Figure 1. The schematic diagram shows the study and the applied algorithms in the study. (A) The
flowchart shows the general steps of pattern recognition and our performed process. (B) Schematic
diagram shows the different methods applied in this study. (C) The illustration shows the different
algorithms involved in this study and their features.

In computer science, pattern recognition is essential, since scientists often apply big
data and image analysis, plus computer graphics, to discover hidden messages [6,7].
However, pattern recognition is a challenging task because it is not easy to locate a rhythm
from the noisy data. However, several algorithms are being applied in pattern recognition,
which include clustering, machine learning, deep learning, multi-linear subspace learning,
and deep learning [8–15].

Although pattern recognition in bio-science is complicated, reports showed that bioin-
formatics could play a significant role in solving the existing difficulties [16–18]. An
example is pattern recognition in the structures of proteins as they form the foundation for
life. Computational algorithms could help to predict the information from 3D structures by
analyzing the naturally evolved proteins and their pattern similarities to better understand
the evolutionary history [19,20].

Researchers have been trying to solve the structure of SARS-CoV-2 proteins ever since
the start of the pandemic [21,22]. As of 8 September 2021, 1449 3D macro-molecular struc-
tural forms of SARS-CoV-2 have been solved and deposited in PDB. SARS-CoV-2 variants
are developing due to diversified mutations [23–29]. During the SARS-CoV-2 mutation,
the robustness and plasticity of the proteins change, which affects the overall functionality
of the domains, especially the functional mechanisms of proteins [30]. To understand
the evolution of viral variants, protein information fetching is essential. Therefore, it is
critical to recognize the pattern in SARS-CoV-2 protein 3D structure models using different
algorithms to explore the evolutionary clues to the rapidly evolving variants.

Understanding the structural symmetry of elements is a significant process of pattern
recognition [31,32]. Scientists are investigating the symmetry in protein architecture [33–35],
since it determines how proteins interact with each other. The structural basis of the capsid
in HIV-1 is an essential factor to be recognized by the host proteins CPSF6 [36]. Together, a
structural symmetry needs to be identified to infer the functionality and understanding
of the driving forces of evolution [37,38]. Using a web platform, researchers can analyze
and visualize the structure of a protein. In this direction, a recent web app, called Mol*
Viewer, hosted on GitHub, provides structural symmetry. The app can be used to un-
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derstand pattern recognition [39]. Another robust algorithm is the evolutionary protein
interface classifier (EPPIC), which merges the two results of an interface classification,
which includes topology and symmetry. This algorithm is represented through a catalogue
of assemblies of the inner crystal structure coordinates. Then, the algorithm generates
probabilistic scores from an evolutionary scoring system, called pairwise scoring, from the
most likely assembly. The classifier of evolutionary protein interface is the best among
the two necessary signatures, namely pairwise interface classification and the assembly
enumeration algorithm [40]. The protein classifier classifies the interface SARS-CoV-2
proteins 3D structure as alphabets for structural pattern recognition.

Scientists extract data from different proteins 3D structures using algorithms, such as
deep learning and machine learning [41,42]. Therefore, it is necessary to solve the dynamics
of structurally resolved protein structures to better understand the pattern recognition.
Several models have recently been generated using a network model interface that uses the
Gaussian network model (GNM) and anisotropic network model (ANM). The interface can
construct different protein structure–function models, such as inter-residue contact signa-
ture, fluctuations of cross-correlations between residue, communication/signaling sites of
protein for intramolecular communication, etc. They can be used to identify patterns [43]. A
model for the signal communication of a protein can be generated through hitting times and
commute times/sites by using the concepts of graph theory and the Markovian stochastic
model [44]. Proteome and its structural dynamics can be analyzed through the DynOmics
computational interface. With the model, similar to the inter-residue contact model, fluc-
tuations of cross-correlations between the residue and communication/signaling sites
of protein can be generated through this computational interface. However, the pattern
of any SARS-CoV-2 proteins 3D structure and their structure–function relationship can
be understood with the help of structural symmetry, evolutionary protein classification,
the dynamics of the structural proteome, etc. In this direction, pattern recognition with
3D structure of SARS-CoV-2 proteins was performed (Figure 1B). For analyzing the 3D
structure of SARS-CoV-2 proteins or non-SARS-CoV-2 proteins, several algorithms were
used namely Deep AI model, assembly enumeration, anisotropic network model, Gaussian
network model, and Markovian stochastic model (Figure 1C). The pattern identification
was performed with the collected proteins alphabets from SARS-CoV-2 proteins and non-
SARS-CoV-2 proteins. Image comparison was performed using protein-like alphabets with
English alphabets. The structural symmetry pattern, evolutionary protein classification,
and structural proteome dynamics were also considered. Inter-residue contacts and de-
veloped inter-residue contact models (both residue and chain) were created to illustrate
cross-correlations between residues through a cross-correlation (CC) map. To understand
the functionality, the communication/signaling sites of protein residue and signal commu-
nication/signal receiving rate of protein alphabet were analysed, which led to the creation
of a structural functioning relationship of the SARS-CoV-2 proteins.

2. Materials and Methods
2.1. Data Mining Using PDB and Collection of Proteins as Alphabets from SARS-CoV-2 Proteins
and Non-SARS-CoV-2 Proteins

A pattern was discovered in the 3D structures of SARS-CoV-2 proteins. The Pro-
tein Data Bank (PDB) was extensively used to retrieve alphabets, such as patterns from
SARS-CoV-2 proteins, to design of various 3D structures of SARS-CoV-2 proteins [45].

For developing two slogans for our paper, first, we tried to find similarities in the
structural pattern of some SARS-CoV-2 proteins with the English alphabet. Some are not
found in the SARS-CoV-2 proteins. In this case, some “non- SARS-CoV-2 proteins” were
selected, similar to the English alphabet. We have added this part in the method section of
the manuscript.

Images of general alphabets were created and compared for similarities between the
protein alphabets and English alphabets by using the image similarity API (application



Vaccines 2023, 11, 38 5 of 36

programming interface) [46]. The image similarity API developed a distance score, as
similarity index/dissimilarity index.

Again, we selected four protein alphabets with antibodies/immunological or vaccine-
associated roles collected from protein alphabets pools. Distance score was also developed
as protein alphabets to understand the similarity index/dissimilarity index.

2.2. Pattern Recognition of 3D Structures of SARS-CoV-2 and Non-SARS-CoV-2 Proteins

Structural pattern recognition of 3D structures of SARS-CoV-2 proteins was analyzed
to understand the variations and patterns in symmetry. The pattern was evaluated using
Mol* Viewer, a recent web app and modern software that provides structural symmetry of
a protein. The Mol* Viewer was used to understand the structural pattern recognition [38].

2.3. Pattern Recognition Using the Classification of Evolutionary Protein Interface through
Assembly Enumeration Algorithm

Computational interface was used to generate 2D graph of SARS-CoV-2 proteins
3D structural alphabets. We used an evolutionary protein interface classifier (EPPIC)
to evaluate the assemblies inside the crystal structure coordinates. Using the assembly
enumeration algorithm, the interface evaluated 3D structure (input PDB files) and generated
a 3D lattice graph of the protein’s crystal structure. Then, it generated 2D graph of the
protein assembly [39].

2.4. Pattern Recognition Using the Protein–Protein Interface of 3D Structures of SARS-CoV-2 and
Non-SARS-CoV-2

The interface of 3D structures of a protein is essential for their function. The pattern
recognition of protein structural assembly was studied using the protein–protein interface
of 3D structures of SARS-CoV-2 proteins and non-SARS-CoV-2 proteins. PDBSum was
used to study a protein–protein interface of the 3D structure of a protein [47,48].

2.5. Pattern Recognition with Dynamics of Structural Proteome

First, two types of inter-residue contact models were created, which include the usage
of atoms and the usage of chains. Then, DynOmics computational interface contact model
was used to measure fluctuations of cross-correlations between residue and communica-
tion/signaling sites of protein [40]. From the changes of cross-correlations between residues,
a cross-correlation (CC) map was generated. During the generation of the CC map, the
interface calculated residue numbers in (i,j) alongside the axes. Communication/signaling
sites of protein were analyzed through signal communication/signal receiving efficiency,
signal communication/signal receiving rate, and stand deviation of hitting time. All the
maps were generated through the calculated residue numbers in (i,j) alongside the axes.

2.6. Post-Processing and Decision

Finally, to evaluate the patterns generated from the collection of protein alphabets,
especially using SARS-CoV-2 proteins, structural symmetry, classification of evolutionary
protein interface of protein alphabets, and the dynamics of the structural proteome of
protein alphabets were processed. The final correlation of structure–function relationship
of SARS-CoV-2 proteins was created at last.

3. Result
3.1. Data Mining Using PDB and Collection of Proteins as Alphabets from SARS-CoV-2 and
Non-SARS-CoV-2 Proteins

Extraction of protein alphabets from SARS-CoV-2 proteins was performed to develop
two words, i.e., “SARS-CoV-2” (Figure 2A) and “COVID-19” (Figure 2B). In order to create
the words “SARS-CoV-2” and “COVID-19”, the SARS-CoV-2 protein structural patterns as
letters were recorded with their PDB ID, as noted in Tables S1 and S2, respectively. Using
the nature-created SARS-CoV-2 proteins alphabets, “SARS-CoV-2” and “COVID-19” words
with red colors were created to provide color effects on the two words as danger indications.
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Figure 2. The representation shows the created two words with SARS-CoV-2 proteins and two 
slogans with non-SARS CoV-2 proteins. (A) The diagram shows the created word of 
“SARS-CoV-2” using protein alphabets. (B) The diagram shows the created word of “COVID-19,” 
using protein alphabets. (C) The diagram shows the developed first slogan, “VACCINATE THE 
WHOLE WORLD WITH COVID-19 VACCINE,” using protein alphabets. (D) The diagram shows 
the developed second slogan, “SAY NO TO SARS-CoV-2,” using protein alphabets. (E) The sche-
matic diagram shows the process of image comparison and distance score generation. (F) Graphical 
representation of the generated distance score of each protein alphabet of “SARS-CoV-2”. (G) 
Graphical representation of the generated distance score of each protein alphabet of “COVID-19”. 
(H) Graphical representation of the generated distance score of each protein alphabet of four 
SARS-CoV-2 protein alphabets with antibodies/immunological or vaccine-associated roles. The 
analysis tried to create the pattern of protein structure and compute the image similari-
ty/dissimilarity of 3D structures of each protein. 

Two slogans using the diversified 3D structures of proteins as alphabets were in-
cluded. The PDB was searched extensively to derive different protein alphabets from 
SARS-CoV-2 and non-SARS-CoV-2. Finally, two slogans were generated using the pro-
tein alphabets: the first was titled, “VACCINATE THE WHOLE WORLD WITH 
COVID-19 VACCINE” (Figure 2C), and all proteins as alphabets and their PDB IDs are 
noted in Table S3; the second was titled, “SAY NO TO SARS-CoV-2” (Figure 2D), and all 
proteins as alphabets and their PDB IDs are as noted in Table S4. 

This study fetched the 12-number SARS-CoV-2 proteins and the 14-number 
non-SARS-CoV-2 proteins to design the words and slogans. Again, the 12-number 
SARS-CoV-2 proteins alphabet was compared with the English alphabets, and a distance 
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respectively. The concept of distance score generation is shown in Figure 2E. The distance 
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using protein alphabets. (B) The diagram shows the created word of “COVID-19,” using protein
alphabets. (C) The diagram shows the developed first slogan, “VACCINATE THE WHOLE WORLD
WITH COVID-19 VACCINE,” using protein alphabets. (D) The diagram shows the developed second
slogan, “SAY NO TO SARS-CoV-2,” using protein alphabets. (E) The schematic diagram shows the
process of image comparison and distance score generation. (F) Graphical representation of the
generated distance score of each protein alphabet of “SARS-CoV-2”. (G) Graphical representation of
the generated distance score of each protein alphabet of “COVID-19”. (H) Graphical representation
of the generated distance score of each protein alphabet of four SARS-CoV-2 protein alphabets with
antibodies/immunological or vaccine-associated roles. The analysis tried to create the pattern of
protein structure and compute the image similarity/dissimilarity of 3D structures of each protein.

Two slogans using the diversified 3D structures of proteins as alphabets were included.
The PDB was searched extensively to derive different protein alphabets from SARS-CoV-2
and non-SARS-CoV-2. Finally, two slogans were generated using the protein alphabets:
the first was titled, “VACCINATE THE WHOLE WORLD WITH COVID-19 VACCINE”
(Figure 2C), and all proteins as alphabets and their PDB IDs are noted in Table S3; the
second was titled, “SAY NO TO SARS-CoV-2” (Figure 2D), and all proteins as alphabets
and their PDB IDs are as noted in Table S4.

This study fetched the 12-number SARS-CoV-2 proteins and the 14-number
non-SARS-CoV-2 proteins to design the words and slogans. Again, the 12-number SARS-CoV-2
proteins alphabet was compared with the English alphabets, and a distance score was gener-
ated after image comparison. The lists between the protein alphabets and English alphabets
for “SARS-CoV-2” and “COVID-19” are recorded in Tables S5 and S6, respectively. The
concept of distance score generation is shown in Figure 2E. The distance score generated
from each alphabet of “SARS-CoV-2” and “COVID-19” is recorded in Figure 2F,G. After
image comparison, the distance score of “I” was observed as the lowest distance score,
which was 22. At the same time, the distance score of “9” was noted as the highest distance
score, which was 40.

The study also fetched four SARS-CoV-2 protein alphabets with antibodies/
immunological or vaccine-associated roles from our previous protein alphabets pools.
A detailed description of these alphabets with the PDB id is recorded in Table 1. For the
image comparison, the generated alphabets and the protein alphabets used in the image
comparison study were recorded in Table S7. The distance score generated using four
SARS-CoV-2 protein alphabets with antibodies/immunological or vaccine-associated roles
were recorded in Figure 2H. In this case, “A” was the lowest distance score, with 30. At the
same time, the distance score of “Y” was the highest distance score, which was 34.

Table 1. The pattern of proteins used in the image comparison study using the protein having
antibodies/immunological or vaccine-associated roles.

Sl.
No

3D Structure of the
Protein Alphabet Compared

with English Alphabet
PDB ID Remarks Reference

1. A 7JVC

SARS-CoV-2 spike RBD
immunodominant sites
in complex with the S2A4 neutralizing antibody
Fab fragment

[49]

2. A 7CWT Human antibody cocktails (hb27 and fc05 Fab)
protein complex with SARS-CoV-2 spike protein [50]

3. D 7BWJ SARS-CoV-2 spike protein (S1 domain) attached
with human antibody (heavy and light chain of Ab) [51]

4. Y 7R6X
Complex structure of SARS-CoV-2 RBD protein
complex with S2E12 Fab, S309 Fab, and S304 Fab
domain of Ab

[52]
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3.2. Structural Pattern Recognition of 3D Structures of SARS-CoV-2 and
Non-SARS-CoV-2 Proteins

The concept of structural pattern recognition to understand the structural symmetry
pattern is shown in Figure 3A. Structural pattern recognition of protein alphabets of
“SARS-CoV-2” and their structural symmetry pattern are indicated in Figure 3B. At the same
time, structural pattern recognition of protein alphabets of “COVID-19” and their structural
symmetry pattern are noted in Figure 3C. Similarly, structural pattern recognition of four
SARS-CoV-2 protein alphabets with antibodies/immunological or vaccine-associated roles”
and their structural symmetry pattern are noted in Figure 3D.

A structural symmetry pattern of protein alphabets “SARS-CoV-2” and “COVID-19”,
was developed with the letters C, O, I, Hyphen(-), 1(One), S, and A. At the same time,
non-symmetric proteins were also found from “SARS-CoV-2” and “COVID-19”, which
were V, D, 9, R, and 2. From the generated two slogans, symmetric proteins for the rest of
the words other than COVID-19 and SARS-CoV-2 were V, A, C, I, E, W, H, and O. Similarly,
non-symmetric proteins from the words other than COVID-19 and SARS-CoV-2 were N, L,
S, Y, and R.

At the same time, the symmetrical structure of the non-SARS-CoV-2 proteins was also
illustrated in Figure S1.

3.3. Pattern Recognition Using the Classification of Evolutionary Protein Interface through
Assembly Enumeration Algorithm

The classification of evolutionary protein interface is shown in Figure 4A. A lattice
graph was created to represent an in-depth architecture of the mathematical representation
of crystal nets.
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Figure 3. The schematic representation structural pattern analysis and the result the study of protein
alphabets of SARS-CoV-2 proteins and non-SARS-CoV-2 proteins. (A) schematic representation
of structural pattern evaluation study. (B) Structural symmetry of each protein, which was used
to develop the word “SARS-CoV-2”. (C) Structural symmetry of each protein, which was used to
develop the word “COVID-19”. (D) Structural symmetry of four SARS-CoV-2 protein alphabets
with antibodies/immunological or vaccine-associated roles. The study tried to analyze the structural
pattern recognition through structural symmetry of 3D structures of each protein.
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Assembly Enumeration Algorithm 

The classification of evolutionary protein interface is shown in Figure 4A. A lattice 
graph was created to represent an in-depth architecture of the mathematical representa-
tion of crystal nets. 
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the result of the study of protein alphabets of SARS-CoV-2 proteins and non-SARS-CoV-2 proteins.
(A) Schematic representation of the classification of evolutionary protein interface study. (B) Clas-
sification of evolutionary protein interface of each protein, which was used to develop the word
“SARS-CoV-2”. (C) Classification of evolutionary protein interface of each protein, which was used to
develop the word “COVID-19”. (D) Classification of evolutionary protein interface of four SARS-CoV-
2 protein alphabets with antibodies/immunological or vaccine-associated roles used in this study.
The study analyzed the structural pattern of 3D structures of each protein through the classification
of evolutionary protein interface.

The classification of the evolutionary protein interface of protein alphabets of
“SARS-CoV-2” and their lattice graph in the 2D representation of the protein assembly
are shown in Figure 4B. In unison, the classification of the evolutionary protein inter-
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face of protein alphabets of “COVID-19” and their lattice graph in the 2D representation
of the protein assembly are also shown in Figure 4C. At the same time, the classifica-
tion of the evolutionary protein interfaces of four SARS-CoV-2 protein alphabets with
antibodies/immunological or vaccine-associated roles and their lattice graph in the 2D
representation of the protein assembly are also shown in Figure 4D. Similarly, the study also
depicts the classification of evolutionary protein interface of all non-SARS-CoV-2 proteins,
which are displayed in Figure S2.

3.4. Pattern Recognition Using Protein–Protein Interface 3D Structures of SARS-CoV-2
and Non-SARS-CoV-2

The interface of the assemblies is essential for understanding the clues of the pattern
of the 3D protein structure; therefore, this study focused on the interface of protein chain
assemblies. The protein chain assemblies provide the proper shape and surface area of the
protein to give appropriate functionality, as shown in the schematic diagram depicted in
Figure 5A. We studied the pattern using the protein–protein interface of 3D structures of pro-
teins alphabets, which were used to build the word ‘SARS-CoV-2′ (Figure 5B). At the same
time, we evaluated protein–protein interface of 3D structures of proteins alphabets used to
build the word ‘COVID-19′ (Figure 5C). Finally, we evaluated the protein–protein interface
of 3D structures of four SARS-CoV-2 protein alphabets with antibodies/immunological or
vaccine-associated roles (Figure 5D).

Similarly, our analyses evaluated the pattern of the protein–protein interface of 3D
structures of non-SARS-CoV-2 proteins alphabets, which are displayed in Figure S3.

3.5. Pattern Recognition with Dynamics of Structural Proteome

To understand the dynamics of the structural proteome, we created an inter-residue
contact model representing through the nodes in a 3D protein, which provides the land-
scape of a spring connection or interaction between the pair of interest residues or chains
(Figure 6A). Different nodes symbolize a spring interaction/relationship between the inter-
est residues or chains. We have depicted two forms of inter-residue contact models: the first
one is for all residues involved in the interaction. The second is for all chains involved in
the interaction. These two models were built with the 3D structures of the protein alphabet
involved in developing the word ‘SARS-CoV-2′ (Figure 6B). These two models were created
using 3D structures of the protein alphabet engaging in developing the word “COVID-19′’
(Figure 6C). Again, we developed inter-residue contact models of the evolutionary protein
interface of four SARS-CoV-2 protein alphabets with antibodies/immunological or vaccine-
associated roles (Figure 6D). In this case, we developed the first model. Likewise, the study
evaluated the inter-residue contact model for all residues and chains of 3D structures of
non-SARS-CoV-2 proteins alphabets, as displayed in Figure S4.

Vaccines 2023, 11, x FOR PEER REVIEW 19 of 41 
 

 

of protein alphabets of “COVID-19” and their lattice graph in the 2D representation of the 
protein assembly are also shown in Figure 4C. At the same time, the classification of the 
evolutionary protein interfaces of four SARS-CoV-2 protein alphabets with antibod-
ies/immunological or vaccine-associated roles and their lattice graph in the 2D repre-
sentation of the protein assembly are also shown in Figure 4D. Similarly, the study also 
depicts the classification of evolutionary protein interface of all non-SARS-CoV-2 pro-
teins, which are displayed in Figure S2. 

3.4. Pattern Recognition Using Protein–Protein Interface 3D Structures of SARS-CoV-2 and 
Non-SARS-CoV-2 

The interface of the assemblies is essential for understanding the clues of the pattern 
of the 3D protein structure; therefore, this study focused on the interface of protein chain 
assemblies. The protein chain assemblies provide the proper shape and surface area of 
the protein to give appropriate functionality, as shown in the schematic diagram de-
picted in Figure 5A. We studied the pattern using the protein–protein interface of 3D 
structures of proteins alphabets, which were used to build the word ‘SARS-CoV-2′ (Fig-
ure 5B). At the same time, we evaluated protein–protein interface of 3D structures of 
proteins alphabets used to build the word ‘COVID-19′ (Figure 5C). Finally, we evaluated 
the protein–protein interface of 3D structures of four SARS-CoV-2 protein alphabets with 
antibodies/immunological or vaccine-associated roles (Figure 5D). 

Similarly, our analyses evaluated the pattern of the protein–protein interface of 3D 
structures of non-SARS-CoV-2 proteins alphabets, which are displayed in Figure S3. 

 
Figure 5. Cont.



Vaccines 2023, 11, 38 17 of 36Vaccines 2023, 11, x FOR PEER REVIEW 20 of 41 
 

 

 

Figure 5. Cont.



Vaccines 2023, 11, 38 18 of 36Vaccines 2023, 11, x FOR PEER REVIEW 21 of 41 
 

 

 

Figure 5. Cont.



Vaccines 2023, 11, 38 19 of 36Vaccines 2023, 11, x FOR PEER REVIEW 22 of 41 
 

 

 

Figure 5. The schematic representation and study outcome of pattern recognition using protein–
protein interface, inter-residue contact model, spring interaction/connection between the pair of 
interest nodes or chains and to develop a cross-correlation (CC) map, 2D map of communica-
tion/signaling sites and hitting/signal communication times, 2D map for the signaling rate, signal-
ing receiving time, and signaling communication time of the SARS-CoV-2 proteins and 
non-SARS-CoV-2 proteins. (A) Schematic representation of pattern recognition using protein–
protein interface 3D structures. (B) protein–protein interface 3D structures of each protein, which 
were used to develop the word “SARS-CoV-2”. (C) The protein–protein interface 3D structures of 
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Figure 5. The schematic representation and study outcome of pattern recognition using protein–
protein interface, inter-residue contact model, spring interaction/connection between the pair of inter-
est nodes or chains and to develop a cross-correlation (CC) map, 2D map of communication/signaling
sites and hitting/signal communication times, 2D map for the signaling rate, signaling receiving
time, and signaling communication time of the SARS-CoV-2 proteins and non-SARS-CoV-2 proteins.
(A) Schematic representation of pattern recognition using protein–protein interface 3D structures.
(B) protein–protein interface 3D structures of each protein, which were used to develop the word
“SARS-CoV-2”. (C) The protein–protein interface 3D structures of each protein, which were used to
create the word “COVID-19”. (D) The protein–protein interface 3D structures of our SARS-CoV-2
protein alphabets with antibodies/immunological or vaccine-associated roles used in this study. The
study (Figure 5A–D) tried to analyze the structural pattern of 3D forms of each protein and their
assemblies through the protein–protein interface.
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structures of proteins, which were used to develop the word “SARS-CoV-2”. (C) Inter-residue 
contact model of all residues and chains of 3D structures of proteins, which were used to create the 
word “COVID-19”. (D) Inter-residue contact model of all residues of 3D structures of our 
SARS-CoV-2 protein alphabets with antibodies/immunological or vaccine-associated roles. The 
study analyzed the structural pattern of 3D structures of each protein of the residues of each pro-
tein through an inter-residue contact model of all residues and chains. 

Figure 6. The schematic representation shows the inter-residue contact model and the outcome
of the study of SARS-CoV-2 proteins and non-SARS-CoV-2 proteins. (A) Schematic representation
of inter-residue contact model. (B) Inter-residue contact model of all residues and chains of 3D
structures of proteins, which were used to develop the word “SARS-CoV-2”. (C) Inter-residue contact
model of all residues and chains of 3D structures of proteins, which were used to create the word
“COVID-19”. (D) Inter-residue contact model of all residues of 3D structures of our SARS-CoV-2
protein alphabets with antibodies/immunological or vaccine-associated roles. The study analyzed
the structural pattern of 3D structures of each protein of the residues of each protein through an
inter-residue contact model of all residues and chains.
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Furthermore, to understand the additional information about the dynamics of the
structural proteome, we developed a cross-correlation (CC) map. The CC map provides
extra information about the residue interaction pattern and residue fluctuations of a pro-
tein. However, the concept of the generation of the CC map is visualized in Figure 7A.
Simultaneously, the CC map of protein alphabets of ‘SARS-CoV-2′ and “COVID-19” are
represented in Figure 7B,C, respectively. Similarly, the CC maps of protein alphabets of
four SARS-CoV-2 protein alphabets with antibodies/immunological or vaccine-associated
roles were generated and depicted in Figure 7D.
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proteins and non-SARS CoV-2 proteins. (A) Schematic representation of spring interac-
tion/connection between the pair of interest nodes or chains and to develop a cross-correlation
(CC) map. (B) A cross-correlation (CC) map of 3D structures of proteins, which were used to de-
velop the word “SARS-CoV-2”. (C) A cross-correlation (CC) map of all residues and chains of 3D
structures of proteins, which were used to develop the word “COVID-19”. (D) A cross-correlation
(CC) map of all residues and chains of 3D structures of four SARS-CoV-2 protein alphabets with
antibodies/immunological or vaccine-associated roles used in this study. The study analyzed the
structural pattern of 3D structures of each protein using spring interaction/connection between the
pair of interest nodes or chains and to develop a cross-correlation (CC) map.

Simultaneously, the study developed the CC map of 3D structures of non-SARS-CoV-2
proteins alphabets, as shown in Figure S5.

The cross-correlation (CC) map shows the calculated residue interface visualized (i,j)
alongside the axes in the map.

Using the hitting and signal communication times, researchers can generate protein
residues from communication/signaling sites related to the residue’s functionality. The
functional tendency of residues can be reflected in the map. It represents sending signal
tendency, or to receive the trend of signals. The higher direction for communication can be
indicated by the smaller hitting time (Figure 8A). The map also shows the perturbation site.
The hitting and signal communication times/site of protein residues of ‘SARS-CoV-2′ and
‘COVID-19′ protein alphabets are represented in Figure 8B,C, respectively.

Finally, the hitting and signal communication times/site of protein alphabets of two
SARS-CoV-2 protein alphabets with antibodies/immunological or vaccine-associated roles
(“D” and “Y”) were generated and represented in Figure 8D.

The 2D maps were generated for communication/signaling sites and hitting/signal
communication times using 3D structures of non-SARS-CoV-2 proteins, which were used
to develop the two slogans (Figure S6).

A color gradient 2D map was generated from the signaling rate, signaling receiv-
ing time, and signaling communication time from protein residues (Figure 9A). It also
represents the functionality of the residue. The signaling rate, signaling time, and commu-
nication time of protein residues of protein alphabets of ‘SARS-CoV-2′ and “COVID-19”
are represented in Figure 9B,C, respectively. Again, the signaling rate, signaling time,
and communication time of protein residues of two SARS-CoV-2 protein alphabets with
antibodies/immunological or vaccine-associated roles were generated and represented
in Figure 9D.
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Figure 8. The schematic representation for the development of a 2D map of communica-
tion/signaling sites and hitting/signal communication times generated with protein residues using 
SARS-CoV-2 proteins and non-SARS-CoV-2 proteins. (A) The schematic representation for the 
development of a 2D map of communication/signaling sites and hitting/signal communication 
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ting/signal communication times generated with protein residues of 3D structures of proteins 
which are used to develop the word “SARS CoV-2”. (C) The 2D map for communication/signaling 
sites and hitting/signal communication times generated with protein residues of 3D structures of 
proteins which are used to develop the word “COVID-19”. (D) The 2D map for communica-
tion/signaling sites and hitting/signal communication times generated with protein residues of 3D 
structures of two SARS-CoV-2 protein alphabets with antibodies/immunological or vac-
cine-associated roles used in this study. The complete analysis tried to capture the functionality of 
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Figure 8. The schematic representation for the development of a 2D map of communication/signaling
sites and hitting/signal communication times generated with protein residues using SARS-CoV-2
proteins and non-SARS-CoV-2 proteins. (A) The schematic representation for the development of a 2D
map of communication/signaling sites and hitting/signal communication times generated with pro-
tein residues. (B) The 2D map for communication/signaling sites and hitting/signal communication
times generated with protein residues of 3D structures of proteins which are used to develop the word
“SARS CoV-2”. (C) The 2D map for communication/signaling sites and hitting/signal communication
times generated with protein residues of 3D structures of proteins which are used to develop the word
“COVID-19”. (D) The 2D map for communication/signaling sites and hitting/signal communication
times generated with protein residues of 3D structures of two SARS-CoV-2 protein alphabets with
antibodies/immunological or vaccine-associated roles used in this study. The complete analysis tried
to capture the functionality of residue.
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of two SARS-CoV-2 protein alphabets with antibodies/immunological or vaccine-associated roles 
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ID: 7OYG) is a SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) with a dimeric 
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Figure 9. The schematic representation for developing a 2D map for the signaling rate, signaling
receiving time, and signaling communication time from protein residues of SARS-CoV-2 proteins and
non-SARS-CoV-2 proteins. (A) The schematic representation to develop a 2D map of the signaling rate,
signaling receiving time, and signaling communication time from protein residues of SARS-CoV-2
proteins and non-SARS-CoV-2 proteins. (B) The 2D map of the signaling rate, signaling receiving
time, and signaling communication time from protein residues of 3D structures of proteins which are
used to develop the word “SARS-CoV-2”. (C) The 2D map of the signaling rate, signaling receiving
time, and signaling communication time from protein residues of 3D structures of proteins which are
used to develop the word “COVID-19”. (D) The 2D map of the signaling rate, signaling receiving
time, and signaling communication time from protein residues of 3D structures of two SARS-CoV-2
protein alphabets with antibodies/immunological or vaccine-associated roles used in this study. The
comprehensive analysis tried to capture the functionality of residue.

Similarly, the 2D maps were generated from the signaling rate, signaling receiving
time, and signaling communication time of residue of non-SARS-CoV-2 proteins, which
were used to develop the two slogans (Figure S7).

3.6. Post-Processing and Decision

The structure–function relationship of SARS-CoV-2 proteins was developed and
fine-tuned to their functionality. The protein alphabet ‘C’ (PDB ID: 6XC3) is a complex
SARS-CoV-2 S-glycoprotein in the RBD receptor binding domain. The structural conforma-
tion of S-glycoprotein provides different functions, such as: (i) It provides more surface
area of RBD for interaction with ACE2 receptor. (ii) The structural conformation of spike
protein offers a better cleavage pattern and, thus, increases the host infectivity. (iii) The
spike protein shape provides proper functional interface for S1 and S2 subunits. (iv) The
structural interface provides a more binding interface and provides more binding affinity
with the ACE2 receptor (Figure 10A). The second protein alphabet ‘S’ (PDB ID: 7OYG) is a
SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) with a dimeric form. The structural
conformation of RdRp is responsible for its functionality, and the confirmation of the RdRp
structural interface helps to bind efficiently with RNA that provides replication fitness
(Figure 10B). The third protein alphabet, ‘D’ (PDB ID: 7BWJ), is a human nAb (neutralizing
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antibodies) and SARS-CoV-2 RBD interaction structure. The structural conformation of
human nAb and SARS-CoV-2 RBD is responsible for its functionality and the confirmation
of the antibodies/immunological or vaccine-associated protein structural interface, which
helps to bind efficiently with nAb (Figure 10C).
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Figure 10. The post-processing and decision-making of the study finally tried to capture the structure–
function relationship of the SARS-CoV-2 proteins and non-SARS-CoV-2 proteins. We have represented
two examples from the study. (A) The figure illustrated the structure–function relationship of the
protein alphabet ‘C’ (PDB ID: 6XC3). It is a SARS-CoV-2 S-glycoprotein. (B) The figure represented
the structure–function relationship of the protein alphabet ‘S’ (PDB ID: 7OYG). It is a SARS-CoV-2
RNA-dependent RNA polymerase (RdRp), which is dimeric form. (C) The figure represented the
structure–function relationship of the protein alphabet ‘D’ (PDB ID: 7BWJ). The structure represents
the human nAb (neutralizing antibodies) linked with SARS-CoV-2 RBD.

4. Discussion

Pattern recognition engages the collection of information based on observations of
particular objects consistently [53]. It also tries to collect information from a biological
system, such as the symmetrical pattern from the sequence or structure [54–56]. Using
different category of algorithms, our study explored the protein alphabets fetched from
SARS-CoV-2 proteins and non-SARS-CoV-2 proteins to recognize their pattern based on
the structural prototype and their functional pattern to create the final structure–function
relationship. Twelve SARS-CoV-2 proteins and 14 non-SARS-CoV-2 proteins formed the
English alphabet-like structural patterns to design words and slogans.

In a previous study, Howarth searched the PDB and developed the proteins alpha-
bets using 3D structure [57]. To create the words “SARS-CoV-2” and “COVID-19”, our
study used only SARS-CoV-2 proteins from PDB and non-SARS-CoV-2 proteins other than
Howarth’s protein alphabets to develop the two slogans. The biological functioning of
proteins alphabets was used to create the words and catchphrases (Tables S1–S3). Our
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study concludes that the “C” shaped protein is more complex (PDB ID: 6XC3), and it is
a SARS-CoV-2 receptor binding domain with two antibodies, CR3022 and CC12.1. Sim-
ilarly, the “O” shaped protein is a jointly connected protein of their complexes (PDB ID:
6ZDG). The associated three complexes represented spike ectodomain, which is a bound
Fab protein (EY6A Fab).

In recent work, Cicaloni et al. have demonstrated research on cross-reactive T cell
recognition between circulating common cold coronaviruses and SARS-CoV-2, including
the most recent variants, Delta and Omicron. Further, a deep learning approach based on
Siamese networks was used to suggest accurately and efficiently calculate a BLAST-like
similarity score between protein sequences. Researchers also tested a neural network
model for aligning protein structures. This Siamese long short-term memory model was
trained to score the alignments based on BLAST supervision and tested on the set of
COVID-19 proteins previously analyzed [58]. However, our study informed similarities
of the structural pattern of some SARS-CoV-2 and non-SARS-CoV-2 proteins with the
English alphabet. No such potential similarities or specified divergence was found in
our study. At the same time, our study has shown the structural relationships between
the protein alphabets of SARS-CoV-2 and COVID-19. Finally, our study has shown the
structural relationships of SARS-CoV-2 protein alphabets with antibodies/immunological
or vaccine-associated roles.

The question however is: does nature favours a biased form of a particular shape of a
protein? The protein molecules are often fine-tuned through the evolutionary process, and
the particular shape of a protein is often generated through natural selection to provide its
proper functionality via folding process [59,60]. The particular alphabet-shaped structures
of SARS-CoV-2 proteins and the non-SARS-CoV-2 proteins appear to have been generated
for their proper functionality with the evolutionary process. However, deeper analysis may
provide details on the structural information and the folding pattern of a protein. Taujale
et al. performed an in-depth analysis of glycosyltransferases (GT) families and described
the folding design of GT-A. They narrated the complex relationships between regulation
structure and function related to GT-A fold for the first time by providing an internal
working of the evolutionary framework [61]. Natural selection creates different shapes
of proteins, according to their functionality, related to the folding process to ultimately
create this type of shape. Based on the local similarity, Hvidsten et al. showed the structure–
function relationship of a protein. It has been illustrated that the structure and function
relationship of a protein is a significant factor [62]. Our study has provided an extensive
understanding of the structure and function relationship of protein. However, the structure
and function relationship made a framework with protein evolution that improves the
structure sophisticatedly to boost efficient functionality. Additionally, from the analysis of
six unique structural families, Taylor and Stoddard found a triangular relationship of three
factors: the structural, functional, and evolutionary relationships of a protein [63].

5. Limitation of the Study

The considerable challenge of pattern recognition remains in algorithm selection in
bioinformatics. The algorithm should help to identify the primary structural pattern linked
with the function at features, such as active sites, functional domains, etc. At the same
time, proper model building and analysis of protein pattern recognition are essential.
Although our study used several models or algorithms, such as deep AI model assembly
enumeration, GNM (Gaussian network model), ANM (anisotropic network model), and
Markovian stochastic model, for understanding the structural and functional similarity of
the protein, detailed analysis of future work is necessary with next-generation algorithms.

6. Conclusions

Structural protein pattern alphabets have three important implications. First, the
structures draw the concentration of new learners in structural biology studying 3D design
of protein and PDB. Secondly, they are excellent examples for the natural creation of protein
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patterns. Finally, the result of the protein patterns implies the natural selection of these
proteins, due to their functional importance. We conclude that, due to the unique function
of these proteins, specific structural patterns were developed as a result of natural selection.
However, pattern recognition remains a critical area of integrative bioinformatics that can
be used to determine structural patterns of SARS-CoV-2 proteins and non-SARS-CoV-2
proteins. It will be a next-generation toolkit for the determination of the structure–function
paradigm. This computational approach may assist in solving patterns related to the
structural aspect of protein and help to decipher the riddles and puzzles of the complex
structure–function relationships of protein and be an important area of modern biology.
This area might promise to capture the evolutionary information of proteins and the
potential for success in future work.

7. Perspectives

(i) Importance of the field. Pattern recognition is a rapidly developing field with enor-
mous applicability in biological sciences. This study tried to understand the pattern
identification of SARS-CoV-2 proteins. Finally, the study presents new information on
the pattern identification of SARS-CoV-2 proteins.

(ii) A summary of the current thinking. We have searched for protein-like alphabets in-
volving 3D structure of SARS-CoV-2 from PDB and created two words, “SARS- CoV-2”
and “COVID-19”. We have also developed two slogans using non-SARS-CoV-2 pro-
teins, and the slogans are “Vaccinate the world against COVID-19” and “Say no
to SARS-CoV-2”. We have used 12 SARS-CoV-2 proteins and 14 non-SARS-CoV-2
proteins to design those words and slogans. We have performed image comparison
with protein-like alphabets with English alphabets using the deep AI model. The
structural symmetry analysis indicates alphabet-shaped symmetric proteins, such as
C, O, I, Hyphen (-), 1(One), S, and A. To determine the dynamics of the structural
proteome, we evaluated the inter-residue contact by developing inter-residue contact
models with both residue and chain and illustrated the cross-correlations between
residues through a cross-correlation (CC) map. In order to understand the residue
functionality of proteins, we analyzed the communication/signaling sites of protein
residue and signal communication/signal receiving rate of protein alphabets. The
assembly enumeration algorithm, anisotropic network model, Gaussian network
model, Markovian stochastic model, and other integrative bioinformatics approaches,
and tools were used to depict the structural and functional relationships of the protein
alphabets of SARS-CoV-2 and COVID-19. After image comparison of protein-like al-
phabets, the distance score of “I” was the lowest with 22, and “9” was the highest with
40. For post-processing and decision, two protein alphabets were evaluated, protein
alphabet “C” (PDB ID: 6XC3) and alphabet “S” (PDB ID: 7OYG), and we understood
the structural, functional, and evolutionary relationships using modeling approaches.

(iii) Future directions. This study sheds further light on the uniqueness in the functional-
ity of SARS-CoV-2 proteins. The evolutionary process appears to enhance the protein
structure smoothly to provide suitable functionality shaped by natural selection. The
computational approach may assist in solving patterns related to the structural as-
pects of other proteins and help to decipher the riddles and puzzles involving the
complex structure–function relationships of proteins, which is an important area of
modern biology. It has a great promise for capturing the evolutionary information of
proteins and the potential for success in future work. It might help to understand the
therapeutic target protein pattern, which will be beneficial as a potential therapeutic
target discovery.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/vaccines11010038/s1. Figure S1: Symmetry structure
of non-SARS-CoV-2 proteins which was used to develop two slogans. (A) V-shaped protein al-
phabet, (B) A-shaped protein alphabet, (C) C-shaped protein alphabet, (D) I-shaped protein al-
phabet, (E) N-shaped protein alphabet, (F) T-shaped protein alphabet, (G) E-shaped protein alpha-
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bet, (H) H-shaped protein alphabet, (I) W-shaped protein alphabet, (J) O-shaped protein alpha-
bet, (K) R-shaped protein alphabet, (L) S-shaped protein alphabet, (M) Y-shaped protein alphabet,
(N) L-shaped protein alphabet. Figure S2: Evolutionary protein interface of non-SARS-CoV-2 proteins
which was used to develop the two slogans. (A) V-shaped protein alphabet, (B) A-shaped protein
alphabet, (C) D-shaped protein alphabet, (D) E-shaped protein alphabet, (E) I-shaped protein alpha-
bet, (F) N-shaped protein alphabet, (G) O-shaped protein alphabet, (H) Y-shaped protein alphabet,
(I) E-shaped protein alphabet, (J) W-shaped protein alphabet. Figure S3: Protein-protein interfaces
3D structures of non-SARS-CoV-2 proteins which was used to develop the two slogans. (A) V-shaped
protein alphabet, (B) A-shaped protein alphabet, (C) D-shaped protein alphabet, (D) E-shaped pro-
tein alphabet, (E) I-shaped protein alphabet, (F) N-shaped protein alphabet, (G) O-shaped protein
alphabet, (H) Y-shaped protein alphabet, (I) E-shaped protein alphabet, (J) T-shaped protein alphabet.
Figure S4: Inter-residue contact model of all residues and chains of 3D structures of non-SARS-CoV-2
proteins which was used to develop the two slogans. (A) V-shaped protein alphabet, (B) A-shaped
protein alphabet, (C) C-shaped protein alphabet, (D) I-shaped protein alphabet, (E) N-shaped protein
alphabet, (F) T-shaped protein alphabet, (G) E-shaped protein alphabet, (H) H-shaped protein alpha-
bet, (I) W-shaped protein alphabet. Figure S5: Inter a cross-correlation (CC) map of 3D structures
of non-SARS-CoV-2 proteins which was used to develop the two slogans. (A) V-shaped protein
alphabet, (B) A-shaped protein alphabet, (C) C-shaped protein alphabet, (D) I-shaped protein alpha-
bet, (E) N-shaped protein alphabet, (F) T-shaped protein alphabet, (G) E-shaped protein alphabet,
(H) H-shaped protein alphabet, (I) W-shaped protein alphabet, (J) O-shaped protein alphabet. Figure
S6: 2D map for communication/signaling sites and hitting/signal communication times generated
with protein residues of 3D structures of non-SARS-CoV-2 proteins which was used to develop the
two slogans. (A) V-shaped protein alphabet, (B) C-shaped protein alphabet, (C) N-shaped protein
alphabet, (D) T-shaped protein alphabet, (E) H-shaped protein alphabet, (F) W-shaped protein al-
phabet, (G) L-shaped protein alphabet, (H) S-shaped protein alphabet, (I) Y-shaped protein alphabet.
Figure S7: 2D map the signaling rate, signaling receiving time, and signaling communication time
from protein residues of 3D structures of non-SARS-CoV-2 proteins which was used to develop the
two slogans. (A) V-shaped protein alphabet, (B) C-shaped protein alphabet, (C) N-shaped protein
alphabet, (D) T-shaped protein alphabet, (E) E-shaped protein alphabet, (F) H-shaped protein alpha-
bet, (G) W-shaped protein alphabet, (H) L-shaped protein alphabet. Table S1. The various pattern of
proteins which were used as the alphabets to develop the word, “SARS CoV-2”. Here, we mentioned
the PDB ID and the description of all proteins. Table S2. The various pattern of proteins which
were used as the alphabets to develop word, “COVID-19”. Here, we mentioned the PDB ID and the
description of all proteins. Table S3. The various pattern of proteins which were used as the alphabets
to develop the first slogan, “VACCINATE THE WHOLE WORLD WITH COVID-19 VACCINE.”
Here, we mentioned the PDB ID and the description of all proteins. Table S4. The various pattern of
proteins which were used as the alphabets to develop the first slogan, “SAY NO TO SARS-CoV-2.”
Here, we mentioned the PDB ID and the description of all proteins. Table S5. The generated alphabets
and the protein alphabets (Image obtained from PDB) were used in the image comparison study of
“SARS CoV-2”. Table S6. The generated alphabets and the protein alphabets (Image obtained from
PDB) were used in the image comparison study of “COVID-19”. Table S7. The generated alphabets
and the protein alphabets (image obtained from PDB) were used in the image comparison study
using the protein having antibodies/immunological or vaccine-associated roles.
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