COVID-19 Vaccination in Pregnancy: Pilot Study for Maternal and Neonatal MicroRNA Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Specimen and Clinical Information Gathering and Sampling
2.3. Neutralizing Antibody Inhibition Rate of SARS-CoV-2 Omicron BA.5
2.4. Extraction, Subsequent Reverse Transcription, and the Detection of miRNAs
2.5. Statistics: The Identification and Further Analysis of miRNAs
3. Results
3.1. Participant Data
3.2. miRNA Expression Data and Subsequent Data Extraction
3.3. miRNA with Significant Differential Expression Simultaneously in Maternal Blood and Cord Blood between Different Vaccination Doses
3.4. miRNA with Significant Differential Expression Simultaneously in Maternal Blood and Neonatal Cord Blood between “2 Dose and 3 Dose” as Well as “2 Dose and 4 Dose” Groups
3.5. Functional Pathway of miRNA with Significant Differential Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Zimmermann, P.; Curtis, N. COVID-19 in Children, Pregnancy and Neonates: A Review of Epidemiologic and Clinical Features. Pediatr. Infect. Dis. J. 2020, 39, 469–477. [Google Scholar] [CrossRef]
- Gurol-Urganci, I.; Jardine, J.E.; Carroll, F.; Draycott, T.; Dunn, G.; Fremeaux, A.; Harris, T.; Hawdon, J.; Morris, E.; Muller, P.; et al. Maternal and perinatal outcomes of pregnant women with SARS-CoV-2 infection at the time of birth in England: National cohort study. Am. J. Obstet. Gynecol. 2021, 225, 522.e511–522.e521. [Google Scholar] [CrossRef]
- Villar, J.; Ariff, S.; Gunier, R.B.; Thiruvengadam, R.; Rauch, S.; Kholin, A.; Roggero, P.; Prefumo, F.; do Vale, M.S.; Cardona-Perez, J.A.; et al. Maternal and Neonatal Morbidity and Mortality Among Pregnant Women With and Without COVID-19 Infection: The INTERCOVID Multinational Cohort Study. JAMA Pediatr. 2021, 175, 817–826. [Google Scholar] [CrossRef]
- Trostle, M.E.; Aguero-Rosenfeld, M.E.; Roman, A.S.; Lighter, J.L. High antibody levels in cord blood from pregnant women vaccinated against COVID-19. Am. J. Obstet. Gynecol. MFM 2021, 3, 100481. [Google Scholar] [CrossRef]
- Nir, O.; Schwartz, A.; Toussia-Cohen, S.; Leibovitch, L.; Strauss, T.; Asraf, K.; Doolman, R.; Sharabi, S.; Cohen, C.; Lustig, Y.; et al. Maternal-neonatal transfer of SARS-CoV-2 immunoglobulin G antibodies among parturient women treated with BNT162b2 messenger RNA vaccine during pregnancy. Am. J. Obstet. Gynecol. MFM 2022, 4, 100492. [Google Scholar] [CrossRef]
- Shen, C.J.; Fu, Y.C.; Lin, Y.P.; Shen, C.F.; Sun, D.J.; Chen, H.Y.; Cheng, C.M. Evaluation of Transplacental Antibody Transfer in SARS-CoV-2-Immunized Pregnant Women. Vaccines 2022, 10, 101. [Google Scholar] [CrossRef]
- Yang, Y.J.; Murphy, E.A.; Singh, S.; Sukhu, A.C.; Wolfe, I.; Adurty, S.; Eng, D.; Yee, J.; Mohammed, I.; Zhao, Z.; et al. Association of Gestational Age at Coronavirus Disease 2019 (COVID-19) Vaccination, History of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection, and a Vaccine Booster Dose With Maternal and Umbilical Cord Antibody Levels at Delivery. Obs. Gynecol. 2022, 139, 373–380. [Google Scholar] [CrossRef]
- Chen, W.C.; Hu, S.Y.; Shen, C.F.; Chuang, H.Y.; Ker, C.R.; Shen, C.J.; Cheng, C.M. COVID-19 Bivalent Booster in Pregnancy: Maternal and Neonatal Antibody Response to Omicron BA.5, BQ.1, BF.7 and XBB.1.5 SARS-CoV-2. Vaccines 2023, 11, 1425. [Google Scholar] [CrossRef]
- Chen, W.C.; Lin, Y.P.; Cheng, C.M.; Shen, C.F.; Ching, A.; Chang, T.C.; Shen, C.J. Antibodies against SARS-CoV-2 Alpha, Beta, and Gamma Variants in Pregnant Women and Their Neonates under Antenatal Vaccination with Moderna (mRNA-1273) Vaccine. Vaccines 2022, 10, 1415. [Google Scholar] [CrossRef] [PubMed]
- Butt, A.A.; Omer, S.B.; Yan, P.; Shaikh, O.S.; Mayr, F.B. SARS-CoV-2 Vaccine Effectiveness in a High-Risk National Population in a Real-World Setting. Ann. Intern. Med. 2021, 174, 1404–1408. [Google Scholar] [CrossRef] [PubMed]
- Paris, C.; Perrin, S.; Hamonic, S.; Bourget, B.; Roué, C.; Brassard, O.; Tadié, E.; Gicquel, V.; Bénézit, F.; Thibault, V.; et al. Effectiveness of mRNA-BNT162b2, mRNA-1273, and ChAdOx1 nCoV-19 vaccines against COVID-19 in healthcare workers: An observational study using surveillance data. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2021, 27, e1695–e1699. [Google Scholar] [CrossRef] [PubMed]
- Chalkias, S.; Eder, F.; Essink, B.; Khetan, S.; Nestorova, B.; Feng, J.; Chen, X.; Chang, Y.; Zhou, H.; Montefiori, D.; et al. Safety, immunogenicity and antibody persistence of a bivalent Beta-containing booster vaccine against COVID-19: A phase 2/3 trial. Nat. Med. 2022, 28, 2388–2397. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.; Jiang, X.M.; Guo, J.; Fu, Z.; Zhou, Z.; Yang, P.; Guo, H.; Guo, X.; Liang, G.; et al. Decreased inhibition of exosomal miRNAs on SARS-CoV-2 replication underlies poor outcomes in elderly people and diabetic patients. Signal Transduct. Target. Ther. 2021, 6, 300. [Google Scholar] [CrossRef]
- Zhang, S.; Amahong, K.; Sun, X.; Lian, X.; Liu, J.; Sun, H.; Lou, Y.; Zhu, F.; Qiu, Y. The miRNA: A small but powerful RNA for COVID-19. Brief Bioinform. 2021, 22, 1137–1149. [Google Scholar] [CrossRef]
- Yang, C.Y.; Chen, Y.H.; Liu, P.J.; Hu, W.C.; Lu, K.C.; Tsai, K.W. The emerging role of miRNAs in the pathogenesis of COVID-19: Protective effects of nutraceutical polyphenolic compounds against SARS-CoV-2 infection. Int. J. Med. Sci. 2022, 19, 1340–1356. [Google Scholar] [CrossRef]
- de Gonzalo-Calvo, D.; Benítez, I.D.; Pinilla, L.; Carratalá, A.; Moncusí-Moix, A.; Gort-Paniello, C.; Molinero, M.; González, J.; Torres, G.; Bernal, M.; et al. Circulating microRNA profiles predict the severity of COVID-19 in hospitalized patients. Transl. Res. 2021, 236, 147–159. [Google Scholar] [CrossRef]
- Calderon-Dominguez, M.; Trejo-Gutierrez, E.; González-Rovira, A.; Beltrán-Camacho, L.; Rojas-Torres, M.; Eslava-Alcón, S.; Sanchez-Morillo, D.; Calderon-Dominguez, J.; Martinez-Nicolás, M.P.; Gonzalez-Beitia, E.; et al. Serum microRNAs targeting ACE2 and RAB14 genes distinguish asymptomatic from critical COVID-19 patients. Mol. Ther. Nucleic Acids 2022, 29, 76–87. [Google Scholar] [CrossRef]
- Parray, A.; Mir, F.A.; Doudin, A.; Iskandarani, A.; Danjuma, M.M.; Kuni, R.A.T.; Abdelmajid, A.; Abdelhafez, I.; Arif, R.; Mulhim, M.; et al. SnoRNAs and miRNAs Networks Underlying COVID-19 Disease Severity. Vaccines 2021, 9, 1056. [Google Scholar] [CrossRef]
- Mhatre, S.; Srivastava, T.; Naik, S.; Patravale, V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine 2021, 85, 153286. [Google Scholar] [CrossRef] [PubMed]
- Satyam, R.; Bhardwaj, T.; Goel, S.; Jha, N.K.; Jha, S.K.; Nand, P.; Ruokolainen, J.; Kamal, M.A.; Kesari, K.K. miRNAs in SARS-CoV 2: A Spoke in the Wheel of Pathogenesis. Curr. Pharm. Des. 2021, 27, 1628–1641. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Chatterjee, S.; Xiao, K.; Riedel, I.; Wang, Y.; Foo, R.; Bär, C.; Thum, T. MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes. J. Mol. Cell Cardiol. 2020, 148, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Nersisyan, S.; Shkurnikov, M.; Turchinovich, A.; Knyazev, E.; Tonevitsky, A. Integrative analysis of miRNA and mRNA sequencing data reveals potential regulatory mechanisms of ACE2 and TMPRSS2. PLoS ONE 2020, 15, e0235987. [Google Scholar] [CrossRef] [PubMed]
- Haddad, H.; Walid, A.-Z. miRNA target prediction might explain the reduced transmission of SARS-CoV-2 in Jordan, Middle East. Noncoding RNA Res. 2020, 5, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Arghiani, N.; Nissan, T.; Matin, M.M. Role of microRNAs in COVID-19 with implications for therapeutics. Biomed. Pharmacother. 2021, 144, 112247. [Google Scholar] [CrossRef] [PubMed]
- Fayyad-Kazan, M.; Makki, R.; Skafi, N.; El Homsi, M.; Hamade, A.; El Majzoub, R.; Hamade, E.; Fayyad-Kazan, H.; Badran, B. Circulating miRNAs: Potential. diagnostic role for coronavirus disease 2019 (COVID-19). Infect. Genet. Evol. 2021, 94, 105020. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Seeliger, B.; Derda, A.A.; Xiao, K.; Gietz, A.; Scherf, K.; Sonnenschein, K.; Pink, I.; Hoeper, M.M.; Welte, T.; et al. Circulating cardiovascular microRNAs in critically ill COVID-19 patients. Eur. J. Heart Fail. 2021, 23, 468–475. [Google Scholar] [CrossRef]
- Oshiumi, H. Circulating Extracellular Vesicles Carry Immune Regulatory miRNAs and Regulate Vaccine Efficacy and Local Inflammatory Response After Vaccination. Front. Immunol. 2021, 12, 685344. [Google Scholar] [CrossRef]
- Miyashita, Y.; Yoshida, T.; Takagi, Y.; Tsukamoto, H.; Takashima, K.; Kouwaki, T.; Makino, K.; Fukushima, S.; Nakamura, K.; Oshiumi, H. Circulating extracellular vesicle microRNAs associated with adverse reactions, proinflammatory cytokine, and antibody production after COVID-19 vaccination. NPJ Vaccines 2022, 7, 16. [Google Scholar] [CrossRef]
- Reyes-Long, S.; Cortés-Altamirano, J.L.; Bandala, C.; Avendaño-Ortiz, K.; Bonilla-Jaime, H.; Bueno-Nava, A.; Ávila-Luna, A.; Sánchez-Aparicio, P.; Clavijo-Cornejo, D.; Dotor, L.A.L.; et al. Role of the MicroRNAs in the Pathogenic Mechanism of Painful Symptoms in Long COVID: Systematic Review. Int. J. Mol. Sci. 2023, 24, 3574. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhao, Y.; Li, J.; Liu, C.; Zhu, L.; Zhang, J.; Yu, Y.; Wang, W.J.; Lei, G.; Yan, J.; et al. Downregulated miR-451a as a feature of the plasma cfRNA landscape reveals regulatory networks of IL-6/IL-6R-associated cytokine storms in COVID-19 patients. Cell Mol. Immunol. 2021, 18, 1064–1066. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, G.J.; Ramírez-Mejía, J.M.; Urcuqui-Inchima, S. Vitamin D boosts immune response of macrophages through a regulatory network of microRNAs and mRNAs. J. Nutr. Biochem. 2022, 109, 109105. [Google Scholar] [CrossRef] [PubMed]
- De Felice, B.; Nigro, E.; Polito, R.; Rossi, F.W.; Pecoraro, A.; Spadaro, G.; Daniele, A. Differently expressed microRNA in response to the first Ig replacement therapy in common variable immunodeficiency patients. Sci. Rep. 2020, 10, 21482. [Google Scholar] [CrossRef] [PubMed]
- Mens, M.M.J.; Ghanbari, M. Cell Cycle Regulation of Stem Cells by MicroRNAs. Stem Cell Rev. Rep. 2018, 14, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Pan, H. Long Noncoding RNA LINC01125 Enhances Cisplatin Sensitivity of Ovarian Cancer via miR-1972. Med. Sci. Monit. 2019, 25, 9844–9854. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, C.C.; Kroh, E.; Wood, B.; Arroyo, J.D.; Dougherty, K.J.; Miyaji, M.M.; Tait, J.F.; Tewari, M. Blood cell origin of circulating microRNAs: A cautionary note for cancer biomarker studies. Cancer Prev. Res. 2012, 5, 492–497. [Google Scholar] [CrossRef]
- Lulli, V.; Romania, P.; Morsilli, O.; Cianciulli, P.; Gabbianelli, M.; Testa, U.; Giuliani, A.; Marziali, G. MicroRNA-486-3p regulates γ-globin expression in human erythroid cells by directly modulating BCL11A. PLoS ONE 2013, 8, e60436. [Google Scholar] [CrossRef]
- Shkurnikov, M.Y.; Knyazev, E.N.; Fomicheva, K.A.; Mikhailenko, D.S.; Nyushko, K.M.; Saribekyan, E.K.; Samatov, T.R.; Alekseev, B.Y. Analysis of Plasma microRNA Associated with Hemolysis. Bull. Exp. Biol. Med. 2016, 160, 748–750. [Google Scholar] [CrossRef]
- Baglio, S.R.; Rooijers, K.; Koppers-Lalic, D.; Verweij, F.J.; Pérez Lanzón, M.; Zini, N.; Naaijkens, B.; Perut, F.; Niessen, H.W.; Baldini, N.; et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res. Ther. 2015, 6, 127. [Google Scholar] [CrossRef]
- Kong, R.; Gao, J.; Si, Y.; Zhao, D. Combination of circulating miR-19b-3p, miR-122-5p and miR-486-5p expressions correlates with risk and disease severity of knee osteoarthritis. Am. J. Transl. Res. 2017, 9, 2852–2864. [Google Scholar] [PubMed]
- Matsha, T.E.; Kengne, A.P.; Hector, S.; Mbu, D.L.; Yako, Y.Y.; Erasmus, R.T. MicroRNA profiling and their pathways in South African individuals with prediabetes and newly diagnosed type 2 diabetes mellitus. Oncotarget 2018, 9, 30485–30498. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Guo, S. miR-486-5p Serves as a Diagnostic Biomarker for Sepsis and Its Predictive Value for Clinical Outcomes. J. Inflamm. Res. 2021, 14, 3687–3695. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Wang, J.; Wei, S.; Li, C.; Zhou, K.; Hu, J.; Ye, X.; Yan, J.; Liu, W.; Gao, G.F.; et al. Endogenous Cellular MicroRNAs Mediate Antiviral Defense against Influenza A Virus. Mol. Ther. Nucleic Acids 2018, 10, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Zhu, J.; Zhang, Q.; Xie, J.; Yi, C.; Li, T. MicroRNA-486-5p Promotes Acute Lung Injury via Inducing Inflammation and Apoptosis by Targeting OTUD7B. Inflammation 2020, 43, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Roustai Geraylow, K.; Hemmati, R.; Kadkhoda, S.; Ghafouri-Fard, S. miRNA expression in COVID-19. Gene Rep. 2022, 28, 101641. [Google Scholar] [CrossRef] [PubMed]
- Ferri, C.; Di Biase, A.; Bocchetti, M.; Zappavigna, S.; Wagner, S.; Le Vu, P.; Luce, A.; Cossu, A.M.; Vadakekolathu, J.; Miles, A.; et al. MiR-423-5p prevents MALAT1-mediated proliferation and metastasis in prostate cancer. J. Exp. Clin. Cancer Res. 2022, 41, 20. [Google Scholar] [CrossRef]
- Wang, X.; Peng, L.; Gong, X.; Zhang, X.; Sun, R.; Du, J. miR-423-5p Inhibits Osteosarcoma Proliferation and Invasion Through Directly Targeting STMN1. Cell Physiol. Biochem. 2018, 50, 2249–2259. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, G. MiR-423-5p aggravates lung adenocarcinoma via targeting CADM1. Thorac. Cancer 2021, 12, 210–217. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, H.; Feng, X.; Li, H.; Qiu, C.; Yi, X.; Tang, H.; Zhang, J. Long Non-coding RNA FENDRR Acts as a miR-423-5p Sponge to Suppress the Treg-Mediated Immune Escape of Hepatocellular Carcinoma Cells. Mol. Ther. Nucleic Acids 2019, 17, 516–529. [Google Scholar] [CrossRef]
- Tijsen, A.J.; Creemers, E.E.; Moerland, P.D.; de Windt, L.J.; van der Wal, A.C.; Kok, W.E.; Pinto, Y.M. MiR423-5p as a circulating biomarker for heart failure. Circ. Res. 2010, 106, 1035–1039. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.; Yang, S.; Jiang, T.; Wei, L.; Shi, L.; Liu, C.; Wang, C.; Huang, H.; Hu, Y.; Chen, Z.; et al. Elevated pulmonary tuberculosis biomarker miR-423-5p plays critical role in the occurrence of active TB by inhibiting autophagosome-lysosome fusion. Emerg. Microbes Infect. 2019, 8, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Farr, R.J.; Rootes, C.L.; Rowntree, L.C.; Nguyen, T.H.O.; Hensen, L.; Kedzierski, L.; Cheng, A.C.; Kedzierska, K.; Au, G.G.; Marsh, G.A.; et al. Altered microRNA expression in COVID-19 patients enables identification of SARS-CoV-2 infection. PLoS Pathog. 2021, 17, e1009759. [Google Scholar] [CrossRef] [PubMed]
- Fossat, N.; Lundsgaard, E.A.; Costa, R.; Rivera-Rangel, L.R.; Nielsen, L.; Mikkelsen, L.S.; Ramirez, S.; Bukh, J.; Scheel, T.K.H. Identification of the viral and cellular microRNA interactomes during SARS-CoV-2 infection. Cell Rep. 2023, 42, 112282. [Google Scholar] [CrossRef] [PubMed]
- Palamarchuk, A.; Tsyba, L.; Tomasello, L.; Pekarsky, Y.; Croce, C.M. PDCD1 (PD-1) is a direct target of miR-15a-5p and miR-16-5p. Signal. Transduct. Target Ther. 2022, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Huang, Z. microRNA-15a-5p participates in sepsis by regulating the inflammatory response of macrophages and targeting TNIP2. Exp. Ther. Med. 2020, 19, 3060–3068. [Google Scholar] [CrossRef] [PubMed]
- Weissman, R.; Diamond, E.L.; Haroche, J.; Durham, B.H.; Cohen, F.; Buthorn, J.; Amoura, Z.; Emile, J.F.; Mazor, R.D.; Shomron, N.; et al. MicroRNA-15a-5p acts as a tumor suppressor in histiocytosis by mediating CXCL10-ERK-LIN28a-let-7 axis. Leukemia 2022, 36, 1139–1149. [Google Scholar] [CrossRef]
- Zhan, X.H.; Xu, Q.Y.; Tian, R.; Yan, H.; Zhang, M.; Wu, J.; Wang, W.; He, J. MicroRNA16 regulates glioma cell proliferation, apoptosis and invasion by targeting Wip1-ATM-p53 feedback loop. Oncotarget 2017, 8, 54788–54798. [Google Scholar] [CrossRef]
- Liang, X.; Xu, Z.; Yuan, M.; Zhang, Y.; Zhao, B.; Wang, J.; Zhang, A.; Li, G. MicroRNA-16 suppresses the activation of inflammatory macrophages in atherosclerosis by targeting PDCD4. Int. J. Mol. Med. 2016, 37, 967–975. [Google Scholar] [CrossRef]
- Talari, M.; Kapadia, B.; Kain, V.; Seshadri, S.; Prajapati, B.; Rajput, P.; Misra, P.; Parsa, K.V. MicroRNA-16 modulates macrophage polarization leading to improved insulin sensitivity in myoblasts. Biochimie 2015, 119, 16–26. [Google Scholar] [CrossRef]
- Jia, X.; Li, X.; Shen, Y.; Miao, J.; Liu, H.; Li, G.; Wang, Z. MiR-16 regulates mouse peritoneal macrophage polarization and affects T-cell activation. J. Cell Mol. Med. 2016, 20, 1898–1907. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Liang, M.; Hou, X.; Zhang, Y.; Zhang, H.; Guo, Z.; Jinyu, J.; Feng, Z.; Mei, Z. The role of microRNA-16 in the pathogenesis of autoimmune diseases: A comprehensive review. Biomed. Pharmacother. 2019, 112, 108583. [Google Scholar] [CrossRef] [PubMed]
- Morales, L.; Oliveros, J.C.; Enjuanes, L.; Sola, I. Contribution of Host miRNA-223-3p to SARS-CoV-Induced Lung Inflammatory Pathology. mBio 2022, 13, e0313521. [Google Scholar] [CrossRef] [PubMed]
- Houshmandfar, S.; Saeedi-Boroujeni, A.; Rashno, M.; Khodadadi, A.; Mahmoudian-Sani, M.R. miRNA-223 as a regulator of inflammation and NLRP3 inflammasome, the main fragments in the puzzle of immunopathogenesis of different inflammatory diseases and COVID-19. Naunyn. Schmiedebergs Arch Pharmacol. 2021, 394, 2187–2195. [Google Scholar] [CrossRef]
- Houshmandfar, S.; Khodadadi, A.; Mahmoudian-Sani, M.R.; Nashibi, R.; Rashno, M. Comparing the expression of MiR-223-NLRP3-IL-1β axis and serum IL-1β levels in patients with severe COVID-19 and healthy individuals. Immunobiology 2023, 228, 152710. [Google Scholar] [CrossRef]
- Yuan, S.; Wu, Q.; Wang, Z.; Che, Y.; Zheng, S.; Chen, Y.; Zhong, X.; Shi, F. miR-223: An Immune Regulator in Infectious Disorders. Front. Immunol. 2021, 12, 781815. [Google Scholar] [CrossRef]
Case | Age | Dose 1 | Dose 2 | Dose 3 | Dose 4 | Tdap | Flu | BMI | Baby BW (gm) | Baby Gender |
---|---|---|---|---|---|---|---|---|---|---|
1 | 33 | Moderna (GA 2 weeks) | Moderna (GA 38 weeks) | NA | NA | Yes | Yes | 26.56 | 3070 | Male |
2 | 33 | Moderna (GA 26 weeks) | Moderna (GA 36 weeks) | NA | NA | No | No | 28.0 | 3130 | Male |
3 | 27 | Moderna (GA 15 weeks) | Moderna (GA 19 weeks) | Moderna (GA 34 weeks) | NA | Yes | Yes | 26.55 | 2880 | Female |
4 | 38 | Moderna (8 weeks before preg) | Moderna (GA 15 weeks) | Moderna (GA 34 weeks) | NA | No | No | 23.30 | 3045 | Male |
5 | 38 | BNT (25 weeks before preg) | BNT (20 weeks before preg) | BNT (8 weeks before preg) | Bi-valent Moderna BA.1 (GA 36 weeks) | Yes | Yes | 28.12 | 2520 | Male |
The Intersection of Maternal Blood and Neonatal Cord Blood Samples | Maternal (ΔΔCq) | Neonatal (ΔΔCq) |
---|---|---|
Difference between 2 and 3 doses of vaccine | ||
hsa-miR-451a | −4.69 | −1.60 |
hsa-miR-1972 | −6.41 | −1.00 |
Difference between 2 and 4 doses of vaccine | ||
hsa-miR-451a | −4.14 | −2.16 |
hsa-miR-486-5p | −0.62 | −2.93 |
hsa-miR-1972 | −9.39 | −4.66 |
Difference between 3 and 4 doses of vaccine | ||
hsa-miR-423-5p | −2.10 | −3.40 |
hsa-miR-1972 | −2.98 | −3.66 |
2 Dose vs. 3 Dose (ΔΔCq) | 2 Dose vs. 4 Dose (ΔΔCq) | |
---|---|---|
hsa-miR-15a-5p | 0.69 | −1.83 |
hsa-miR-16-5p | −0.38 | −1.84 |
hsa-miR-223-3p | 1.90 | 0.07 |
hsa-miR-423-5p | −1.23 | −3.58 |
ID | Description | p Value | Gene |
---|---|---|---|
miR-451a Pathway Function | |||
hsa04151 | PI3K-Akt signaling pathway | 0.0000045 | AKT1/BCL2/MYC/IL6R/IKBKB/ATF2/TSC1/YWHAZ |
hsa04915 | Estrogen signaling pathway | 0.0000415 | AKT1/MMP2/MMP9/BCL2/ATF2 |
hsa01522 | Endocrine resistance | 0.00017 | AKT1/MMP2/MMP9/BCL2 |
hsa04668 | TNF signaling pathway | 0.000285 | AKT1/MMP9/IKBKB/ATF2 |
hsa04152 | AMPK signaling pathway | 0.000383 | CAB39/AKT1/RAB14/TSC1 |
hsa04926 | Relaxin signaling pathway | 0.000489 | AKT1/MMP2/MMP9/ATF2 |
hsa04150 | mTOR signaling pathway | 0.000999 | CAB39/AKT1/IKBKB/TSC1 |
hsa04218 | Cellular senescence | 0.000999 | AKT1/MYC/ETS1/TSC1 |
hsa04630 | JAK-STAT signaling pathway | 0.00115 | AKT1/BCL2/MYC/IL6R |
hsa01521 | EGFR tyrosine kinase inhibitor resistance | 0.00151 | AKT1/BCL2/IL6R |
miR-1972 Pathway Function | |||
hsa03020 | RNA polymerase | 0.007212425 | POLR1B/POLR1E |
hsa04722 | Neurotrophin signaling pathway | 0.009993483 | CALM3/TP53/NGFR |
hsa00600 | Sphingolipid metabolism | 0.016944596 | PSAPL1/SPTLC3 |
hsa04218 | Cellular senescence | 0.020619785 | CALM3/TP53/CDK6 |
hsa01524 | Platinum drug resistance | 0.030841833 | TP53/GSTO2 |
hsa04115 | p53 signaling pathway | 0.030841833 | TP53/CDK6 |
miR-423-5p Pathway Function | |||
hsa04927 | Cortisol synthesis and secretion | 0.0000820 | PLCB1/SP1/KCNK3/CREB1/ADCY3 |
hsa04928 | Parathyroid hormone synthesis, secretion, and action | 0.0000866 | PLCB1/SP1/ARRB2/CREB1/MMP17/ADCY3 |
hsa04915 | Estrogen signaling pathway | 0.000367 | PLCB1/TFF1/CALM3/SP1/CREB1/ADCY3 |
hsa04713 | Circadian entrainment | 0.00054 | NOS1AP/PLCB1/CALM3/CREB1/ADCY3 |
hsa04925 | Aldosterone synthesis and secretion | 0.000566 | PLCB1/CALM3/KCNK3/CREB1/ADCY3 |
hsa04916 | Melanogenesis | 0.005216 | PLCB1/CALM3/CREB1/ADCY3 |
hsa04922 | Glucagon signaling pathway | 0.006393 | PGAM4/PLCB1/CALM3/CREB1 |
hsa04935 | Growth hormone synthesis, secretion, and action | 0.009522 | PLCB1/STAT5B/CREB1/ADCY3 |
hsa04062 | Chemokine signaling pathway | 0.010493 | PLCB1/ARRB2/STAT5B/CXCL12/ADCY3 |
hsa04110 | Cell cycle | 0.011559 | E2F3/ABL1/YWHAE/MCM7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.-C.; Hu, S.-Y.; Shen, C.-F.; Cheng, M.-H.; Hong, J.-J.; Shen, C.-J.; Cheng, C.-M. COVID-19 Vaccination in Pregnancy: Pilot Study for Maternal and Neonatal MicroRNA Profiles. Vaccines 2023, 11, 1814. https://doi.org/10.3390/vaccines11121814
Chen W-C, Hu S-Y, Shen C-F, Cheng M-H, Hong J-J, Shen C-J, Cheng C-M. COVID-19 Vaccination in Pregnancy: Pilot Study for Maternal and Neonatal MicroRNA Profiles. Vaccines. 2023; 11(12):1814. https://doi.org/10.3390/vaccines11121814
Chicago/Turabian StyleChen, Wei-Chun, Shu-Yu Hu, Ching-Fen Shen, Mei-Hsiu Cheng, Jun-Jie Hong, Ching-Ju Shen, and Chao-Min Cheng. 2023. "COVID-19 Vaccination in Pregnancy: Pilot Study for Maternal and Neonatal MicroRNA Profiles" Vaccines 11, no. 12: 1814. https://doi.org/10.3390/vaccines11121814
APA StyleChen, W. -C., Hu, S. -Y., Shen, C. -F., Cheng, M. -H., Hong, J. -J., Shen, C. -J., & Cheng, C. -M. (2023). COVID-19 Vaccination in Pregnancy: Pilot Study for Maternal and Neonatal MicroRNA Profiles. Vaccines, 11(12), 1814. https://doi.org/10.3390/vaccines11121814