EDA-E7 Activated DCs Induces Cytotoxic T Lymphocyte Immune Responses against HPV Expressing Cervical Cancer in Human Setting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Human Recombinant EDA-E7 Fusion Protein Preparation
2.3. Analysis of E7, EDA-E7 Binding with DCs
2.4. Flow Cytometry
2.5. Monocyte Activation Analysis
2.6. T Cell Proliferation Assay
2.7. T Cell Receptor (TCR) Coupled Single Cell RNA Sequencing
2.8. T Cell In Vitro Cytotoxicity Assay
2.9. Statistical Analysis
3. Results
3.1. Recombinant Fusion Protein EDA-E7 Stimulates DCs Maturation through TLR4 Signaling Pathway
3.2. 500 nM EDA-E7 Has the Best Effect to Activate DCs In Vitro
3.3. TLR Activators Upregulated the Activation Effect of EDA-E7 on DCs
3.4. EDA-E7 Matured DCs Could Activate T Cells In Vitro
3.5. TCR Coupled Single Cell RNA Sequencing Revealed TCR Enrichment and Cytotoxic Property of T Cells after Co-Culture with EDA-E7 Activated DCs
3.6. T Cells Activated by EDA-E7 Matured DCs Efficiently Kills HPV16E7 Infected SiHa
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversame, M.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Arbyn, M.; Xu, L.; Simoens, C.; Martin-Hirsch, P.P. Prophylactic vaccination against human papillomaviruses to prevent cervical cancer and its precursors. Cochrane Database Syst. Rev. 2018, 5, Cd009069. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yang, H.; Wu, K.; Shi, X.; Ma, S.; Sun, Q. Prevalence of HPV and variation of HPV 16/HPV 18 E6/E7 genes in cervical cancer in women in South West China. J. Med. Virol. 2014, 86, 1926–1936. [Google Scholar] [CrossRef] [PubMed]
- Koh, W.J.; Abu-Rustum, N.R.; Bean, S.; Bradley, K.; Campos, S.M.; Cho, K.R.; Chon, H.S.; Chu, C.; Clark, R.; Cohn, D.; et al. Cervical Cancer, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2019, 17, 64–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duenas-Gonzalez, A. Combinational therapies for the treatment of advanced cervical cancer. Expert Opin. Pharmacother. 2023, 24, 73–81. [Google Scholar] [CrossRef]
- Mezache, L.; Paniccia, B.; Nyinawabera, A.; Nuovo, G.J. Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervical cancers. Mod. Pathol. 2015, 28, 1594–1602. [Google Scholar] [CrossRef] [Green Version]
- Frenel, J.S.; Le Tourneau, C.; O’Neil, B.; Ott, P.A.; Piha-Paul, S.A.; Gomez-Roca, C.; van Brummelen, E.M.J.; Rugo, H.S.; Thomas, S.; Saraf, S.; et al. Safety and Efficacy of Pembrolizumab in Advanced, Programmed Death Ligand 1-Positive Cervical Cancer: Results From the Phase Ib KEYNOTE-028 Trial. J. Clin. Oncol. 2017, 35, 4035–4041. [Google Scholar] [CrossRef]
- Ferrara, A.; Nonn, M.; Sehr, P.; Schreckenberger, C.; Pawlita, M.; Dürst, M.; Schneider, A.; Kaufmann, A.M. Dendritic cell-based tumor vaccine for cervical cancer II: Results of a clinical pilot study in 15 individual patients. J. Cancer Res. Clin. Oncol. 2003, 129, 521–530. [Google Scholar] [CrossRef]
- Saito, S.; Yamaji, N.; Yasunaga, K.; Saito, T.; Matsumoto, S.; Katoh, M.; Kobayashi, S.; Masuho, Y. The fibronectin extra domain A activates matrix metalloproteinase gene expression by an interleukin-1-dependent mechanism. J. Biol. Chem. 1999, 274, 30756–30763. [Google Scholar] [CrossRef] [Green Version]
- Amin, A.; Mokhdomi, T.A.; Bukhari, S.; Wani, Z.; Chikan, N.A.; Shah, B.A.; Koul, A.M.; Majeed, U.; Farooq, F.; Qadri, A.; et al. Lung cancer cell-derived EDA-containing fibronectin induces an inflammatory response from monocytes and promotes metastatic tumor microenvironment. J. Cell. Biochem. 2021, 122, 562–576. [Google Scholar] [CrossRef]
- Lasarte, J.J.; Casares, N.; Gorraiz, M.; Hervas-Stubbs, S.; Arribillaga, L.; Mansilla, C.; Durantez, M.; Llopiz, D.; Sarobe, P.; Borras-Cuesta, F.; et al. The extra domain A from fibronectin targets antigens to TLR4-expressing cells and induces cytotoxic T cell responses in vivo. J. Immunol. 2007, 178, 748–756. [Google Scholar] [CrossRef] [Green Version]
- Mansilla, C.; Gorraiz, M.; Martinez, M.; Casares, N.; Arribillaga, L.; Rudilla, F.; Echeverria, I.; Riezu-Boj, J.I.; Sarobe, P.; Borrás-Cuesta, F.; et al. Immunization against hepatitis C virus with a fusion protein containing the extra domain A from fibronectin and the hepatitis C virus NS3 protein. J. Hepatol. 2009, 51, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Aranda, F.; Llopiz, D.; Diaz-Valdes, N.; Riezu-Boj, J.I.; Bezunartea, J.; Ruiz, M.; Martinez, M.; Durantez, M.; Mansilla, C.; Prieto, J.; et al. Adjuvant combination and antigen targeting as a strategy to induce polyfunctional and high-avidity T-cell responses against poorly immunogenic tumors. Cancer Res. 2011, 71, 3214–3224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansilla, C.; Berraondo, P.; Durantez, M.; Martinez, M.; Casares, N.; Arribillaga, L.; Rudilla, F.; Fioravanti, J.; Lozano, T.; Villanueva, L.; et al. Eradication of large tumors expressing human papillomavirus E7 protein by therapeutic vaccination with E7 fused to the extra domain a from fibronectin. Int. J. Cancer 2012, 131, 641–651. [Google Scholar] [CrossRef]
- Maeda, Y.; Koga, H.; Yamada, H.; Ueda, T.; Imoto, T. Effective renaturation of reduced lysozyme by gentle removal of urea. Protein. Eng. 1995, 8, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.Y.; Campbell, T.E.; Draper, L.M.; Stevanovic, S.; Weissbrich, B.; Yu, Z.; Restifo, N.P.; Rosenberg, S.A.; Trimble, C.L.; Hinrichs, C.S. Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model. JCI Insight 2018, 3, e99488. [Google Scholar] [CrossRef]
- Moretti, I.F.; Lerario, A.M.; Trombetta-Lima, M.; Sola, P.R.; da Silva Soares, R.; Oba-Shinjo, S.M.; Marie, S.K.N. Late p65 nuclear translocation in glioblastoma cells indicates non-canonical TLR4 signaling and activation of DNA repair genes. Sci. Rep. 2021, 11, 1333. [Google Scholar] [CrossRef] [PubMed]
- Gilliet, M.; Cao, W.; Liu, Y.J. Plasmacytoid dendritic cells: Sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol. 2008, 8, 594–606. [Google Scholar] [CrossRef]
- Chester, C.; Sanmamed, M.F.; Wang, J.; Melero, I. Immunotherapy targeting 4-1BB: Mechanistic rationale, clinical results, and future strategies. Blood 2018, 131, 49–57. [Google Scholar] [CrossRef]
- Tough, D.F.; Borrow, P.; Sprent, J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 1996, 272, 1947–1950. [Google Scholar] [CrossRef]
- Kolumam, G.A.; Thomas, S.; Thompson, L.J.; Sprent, J.; Murali-Krishna, K. Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J. Exp. Med. 2005, 202, 637–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Pan, W.; Jin, L.; Huang, W.; Li, Y.; Wu, D.; Gao, C.; Ma, D.; Liao, S. Human papillomavirus vaccine against cervical cancer: Opportunity and challenge. Cancer Lett. 2020, 471, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Boitano, T.K.L.; Ketch, P.W.; Scarinci, I.C.; Huh, W.K. An update on human papillomavirus vaccination in the United States. Obstet Gynecol. 2023, 141, 324–330. [Google Scholar] [CrossRef] [PubMed]
Primer Number | Primer Name | Primer Sequence (5′-3′) |
---|---|---|
1 | E7(1-29aa)up | GGAATTCCATATGCATGGAGATACACCTAC |
2 | E7(1-29aa)down | CCTTTAGGGCGATCAATGTTATTTAATTGCTCATAACAGT |
3 | EDA up | AACATTGATCGCCCTAAAGG |
4 | EDA down | TGTGGACTGGGTTCCAATCA |
5 | E7(43-98aa)up | TGATTGGAACCCAGTCCACAGGACAAGCAGAACCGGACAG |
6 | E7(43-98aa)down | ATAAGAATGCGGCCGCTGGTTTCTGAGAACAGATGG |
7 | E7(1-29aa)down-2 | ATTTAATTGCTCATAACAGT |
8 | E7(43-98aa)up-2 | TCTCTACTGTTATGAGCAATTAAATGGACAAGCAGAACCGGACAG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Liu, Y.; Zhuang, N.; Chai, Z.; Liu, L.; Qian, C.; Li, J.; Shan, J. EDA-E7 Activated DCs Induces Cytotoxic T Lymphocyte Immune Responses against HPV Expressing Cervical Cancer in Human Setting. Vaccines 2023, 11, 320. https://doi.org/10.3390/vaccines11020320
Feng J, Liu Y, Zhuang N, Chai Z, Liu L, Qian C, Li J, Shan J. EDA-E7 Activated DCs Induces Cytotoxic T Lymphocyte Immune Responses against HPV Expressing Cervical Cancer in Human Setting. Vaccines. 2023; 11(2):320. https://doi.org/10.3390/vaccines11020320
Chicago/Turabian StyleFeng, Juan, Yongliang Liu, Na Zhuang, Zixuan Chai, Limei Liu, Cheng Qian, Jiatao Li, and Juanjuan Shan. 2023. "EDA-E7 Activated DCs Induces Cytotoxic T Lymphocyte Immune Responses against HPV Expressing Cervical Cancer in Human Setting" Vaccines 11, no. 2: 320. https://doi.org/10.3390/vaccines11020320
APA StyleFeng, J., Liu, Y., Zhuang, N., Chai, Z., Liu, L., Qian, C., Li, J., & Shan, J. (2023). EDA-E7 Activated DCs Induces Cytotoxic T Lymphocyte Immune Responses against HPV Expressing Cervical Cancer in Human Setting. Vaccines, 11(2), 320. https://doi.org/10.3390/vaccines11020320