Risk of Repeated Adverse Effects following Booster Dose of mRNA COVID-19 Vaccine: Results from the MOSAICO Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Adverse Effect | After First Dose (N = 320) | After Second Dose (N = 308) | After Booster Dose (N = 310) |
---|---|---|---|
N (%) | N (%) | N (%) | |
Pain at injection site | 266 (83.1) | 250 (81.2) | 228 (73.6) |
Redness at injection site | 58 (18.1) | 54 (17.5) | 54 (17.4) |
Swelling at injection site | 85 (26.6) | 66 (21.4) | 66 (21.3) |
Itch at injection site | 24 (7.5) | 20 (6.5) | 20 (6.5) |
Tiredness and fatigue | 162 (50.6) | 154 (50.0) | 146 (47.1) |
Headache | 127 (39.8) | 140 (45.4) | 118 (38.1) |
Muscle pain | 143 (44.7) | 158 (51.3) | 134 (43.2) |
Joint pain | 120 (37.5) | 133 (43.2) | 112 (36.1) |
Chills | 99 (30.9) | 117 (38.0) | 90 (29.0) |
Fever | 57 (17.8) | 86 (27.9) | 67 (21.6) |
Swelling of lymph nodes | 22 (6.9) | 21 (6.8) | 35 (11.3) |
Abdominal pain | 14 (4.4) | 13 (4.2) | 18 (5.8) |
Nausea | 32 (10.0) | 35 (11.4) | 26 (8.4) |
Vomiting | 10 (3.1) | 10 (3.2) | 5 (1.6) |
Shortness of breath | 7 (2.2) | 5 (1.6) | 7 (2.3) |
Rash | 4 (1.2) | 5 (1.6) | 4 (1.3) |
Swelling of face, tongue, or throat | 4 (1.2) | 1 (0.3) | 2 (0.7) |
Diarrhea | 1 (0.3) | Not reported | 1 (0.3) |
Sleep disturbances | 1 (0.3) | 1 (0.3) | 1 (0.3) |
Dizziness | 1 (0.3) | Not reported | 1 (0.3) |
Reactivation of herpes zoster virus | 1 (0.3) | 1 (0.3) | 1 (0.3) |
Venous phlebitis | 1 (0.3) | 1 (0.3) | Not reported |
Left-sided facial numbness | 1 (0.3) | 1 (0.3) | Not reported |
References
- McMenamin, M.E.; Nealon, J.; Lin, Y.; Wong, J.Y.; Cheung, J.K.; Lau, E.H.Y.; Wu, P.; Leung, G.M.; Cowling, B.J. Vaccine effectiveness of one, two, and three doses of BNT162b2 and CoronaVac against COVID-19 in Hong Kong: A population-based observational study. Lancet Infect. Dis. 2022, 22, 1435–1443. [Google Scholar] [CrossRef]
- Ferrara, P.; Antonazzo, I.C.; Polosa, R. Response to BNT162b2 mRNA COVID-19 vaccine among healthcare workers in Italy: A 3-month follow-up—Reply. Intern. Emerg. Med. 2022, 17, 313–314. [Google Scholar] [CrossRef]
- Fiolet, T.; Kherabi, Y.; MacDonald, C.-J.; Ghosn, J.; Peiffer-Smadja, N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review. Clin. Microbiol. Infect. 2022, 28, 202–221. [Google Scholar] [CrossRef]
- Balasco, N.; d’Alessandro, V.; Ferrara, P.; Smaldone, G.; Vitagliano, L. Analysis of the time evolution of COVID-19 lethality during the first epidemic wave in Italy. Acta Biomed. Atenei Parm. 2021, 92, e2021171. [Google Scholar] [CrossRef]
- La Rosa, G.; Iaconelli, M.; Veneri, C.; Mancini, P.; Bonanno Ferraro, G.; Brandtner, D.; Lucentini, L.; Bonadonna, L.; Rossi, M.; Grigioni, M.; et al. The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance. Sci. Total Environ. 2022, 837, 155767. [Google Scholar] [CrossRef]
- Fabiani, M.; Puopolo, M.; Morciano, C.; Spuri, M.; Spila Alegiani, S.; Filia, A.; D’Ancona, F.; Del Manso, M.; Riccardo, F.; Tallon, M.; et al. Effectiveness of mRNA vaccines and waning of protection against SARS-CoV-2 infection and severe covid-19 during predominant circulation of the delta variant in Italy: Retrospective cohort study. BMJ 2022, 376, e069052. [Google Scholar] [CrossRef]
- Ponticelli, D.; Antonazzo, I.C.; Caci, G.; Vitale, A.; Della Ragione, G.; Romano, M.L.; Borrelli, M.; Schiavone, B.; Polosa, R.; Ferrara, P. Dynamics of antibody response to BNT162b2 mRNA COVID-19 vaccine after 6 months. J. Travel Med. 2021, 28, taab173. [Google Scholar] [CrossRef]
- Ferrara, P.; Ponticelli, D.; Magliuolo, R.; Borrelli, M.; Schiavone, B.; Mantovani, L.G. Time-Varying Effect of Hybrid Immunity on the Risk of Breakthrough Infection after Booster Dose of mRNA COVID-19 Vaccine: The MOSAICO Study. Vaccines 2022, 10, 1353. [Google Scholar] [CrossRef]
- US Centers for Disease Control and Prevention. Safety of COVID-19 Vaccines. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/safety-of-vaccines.html (accessed on 19 January 2023).
- US Centers for Disease Control and Prevention. Selected Adverse Events Reported after COVID-19 Vaccination. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/adverse-events.html (accessed on 19 January 2023).
- Singh, A.; Khillan, R.; Mishra, Y.; Khurana, S. The safety profile of COVID-19 vaccinations in the United States. Am. J. Infect. Control 2022, 50, 15–19. [Google Scholar] [CrossRef]
- Son, K.-H.; Kwon, S.-H.; Na, H.-J.; Baek, Y.; Kim, I.; Lee, E.-K. Quantitative Benefit–Risk Assessment of COVID-19 Vaccines Using the Multi-Criteria Decision Analysis. Vaccines 2022, 10, 2029. [Google Scholar] [CrossRef]
- Durand, J.; Dogné, J.; Cohet, C.; Browne, K.; Gordillo Maranon, M.; Piccolo, L.; Zaccaria, C.; Genov, G. Safety monitoring of COVID-19 vaccines: Perspective from the European Medicines Agency. Clin. Pharmacol. Ther. 2022. Epub ahead of print. [Google Scholar] [CrossRef]
- Ponticelli, D.; Madotto, F.; Conti, S.; Antonazzo, I.C.; Vitale, A.; Della Ragione, G.; Romano, M.L.; Borrelli, M.; Schiavone, B.; Polosa, R.; et al. Response to BNT162b2 mRNA COVID-19 vaccine among healthcare workers in Italy: A 3-month follow-up. Intern. Emerg. Med. 2022, 17, 481–486. [Google Scholar] [CrossRef]
- Lee, K.-M.; Lin, S.-J.; Wu, C.-J.; Kuo, R.-L. Race with virus evolution: The development and application of mRNA vaccines against SARS-CoV-2. Biomed. J. 2023. [Google Scholar] [CrossRef]
- Lee, M.-T.; Choi, W.; You, S.-H.; Park, S.; Kim, J.-Y.; Nam, D.R.; Lee, J.W.; Jung, S.-Y. Safety Profiles of mRNA COVID-19 Vaccines Using World Health Organization Global Scale Database (VigiBase): A Latent Class Analysis. Infect. Dis. Ther. 2022. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.-L.; Tworkoski, E.; Ke Zhou, C.; Hu, M.; Thompson, D.; Lufkin, B.; Do, R.; Feinberg, L.; Chillarige, Y.; Dimova, R.; et al. Surveillance of COVID-19 vaccine safety among elderly persons aged 65 years and older. Vaccine 2023, 41, 532–539. [Google Scholar] [CrossRef]
- Hermann, E.A.; Lee, B.; Balte, P.P.; Xanthakis, V.; Kirkpatrick, B.D.; Cushman, M.; Oelsner, E. Association of Symptoms After COVID-19 Vaccination With Anti–SARS-CoV-2 Antibody Response in the Framingham Heart Study. JAMA Netw. Open 2022, 5, e2237908. [Google Scholar] [CrossRef] [PubMed]
- Melanson, S.E.F.; Zhao, Z.; Kumanovics, A.; Love, T.; Meng, Q.H.; Wu, A.H.B.; Apple, F.; Ondracek, C.R.; Schulz, K.M.; Wiencek, J.R.; et al. Tolerance for three commonly administered COVID-19 vaccines by healthcare professionals. Front. Public Health 2022, 10, 975781. [Google Scholar] [CrossRef] [PubMed]
- Abukhalil, A.D.; Shatat, S.S.; Abushehadeh, R.R.; Al-Shami, N.; Naseef, H.A.; Rabba, A. Side effects of Pfizer/BioNTech (BNT162b2) COVID-19 vaccine reported by the Birzeit University community. BMC Infect. Dis. 2023, 23, 5. [Google Scholar] [CrossRef]
- StataCorp Stata Statistical Software: Release 17; StataCorp LLC: College Station, TX, USA, 2021.
- Wu, Q.; Dudley, M.Z.; Chen, X.; Bai, X.; Dong, K.; Zhuang, T.; Salmon, D.; Yu, H. Evaluation of the safety profile of COVID-19 vaccines: A rapid review. BMC Med. 2021, 19, 173. [Google Scholar] [CrossRef] [PubMed]
- Ozonoff, A.; Nanishi, E.; Levy, O. Bell’s palsy and SARS-CoV-2 vaccines. Lancet Infect. Dis. 2021, 21, 450–452. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, H.; Noor, S.M.U.; Masood, M.; Bashir, K. Bell’s Palsy After 24 Hours of mRNA-1273 SARS-CoV-2 Vaccine. Cureus 2021, 13, e15935. [Google Scholar] [CrossRef] [PubMed]
- Renoud, L.; Khouri, C.; Revol, B.; Lepelley, M.; Perez, J.; Roustit, M.; Cracowski, J.-L. Association of Facial Paralysis With mRNA COVID-19 Vaccines: A Disproportionality Analysis Using the World Health Organization Pharmacovigilance Database. JAMA Intern. Med. 2021, 181, 1243. [Google Scholar] [CrossRef]
- Agrawal, S.; Verma, K.; Verma, I.; Gandhi, J. Reactivation of Herpes Zoster Virus After COVID-19 Vaccination: Is There Any Association? Cureus 2022, 14, e25195. [Google Scholar] [CrossRef]
- Wan, E.Y.F.; Chui, C.S.L.; Wang, Y.; Ng, V.W.S.; Yan, V.K.C.; Lai, F.T.T.; Li, X.; Wong, C.K.H.; Chan, E.W.Y.; Wong, C.S.M.; et al. Herpes zoster related hospitalization after inactivated (CoronaVac) and mRNA (BNT162b2) SARS-CoV-2 vaccination: A self-controlled case series and nested case-control study. Lancet Reg. Health -West. Pac. 2022, 21, 100393. [Google Scholar] [CrossRef]
- Evans, S.S.; Repasky, E.A.; Fisher, D.T. Fever and the thermal regulation of immunity: The immune system feels the heat. Nat. Rev. Immunol. 2015, 15, 335–349. [Google Scholar] [CrossRef]
- Kanizsai, A.; Molnar, T.; Varnai, R.; Zavori, L.; Tőkés-Füzesi, M.; Szalai, Z.; Berecz, J.; Csecsei, P. Fever after Vaccination against SARS-CoV-2 with mRNA-Based Vaccine Associated with Higher Antibody Levels during 6 Months Follow-Up. Vaccines 2022, 10, 447. [Google Scholar] [CrossRef]
- Naaber, P.; Tserel, L.; Kangro, K.; Sepp, E.; Jürjenson, V.; Adamson, A.; Haljasmägi, L.; Rumm, A.P.; Maruste, R.; Kärner, J.; et al. Dynamics of antibody response to BNT162b2 vaccine after six months: A longitudinal prospective study. Lancet Reg. Health-Eur. 2021, 10, 100208. [Google Scholar] [CrossRef] [PubMed]
- Naaber, P.; Tserel, L.; Kangro, K.; Punapart, M.; Sepp, E.; Jürjenson, V.; Kärner, J.; Haljasmägi, L.; Haljasorg, U.; Kuusk, M.; et al. Protective antibodies and T cell responses to Omicron variant after the booster dose of BNT162b2 vaccine. Cell Rep. Med. 2022, 3, 100716. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.R.; Apostolidis, S.A.; Painter, M.M.; Mathew, D.; Pattekar, A.; Kuthuru, O.; Gouma, S.; Hicks, P.; Meng, W.; Rosenfeld, A.M.; et al. Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals after mRNA vaccination. Sci. Immunol. 2021, 6, eabi6950. [Google Scholar] [CrossRef]
- McCartney, P.R. Sex-Based Vaccine Response in the Context of COVID-19. J. Obstet. Gynecol. Neonatal Nurs. 2020, 49, 405–408. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Herring, M.K.; Romine, J.K.; Wesley, M.G.; Ellingson, K.D.; Yoon, S.K.; Caban-Martinez, A.J.; Meece, J.; Gaglani, M.; Grant, L.; Olsho, L.E.W.; et al. SARS-CoV-2 infection history and antibody response to three COVID-19 mRNA vaccine doses. Clin. Infect. Dis. 2022. Epub ahead of print. [Google Scholar] [CrossRef]
- Tomita, K.; Okada, S.; Sugihara, S.; Ikeuchi, T.; Touge, H.; Hasegawa, J.; Yamasaki, A. Physical Characteristics of Injection Site Pain After COVID-19 mRNA BNT162b2 Vaccination. Yonago Acta Med. 2021, 64, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Della Valle, P.; Fabbri, M.; Madotto, F.; Ferrara, P.; Cozzolino, P.; Calabretto, E.; D’Orso, M.; Longhi, E.; Polosa, R.; Riva, M.; et al. Occupational Exposure in the Lombardy Region (Italy) to SARS-CoV-2 Infection: Results from the MUSTANG–OCCUPATION–COVID-19 Study. Int. J. Environ. Res. Public. Health 2021, 18, 2567. [Google Scholar] [CrossRef]
- Polosa, R.; Tomaselli, V.; Ferrara, P.; Romeo, A.C.; Rust, S.; Saitta, D.; Caraci, F.; Romano, C.; Thangaraju, M.; Zuccarello, P.; et al. Seroepidemiological Survey on the Impact of Smoking on SARS-CoV-2 Infection and COVID-19 Outcomes: Protocol for the Troina Study. JMIR Res. Protoc. 2021, 10, e32285. [Google Scholar] [CrossRef]
- Tomaselli, V.; Ferrara, P.; Cantone, G.G.; Romeo, A.C.; Rust, S.; Saitta, D.; Caraci, F.; Romano, C.; Thangaraju, M.; Zuccarello, P.; et al. The effect of laboratory-verified smoking on SARS-CoV-2 infection: Results from the Troina sero-epidemiological survey. Intern. Emerg. Med. 2022, 17, 1617–1630. [Google Scholar] [CrossRef] [PubMed]
- Young-Wolff, K.C.; Slama, N.; Alexeeff, S.E.; Sakoda, L.C.; Fogelberg, R.; Myers, L.C.; Campbell, C.I.; Adams, A.S.; Prochaska, J.J. Tobacco Smoking and Risk of SARS-CoV-2 Infection and Disease Severity Among Adults in an Integrated Healthcare System in California. Nicotine Tob. Res. 2022, 25, 211–220. [Google Scholar] [CrossRef]
- Ferrara, P.; Ponticelli, D.; Agüero, F.; Caci, G.; Vitale, A.; Borrelli, M.; Schiavone, B.; Antonazzo, I.C.; Mantovani, L.G.; Tomaselli, V.; et al. Does smoking have an impact on the immunological response to COVID-19 vaccines? Evidence from the VASCO study and need for further studies. Public Health 2022, 203, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, P.; Gianfredi, V.; Tomaselli, V.; Polosa, R. The Effect of Smoking on Humoral Response to COVID-19 Vaccines: A Systematic Review of Epidemiological Studies. Vaccines 2022, 10, 303. [Google Scholar] [CrossRef] [PubMed]
- Hause, A.M.; Baggs, J.; Marquez, P.; Myers, T.R.; Su, J.R.; Blanc, P.G.; Gwira Baumblatt, J.A.; Woo, E.J.; Gee, J.; Shimabukuro, T.T.; et al. Safety Monitoring of COVID-19 Vaccine Booster Doses Among Adults—United States, September 22, 2021–February 6, 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 249–254. [Google Scholar] [CrossRef]
- Kitagawa, H.; Kaiki, Y.; Sugiyama, A.; Nagashima, S.; Kurisu, A.; Nomura, T.; Omori, K.; Akita, T.; Shigemoto, N.; Tanaka, J.; et al. Adverse reactions to the BNT162b2 and mRNA-1273 mRNA COVID-19 vaccines in Japan. J. Infect. Chemother. 2022, 28, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Menni, C.; May, A.; Polidori, L.; Louca, P.; Wolf, J.; Capdevila, J.; Hu, C.; Ourselin, S.; Steves, C.J.; Valdes, A.M.; et al. COVID-19 vaccine waning and effectiveness and side-effects of boosters: A prospective community study from the ZOE COVID Study. Lancet Infect. Dis. 2022, 22, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
- Schoenmaker, L.; Witzigmann, D.; Kulkarni, J.A.; Verbeke, R.; Kersten, G.; Jiskoot, W.; Crommelin, D.J.A. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int. J. Pharm. 2021, 601, 120586. [Google Scholar] [CrossRef] [PubMed]
- Ministero della Salute. Piano Vaccini Anti COVID-19. 2021. Available online: https://www.salute.gov.it/portale/nuovocoronavirus/dettaglioContenutiNuovoCoronavirus.jsp?lingua=italiano&id=5452&area=nuovoCoronavirus&menu=vuoto (accessed on 19 January 2023).
- Kaplonek, P.; Cizmeci, D.; Fischinger, S.; Collier, A.; Suscovich, T.; Linde, C.; Broge, T.; Mann, C.; Amanat, F.; Dayal, D.; et al. mRNA-1273 and BNT162b2 COVID-19 vaccines elicit antibodies with differences in Fc-mediated effector functions. Sci. Transl. Med. 2022, 14, eabm2311. [Google Scholar] [CrossRef]
- Ferrara, P.; Albano, L. COVID-19 and healthcare systems: What should we do next? Public Health 2020, 185, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Agenzia Italiana del Farmaco Rapporto Sulla Sorveglianza dei Vaccini Anti-COVID-19-13: 27/12/2020–26/09/2022. 2022. Available online: https://www.aifa.gov.it/documents/20142/1315190/Rapporto_sorveglianza_vaccini_COVID-19_9.pdf (accessed on 19 January 2023).
- Huang, L.; Lai, F.T.T.; Yan, V.K.C.; Cheng, F.W.T.; Cheung, C.L.; Chui, C.S.L.; Li, X.; Wan, E.Y.F.; Wong, C.K.H.; Hung, I.F.N.; et al. Comparing hybrid and regular COVID-19 vaccine-induced immunity against the Omicron epidemic. Npj Vaccines 2022, 7, 162. [Google Scholar] [CrossRef] [PubMed]
- Pascucci, D.; Grossi, A.; Lontano, A.; Marziali, E.; Nurchis, M.C.; Grassi, V.M.; Raponi, M.; Vetrugno, G.; Capelli, G.; Calabrò, G.E.; et al. Risk of Infection and Duration of Protection after the Booster Dose of the Anti-SARS-CoV-2 Vaccine BNT162b2 among Healthcare Workers in a Large Teaching Hospital in Italy: Results of an Observational Study. Vaccines 2022, 11, 25. [Google Scholar] [CrossRef]
- Bégaud, B.; Dangoumau, J. Pharmacoepidemiology: Definitions, problems, methodology. Therapie 2000, 55, 113–117. [Google Scholar] [PubMed]
N (%) | |
---|---|
Total third-dose recipients | 310 |
Age (in years) * | 38 (32–50) |
Gender Men Women | 127 (41.0) 183 (59.0) |
Role HCWs Non-HCWs | 239 (77.1) 71 (22.9) |
Cigarette smoker Never/Former Current | 195 (62.9) 115 (37.1) |
Health status Previous SARS-CoV-2 infection Autoimmune disease Immunosuppressive therapy § | 50 (16.1) 10 (3.2) 5 (1.6) |
mRNA vaccine platform received BNT162b2 mRNA-1273 | 259 (83.5) 51 (16.5) |
Time interval between primary vaccination cycle and booster dose (in weeks) * ^ | 36 (35–42) |
Reporting at least one AEFI | 258 (83.2) |
Risk Ratio (RR) and 95% Confidence Interval (95%CI) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AEFI | Cumulative Incidence N (%) | Same AEFI after the First Dose | Same AEFI after the Second Dose | Age (in Years) | Gender (Women) | Previous SARS-CoV-2 Infection | Professional Role (HCWs) | Smokers | Autoimmune Disease | Immunosuppressive Therapy | Vaccine Platform (mRNA-1273) | Time since Primary Vaccination Cycle (in Weeks) |
Pain at injection site | 228 (73.6) | 3.97 (2.09–7.54) * | 1.90 (1.16–3.09) ** | 1.12 (1.00–1.25) | 1.17 (1.01– 1.34) *** | 1.11 (0.92– 1.34) | 1.15 (0.85– 1.57) | 1.01 (1.00– 1.01) | ||||
Redness at injection site | 54 (17.4) | 15.36 (8.97–26.30) * | 1.21 (0.79–1.84) | 1.34 (0.84–2.14) | 0.59 (0.25– 1.38) | § | 0.97 (0.94– 0.997) *** | |||||
Swelling at injection site | 66 (21.3) | 7.19 (3.17–16.34) * | 1.92 (0.91–4.06) | 1.27 (0.81– 1.98) | 1.02 (1.00– 1.04) | |||||||
Itch at injection site | 20 (6.5) | 3.23 (0.79–13.27) | 9.95 (2.01–49.42) ** | 3.94 (0.85–18.30) | § | 0.18 (0.02–2.00) | 1.08 (0.96– 1.21) | |||||
Tiredness and fatigue | 146 (47.1) | 3.56 (2.33–5.44) * | 1.56 (1.12–2.16) ** | 1.31 (1.04–1.65) *** | 0.83 (0.65– 1.06) | 0.87 (0.72–1.05) | 2.01 (0.88– 4.57) | 1.27 (1.02–1.68) *** | 1.01 (0.99– 1.02) | |||
Headache | 118 (38.1) | 3.75 (2.23–6.33) * | 1.91 (1.31–2.80) * | 1.45 (1.08–1.94) ** | 0.85 (0.67–1.07) | 0.36 (0.08– 1-75) | 1.18 (0.92–1.50) | |||||
Muscle pain | 134 (43.2) | 6.25 (3.60–10.88) * | 1.30 (1.00–1.69) | 1.23 (0.98–1.55) | 0.79 (0.64–0.96) *** | 0.69 (0.37– 1.28) | 1.19 (0.97–1.47) | |||||
Joint pain | 112 (36.1) | 5.77 (3.24–10.25) * | 1.54 (1.08–2.18) *** | 1.02 (1.01–1.03) ** | 1.22 (0.93–1.59) | 0.82 (0.57– 1.17) | 0.86 (0.68–1.09) | 0.75 (0.42– 1.38) | 1.43 (1.11–1.84) ** | |||
Chills | 90 (29.0) | 7.64 (4.25–13.73) * | 1.49 (1.06–2.09) *** | 1.02 (1.01–1.03) ** | 1.31 (0.93–1.86) | 0.75 (0.50– 1.12) | 0.68 (0.30– 1.52) | 1.35 (0.97–1.87) | ||||
Fever | 67 (21.6) | 6.21 (3.69–10.44) * | 1.51 (1.05–2.14) *** | 1.35 (0.91–2.01) | 0.61 (0.41–0.94) *** | 1.01 (0.99– 1.03) | ||||||
Swelling of lymph nodes | 35 (11.3) | 5.39 (2.18–13.36) * | 1.76 (0.69–4.45) | 1.55 (0.65– 3.68) | 1.66 (0.68–4.05) | § | § | |||||
Abdominal pain | 18 (5.8) | 4.86 (1.19–19.77) *** | 5.31 (1.31–21.47) *** | 1.74 (0.59– 5-12) | 0.61 (0.26–1.44) | § | § | |||||
Nausea | 26 (8.4) | 16.68 (4.96–56.06) * | 2.65 (1.03–6.82) *** | 1.01 (0.99–1.04) | 1.94(0.59–6.29) | 0.38 (0.19–0.77) ** | 3.07 (1.30–7.25) ** | |||||
Vomiting ^ | 5 (1.6) | |||||||||||
Shortness of breath ^ | 7 (2.3) | |||||||||||
Rash ^ | 4 (1.3) | |||||||||||
Swelling of face, tongue, or throat^ | 2 (0.7) | |||||||||||
Diarrhea ^ | 1 (0.3) | |||||||||||
Sleep disturbances ^ | 1 (0.3) | |||||||||||
Dizziness ^ | 1 (0.3) | |||||||||||
Reactivation of Herpes Zoster Virus ^ | 1 (0.3) |
N (%) | |
---|---|
Inability to perform normal daily activities | 57 (18.4) |
Inability to work | 59 (19.0) |
Seeking medical care | 25 (8.1) |
Remote medical consultation | 21 (6.8) |
Medical examination | 5 (1.6) |
Remote consultation with vaccination center | 1 (0.3) |
Medical examination at vaccination center | 1 (0.3) |
Emergency department or hospital access | 0 (0) |
Model 1: Odds of Inability to Perform Normal Daily Activities Due to AEFI | ||||
---|---|---|---|---|
Variable | OR | SE | 95% CI | p-Value |
Log likelihood = − 137.63; χ2 = 20.21 (5 df); p-value = 0.001 | ||||
Gender Men Women | Ref. 2.45 | - 0.85 | - 1.23–4.85 | 0.01 |
Role Non-HCW HCWs | Ref. 0.57 | - 0.21 | - 0.28–1.17 | 0.13 |
Autoimmune disease No Yes | Ref. 11.71 | - 10.55 | - 2.00–68.48 | 0.006 |
Immunosuppressive therapy No Yes | Ref. 0.23 | - 0.32 | - 0.02–3.45 | 0.29 |
Type of booster vaccine BNT162b2 mRNA-1273 | Ref. 1.95 | - 0.72 | - 0.95–4.03 | 0.07 |
Model 2: Odds of inability to work due to AEFI | ||||
Variable | OR | SE | 95% CI | p-value |
Log likelihood = − 144.53; χ2 = 12.28 (4 df); p-value = 0.02 | ||||
Gender Men Women | Ref. 2.04 | - 0.68 | - 1.07–3.91 | 0.03 |
Role Non-HCW HCWs | Ref. 0.48 | - 0.16 | - 0.24–0.94 | 0.03 |
Autoimmune disease No Yes | Ref. 4.10 | - 2.90 | - 1.03–16.37 | 0.05 |
Type of booster vaccine BNT162b2 mRNA-1273 | Ref. 1.45 | - 0.54 | - 0.70–3.02 | 0.32 |
Model 3: Odds of seeking medical care due to AEFI | ||||
Variable | OR | SE | 95% CI | p-value |
Log likelihood = − 80.74; χ2 = 12.17 (5 df); p-value = 0.03 | ||||
Gender Men Women | Ref. 2.36 | - 1.17 | - 0.89–6.25 | 0.08 |
Age (continuous, in years) | 1.03 | 0.2 | 0.99–1.07 | 0.14 |
Role Non-HCW HCWs | Ref. 0.41 | - 0.19 | - 0.16–1.02 | 0.06 |
Immunosuppressive therapy No Yes | Ref. 2.79 | - 3.34 | - 0.27–29.02 | 0.39 |
Type of booster vaccine BNT162b2 mRNA-1273 | Ref. 2.61 | - 1.25 | - 1.03–6.67 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrara, P.; Ponticelli, D.; Losa, L.; Romeo, C.; Magliuolo, R.; Vitale, A.; Zampella, A.; Alleanza, L.; Borrelli, M.; Schiavone, B.; et al. Risk of Repeated Adverse Effects following Booster Dose of mRNA COVID-19 Vaccine: Results from the MOSAICO Study. Vaccines 2023, 11, 247. https://doi.org/10.3390/vaccines11020247
Ferrara P, Ponticelli D, Losa L, Romeo C, Magliuolo R, Vitale A, Zampella A, Alleanza L, Borrelli M, Schiavone B, et al. Risk of Repeated Adverse Effects following Booster Dose of mRNA COVID-19 Vaccine: Results from the MOSAICO Study. Vaccines. 2023; 11(2):247. https://doi.org/10.3390/vaccines11020247
Chicago/Turabian StyleFerrara, Pietro, Domenico Ponticelli, Lorenzo Losa, Claudia Romeo, Roberto Magliuolo, Andrea Vitale, Anna Zampella, Lucia Alleanza, Mario Borrelli, Beniamino Schiavone, and et al. 2023. "Risk of Repeated Adverse Effects following Booster Dose of mRNA COVID-19 Vaccine: Results from the MOSAICO Study" Vaccines 11, no. 2: 247. https://doi.org/10.3390/vaccines11020247
APA StyleFerrara, P., Ponticelli, D., Losa, L., Romeo, C., Magliuolo, R., Vitale, A., Zampella, A., Alleanza, L., Borrelli, M., Schiavone, B., & Mantovani, L. G. (2023). Risk of Repeated Adverse Effects following Booster Dose of mRNA COVID-19 Vaccine: Results from the MOSAICO Study. Vaccines, 11(2), 247. https://doi.org/10.3390/vaccines11020247