Factors Contributing to Chronic Kidney Disease following COVID-19 Diagnosis in Pre-Vaccinated Hospitalized Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Ethical Approval
2.3. Data Collecting and Handling
2.4. Definitions
3. Results
3.1. Associations between CKD Status and Sociodemographic Profiles among Patients with COVID-19
3.2. Association between Patients’ CKD Status and Diagnosis
3.3. Association between CKD Status and Laboratory Tests
3.4. Contributing Factors to CKD following COVID-19 Diagnosis
4. Discussion
5. Conclusions
5.1. Limitation of Study
5.2. Future Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Kordzadeh-Kermani, E.; Khalili, H.; Karimzadeh, I. Pathogenesis, clinical manifestations and complications of coronavirus disease 2019 (COVID-19). Future Microbiol. 2020, 15, 1287–1305. [Google Scholar] [CrossRef] [PubMed]
- Drożdżal, S.; Rosik, J.; Lechowicz, K.; Machaj, F.; Kotfis, K.; Ghavami, S.; Łos, M.J. FDA approved drugs with pharmacotherapeutic potential for SARS-CoV-2 (COVID-19) therapy. Drug Resist. Updates 2020, 53, 100719. [Google Scholar] [CrossRef] [PubMed]
- Ramatillah, D.L.; Isnaini, S. Treatment profiles and clinical outcomes of COVID-19 patients at private hospital in Jakarta. PLoS ONE 2021, 16, e0250147. [Google Scholar] [CrossRef] [PubMed]
- Ramatillah, D.L.; Gan, S.H.; Sulaiman, S.A.S.; Puja, D.; Abubakar, U.; Jaber, A.A.S.; Lukas, S.; Jusnita, N. Evaluation of Treatment Outcome for Pneumonia among Pre-Vaccinated COVID-19 Patients with/without Comorbidity in a Public Hospital in Bengkulu, Indonesia. Vaccines 2021, 9, 1411. [Google Scholar] [CrossRef]
- Ministry of Health Indonesia. The COVID-19 Vaccination Program Begins, the President Is the First Person to Receive the COVID-19 Vaccine Injection. 13 January 2021. Available online: http://p2p.kemkes.go.id/program-vaksinasi-covid-19-mulai-dilakukan-presiden-orang-pertama-penerima-suntikan-vaksin-covid-19/ (accessed on 15 September 2022).
- Bona, M.F. Ministry of Health: Vaccination for the General Public Starting in July. 6 June 2021. Available online: https://www.beritasatu.com/kesehatan/783409/kemkes-vaksinasi-untuk-masyarakat-umum-mulai-juli (accessed on 15 September 2022).
- PAPDI. PAPDI’s Recommendation on Giving COVID-19 Vaccination to Patients with Comorbidities. Available online: https://www.papdi.or.id/berita/info-papdi/1024-rekomendasi-papdi-tentang-pemberian-vaksinasi-covid-19-pada-pasien-dengan-penyakit-penyerta-komorbid-revisi-18-maret-2021 (accessed on 15 September 2022).
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Du, R.H.; Liang, L.R.; Yang, C.Q.; Wang, W.; Cao, T.Z.; Li, M.; Guo, G.Y.; Du, J.; Zheng, C.L.; Zhu, Q.; et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: A prospective cohort study. Eur. Respir. J. 2020, 55, 2000524. [Google Scholar] [CrossRef]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; The Northwell COVID-19 Research Consortium; et al. Presenting Characteristics, Comorbidities, and Outcomes among 5700 Patients Hospitalized with COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Zarębska-Michaluk, D.; Jaroszewicz, J.; Rogalska, M.; Lorenc, B.; Rorat, M.; Szymanek-Pasternak, A.; Piekarska, A.; Berkan-Kawińska, A.; Sikorska, K.; Tudrujek-Zdunek, M.; et al. Impact of kidney failure on the severity of COVID-19. J. Clin. Med. 2021, 10, 2042. [Google Scholar] [CrossRef]
- Levin, M. Shock. In Paediatric Emergencies 2; Black, J.A., Ed.; Butterworth: London, UK, 1987; pp. 87–116. [Google Scholar]
- Williams, E.; Bhagani, S.; Harber, M. Infectious diseases and the kidney. Pract. Nephrol. 2014, 257–268. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, H.; Li, X.; Li, H.; Xu, L.; Yu, Q. Prevalence of kidney injury and associations with critical illness and death in patients with COVID-19. Clin. J. Am. Soc. Nephrol. 2020, 15, 1549–1556. [Google Scholar] [CrossRef]
- Cheruiyot, I.; Henry, B.; Lippi, G.; Kipkorir, V.; Ngure, B.; Munguti, J. Acute kidney injury is associated with worse prognosis in COVID-19 patients: A systematic review and meta-analysis. Acta Biomed. 2020, 91, e2020029. [Google Scholar]
- Sabaghian, T.; Kharazmi, A.B.; Ansari, A.; Omidi, F.; Kazemi, S.N.; Hajikhani, B.; Vaziri-Harami, R.; Tajbakhsh, A.; Omidi, S.; Haddadi, S.; et al. COVID-19 and Acute Kidney Injury: A Systematic Review. Front. Med. 2022, 9, 705908. [Google Scholar] [CrossRef] [PubMed]
- Durvasula, R.; Wellington, T.; McNamara, E.; Watnick, S. COVID-19 and kidney failure in the acute care setting: Our experience from seattle. Am. J. Kidney Dis. 2020, 76, 4–6. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, C.; Waldman, M.; Zaza, G.; Riella, L.V.; Cravedi, P. COVID-19 and the Kidneys: An Update. Front. Med. 2020, 7, 423. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, M.; Yao, J.; Guo, J.; Liao, X.; Song, S.; Li, J.; Duan, G.; Zhou, Y.; Wu, X.; et al. Caution on kidney dysfunctions of COVID-19 patients. medRxiv 2020. [Google Scholar] [CrossRef]
- CDC. Chronic Kidney Disease Initiative. 2022. Available online: https://www.cdc.gov/kidneydisease/basics.html (accessed on 15 September 2022).
- Chung, E.Y.; Palmer, S.C.; Natale, P.; Krishnan, A.; Cooper, T.E.; Saglimbene, V.M.; Ruospo, M.; Au, E.; Jayanti, S.; Liang, A.; et al. Incidence and Outcomes of COVID-19 in People With CKD: A Systematic Review and Meta-analysis. Am. J. Kidney Dis. 2021, 78, 804–815. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Gansevoort, R.T.; Hilbrands, L.B. CKD is a key risk factor for COVID-19 mortality. Nat. Rev. Nephrol. 2020, 16, 705–706. [Google Scholar] [CrossRef]
- Henry, B.M.; Lippi, G. Chronic kidney disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Int. Urol. Nephrol. 2020, 52, 1193–1194. [Google Scholar] [CrossRef]
- Kant, S.; Menez, S.P.; Hanouneh, M.; Fine, D.M.; Crews, D.C.; Brennan, D.C.; Sperati, C.J.; Jaar, B.G. The COVID-19 nephrology compendium: AKI, CKD, ESKD and transplantation. BMC Nephrol. 2020, 21, 449. [Google Scholar] [CrossRef]
- National Kidney Foundation. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2013, 3, 5–14. Available online: http://www.kdigo.org/clinical_practice_guidelines/pdf/CKD/KDIGOCKD-MBDGLKISuppl113.pdf%5Cn (accessed on 15 September 2022).
- A Stapleton, P.; Goodwill, A.G.; E James, M.; Brock, R.W.; Frisbee, J.C. Hypercholesterolemia and microvascular dysfunction: Interventional strategies. J. Inflamm. 2010, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- George, C.; Minter, D.A. Hyperuricemia [Updated 18 July 2022]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459218/ (accessed on 15 September 2022).
- Alldredge, B.K.; Corelli, R.L.; Ernst, M.E.; Guglielmo, B.J.; Jacobson, P.A.; Kradjan, W.A.; Williams, B.R. Koda-Kimble and Young’s Applied Therapeutics: The Clinical Use of Drugs; Wolters Kluwer Health Adis (ESP): Alphen aan den Rijn, The Netherlands, 2013; 2519p. [Google Scholar]
- James, P.A.; Oparil, S.; Carter, B.L.; Cushman, W.C.; Dennison-Himmelfarb, C.; Handler, J.; Lackland, D.T.; LeFevre, M.L.; MacKenzie, T.D.; Ogedegbe, O.; et al. 2014 evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014, 311, 507–520, Erratum in: JAMA 2014, 311, 1809. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, C.M.; Suchdev, P.S. Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. Ann. N. Y. Acad. Sci. 2019, 1450, 15–31. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect. 2020, 80, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, B.; Ramakrishna, K.; Dhamoon, A.S. Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Med. 2019, 7, 2050312119835043. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Ramatillah, D.L.; Gan, S.H.; Pratiwy, I.; Sulaiman, S.A.S.; Jaber, A.A.S.; Jusnita, N.; Lukas, S.; Abu Bakar, U. Impact of cytokine storm on severity of COVID-19 disease in a private hospital in West Jakarta prior to vaccination. PLoS ONE 2022, 17, e0262438. [Google Scholar] [CrossRef]
- Collado, S.; Arenas, M.D.; Barbosa, F.; Cao, H.; Montero, M.M.; Villar-García, J.; Barrios, C.; Rodríguez, E.; Sans, L.; Sierra, A.; et al. COVID-19 in Grade 4-5 Chronic Kidney Disease Patients. Kidney Blood Press. Res. 2020, 45, 768–774. [Google Scholar] [CrossRef]
- Lin, L.; Wang, X.; Ren, J.; Sun, Y.; Yu, R.; Li, K.; Zheng, L.; Yang, J. Risk factors and prognosis for COVID-19-induced acute kidney injury: A meta-analysis. BMJ Open 2020, 10, e042573. [Google Scholar] [CrossRef]
- Pourfridoni, M.; Abbasnia, S.M.; Shafaei, F.; Razaviyan, J.; Heidari-Soureshjani, R. Fluid and Electrolyte Disturbances in COVID-19 and Their Complications. BioMed Res. Int. 2021, 2021, 6667047. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Beyerstedt, S.; Casaro, E.B.; Rangel, É.B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 905–919. [Google Scholar] [CrossRef] [PubMed]
- Huang, I.; Lim, M.A.; Pranata, R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia—A systematic review, meta-analysis, and meta-regression: Diabetes and COVID-19. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.; Nair, A.P.; Al Masalamani, M.S.; De Sanctis, V.; Abu Khattab, M.A.; Alsaud, A.E.; Sasi, S.; Ali, E.A.; Hassan, O.A.; Iqbal, F.M.; et al. Prevalence, clinical manifestations, and biochemical data of type 2 diabetes mellitus versus nondiabetic symptomatic patients with COVID-19: A comparative study. Acta Biomed. 2020, 91, e2020010. [Google Scholar] [PubMed]
- Pecoits-Filho, R.; Abensur, H.; Betônico, C.C.R.; Machado, A.D.; Parente, E.B.; Queiroz, M.; Salles, J.E.N.; Titan, S.; Vencio, S. Interactions between kidney disease and diabetes: Dangerous liaisons. Diabetol. Metab. Syndr. 2016, 8, 50. [Google Scholar] [CrossRef]
- Vanholder, R.; Gryp, T.; Glorieux, G. Urea and chronic kidney disease: The comeback of the century? (in uraemia research). In Nephrology Dialysis Transplantation; Oxford University Press: Oxford, UK, 2018; Volume 33, pp. 4–12. [Google Scholar]
- Semler, M.W.; Self, W.H.; Wanderer, J.P.; Ehrenfeld, J.M.; Wang, L.; Byrne, D.W.; Stollings, J.L.; Kumar, A.B.; Hughes, C.G.; Hernandez, A.; et al. Balanced Crystalloids versus Saline in Critically Ill Adults. N. Engl. J. Med. 2018, 378, 829–839. [Google Scholar] [CrossRef]
- Khatri, M.; Zitovsky, J.; Lee, D.; Nayyar, K.; Fazzari, M.; Grant, C. The association between serum chloride levels and chronic kidney disease progression: A cohort study. BMC Nephrol. 2020, 21, 165. [Google Scholar] [CrossRef]
- Pandya, D.; Nagrajappa, A.K.; Ravi, K.S. Assessment and correlation of urea and creatinine levels in saliva and serum of patients with chronic kidney disease, diabetes and hypertension—A research study. J. Clin. Diagn. Res. 2016, 10, ZC58–ZC62. [Google Scholar] [CrossRef]
- Pirozzi, N.; Rejali, N.; Brennan, M.; Vohra, A.; McGinley, T.; Krishna, M.G. Sepsis: Epidemiology, Pathophysiology, Classification, Biomarkers and Management. Educ. Technol. Soc. 2016, 3, 2–7. [Google Scholar]
- Chauhan, K.; Pattharanitima, P.; Piani, F.; Johnson, R.J.; Uribarri, J.; Chan, L.; Coca, S.G. Prevalence and Outcomes Associated with Hyperuricemia in Hospitalized Patients with COVID-19. Am. J. Nephrol. 2022, 53, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Xu, D.; Fu, S.; Zhang, J.; Yang, X.; Xu, L.; Xu, J.; Wu, Y.; Huang, C.; Ouyang, Y.; et al. Patients with COVID-19 in 19 ICUs in Wuhan, China: A cross-sectional study. Crit. Care 2020, 24, 219. [Google Scholar] [CrossRef] [PubMed]
- Biccard, B.M.; Gopalan, P.D.; Miller, M.; Michell, W.L.; Thomson, D.; Ademuyiwa, A.; Aniteye, E.; Calligaro, G.; Chaibou, M.S.; Dhufera, H.T.; et al. Patient care and clinical outcomes for patients with COVID-19 infection admitted to African high-care or intensive care units (ACCCOS): A multicentre, prospective, observational cohort study. Lancet 2020, 397, 19–21. [Google Scholar] [CrossRef]
- Abdelbary, A.A.; Alharafsheh, A.E.; Ahmed, A.; Nashwan, A.J. Favipiravir-induced nephrotoxicity in a patient with COVID-19: A case report. Clin. Case Rep. 2021, 9, e04539. [Google Scholar] [CrossRef]
- Koshi, E.; Saito, S.; Okazaki, M.; Toyama, Y.; Ishimoto, T.; Kosugi, T.; Hiraiwa, H.; Jingushi, N.; Yamamoto, T.; Ozaki, M.; et al. Efficacy of favipiravir for an end stage renal disease patient on maintenance hemodialysis in-fected with novel coronavirus disease. CEN Case Rep. 2021, 10, 126–131. [Google Scholar] [CrossRef]
- Malaysia Ministry of Health. Isoprinosine for COVID 19 Treatment. In MaHTAS COVID-19 Rapid Evidance Updates; Malaysia Ministry of Health: Putrajaya, Malaysia, 2020; pp. 1–2. [Google Scholar]
- Cojutti, P.G.; Ramos-Martin, V.; Schiavon, I.; Rossi, P.; Baraldo, M.; Hope, W.; Pea, F. Population pharmacokinetics and pharmacodynamics of levofloxacin in acutely hospitalized older patients with various degrees of renal function. Antimicrob. Agents Chemother. 2017, 61, e02134-16. [Google Scholar] [CrossRef]
- Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017, 93, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Luo, M.; Wu, F.; He, Z.; Li, Y.; Xu, T. Acute Kidney Injury Associated with Remdesivir: A Comprehensive Pharmacovigilance Analysis of COVID-19 Reports in FAERS. Front. Pharmacol. 2022, 13, 692828. [Google Scholar] [CrossRef]
- Gérard, A.O.; Laurain, A.; Fresse, A.; Parassol, N.; Muzzone, M.; Rocher, F.; Esnault, V.L.M.; Drici, M.D. Remdesivir and Acute Renal Failure: A Potential Safety Signal from Disproportionality Analysis of the WHO Safety Database. Clin. Pharmacol. Ther. 2021, 109, 1021–1024, Erratum in: Clin. Pharmacol. Ther. 2022, 111, 1343. [Google Scholar] [CrossRef]
- Silva, N.A.O.; Zara, A.L.S.A.; Figueras, A.; Melo, D.O. Potential kidney damage associated with the use of remdesivir for COVID-19: Analysis of a pharmacovigilance database. Cad. Saude Publica 2021, 37, e00077721. [Google Scholar] [CrossRef] [PubMed]
- Goldman, A.; Bomze, D.; Dankner, R.; Hod, H.; Meirson, T.; Boursi, B.; Maor, E. Cardiovascular adverse events associated with hydroxychloroquine and chloroquine: A comprehensive pharmacovigilance analysis of pre-COVID-19 reports. Br. J. Clin. Pharmacol. 2021, 87, 1432–1442. [Google Scholar] [CrossRef] [PubMed]
- Izcovich, A.; Siemieniuk, R.A.; Bartoszko, J.J.; Ge, L.; Zeraatkar, D.; Kum, E.; Qasim, A.; Khamis, A.M.; Rochwerg, B.; Agoritsas, T.; et al. Adverse effects of remdesivir, hydroxychloroquine and lopinavir/ritonavir when used for COVID-19: Systematic review and meta-analysis of randomised trials. BMJ Open 2022, 12, e048502. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Bouatta, N.; Biswas, S.; Floristean, C.; Kharkare, A.; Roye, K.; Rochereau, C.; Ahdritz, G.; Zhang, J.; Church, G.M.; et al. Single-sequence protein structure prediction using a language model and deep learning. Nat. Biotechnol. 2022, 40, 1617–1623. [Google Scholar] [CrossRef] [PubMed]
- Nishikubo, M.; Kanamori, M.; Nishioka, H. Levofloxacin-associated neurotoxicity in a patient with a high concentration of levofloxacin in the blood and cerebrospinal fluid. Antibiotics 2019, 8, 78. [Google Scholar] [CrossRef] [PubMed]
- Nassih, H.; Rabiy, E.Q.; Aicha, B.; Imane, A.S. Pos-279 Acute Severe Infection In Children With End Stage Kidney Disease. Kidney Int. Rep. 2021, 6, S118. [Google Scholar] [CrossRef]
- Majhi, A.; Adhikary, R.; Bhattacharyya, A.; Mahanti, S.; Bishayi, B. Levofloxacin-Ceftriaxone Combination Attenuates Lung Inflammation in a Mouse Model of Bacteremic Pneumonia Caused by Multidrug-Resistant Streptococcus pneumoniae via Inhibition of Cytolytic Activities of Pneumolysin and Autolysin. Antimicrob. Agents Chemother. 2014, 58, 5164–5180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Factor | Total Patients with COVID-19 (n = 378) N (%)/Median | Patients with COVID-19 without CKD (n = 92) N (%)/Median | Patients with COVID-19 Who Developed CKD (n = 286) N (%)/Median | p-Value |
---|---|---|---|---|
Gender | Male = 181 (47.88%) Female = 197 (52.12%) | Male = 47 (25.97) Female = 45 (22.84) | Male = 134 (74.03) Female = 152 (77.16) | 0.557 a |
Age | 55 | 55 | 55 | 0.449 b |
Body mass index (BMI) | 24.2 | 24.2 | 24.2 | 0.280 b |
Systolic/diastolic blood pressures (mmHg) | 140.0 | 142.0 | 140.0 | 0.131 b |
Respiratory rate/min | 24.0 | 24.5 | 24.0 | 0.144 b |
Temperature (°C) | 37.0 | 36.8 | 57.0 | 0.638 b |
Pulse | 98.0 | 98.0 | 98.0 | 0.972 b |
Oxygen saturation | 93.0 | 90.5 | 94.0 | 0.03 b |
Blood urea nitrogen (BUN) mg/dL | 25.0 | 27.5 | 25.0 | 0.513 b |
Serum creatinine (mg/dL) | 1.2 | 0.8 | 1.2 | <0.0001 b |
Glomerular filtration rate (GFR) (mL/min) | 67.8 | 113.5 | 57.8 | <0.0001 b |
Factor | Total Patients with COVID-19 (n = 378) N (%) | Patients with COVID-19 without CKD (n = 92) N (%) | Patients with COVID-19 Who Developed CKD (n = 286) N (%) | p-Value |
---|---|---|---|---|
Hospitalization status | ICU = 124 (32.8%) Non-ICU = 254 (67.2%) | ICU = 48 (38.7%) Non-ICU = 44 (17.3%) | ICU = 76 (61.3%) Non-ICU = 210 (82.7%) | <0.0001 a |
Sepsis | Yes = 121 (32.0%) No = 257 (67.9%) | Yes = 41 (33.9%) No = 52 (19.8%) | Yes = 80 (66.1%) No = 206 (80.2%) | 0.005 a |
Diabetes mellitus | Yes = 129 (34.1%) No = 249 (65.9%) | Yes = 31 (24.0%) No = 61 (24.5%) | Yes = 98 (75.9%) No = 188 (75.5%) | 1.000 a |
Hypercholesterolemia | Yes = 91 (24.1%) No = 287 (75.9%) | Yes = 25 (27.5%) No = 67 (23.3%) | Yes = 66 (72.5%) No = 220 (76.7%) | 0.510 a |
Hypertension | Yes = 189 (50.0%) No = 189 (50.0%) | Yes = 41 (21.7%) No = 51 (26.9%) | Yes = 148 (78.3%) No = 138 (73.0%) | 0.281 a |
Hyperuricemia | Yes = 132 (34.9%) No = 246 (65.1%) | Yes = 43 (32.6%) No = 49 (19.9%) | Yes = 89 (67.4%) No = 197 (80.1%) | 0.009 a |
Anemia | Yes = 26 (6.9%) No = 352 (93.1%) | Yes = 4 (15.4%) No = 88 (25.0%) | Yes = 22 (84.6%) No = 264 (75.0%) | 0.387 a |
Heart disease complication | Yes = 113 (29.9%) No = 265 (70.1%) | Yes = 24 (21.2%) No = 68 (26.6%) | Yes = 89 (78.8%) No = 197 (74.3%) | 0.432 a |
Clinical Outcomes | Recovered = 223 (58.9%) Death = 155 (41.0%) | Recovered = 40 (17.9%) Death = 52 (33.5%) | Recovered = 183 (82.1%) Death = 103 (66.5%) | 0.001 a |
Parameter | Total Patients with COVID-19 (n = 378) Median | Patients with COVID-19 without CKD (n = 92) Median | Patients with COVID-19 Who Developed CKD (n = 286) Median | p-Value |
---|---|---|---|---|
Sodium (mmol/L) | 135 | 134 | 135 | 0.309 a |
Potassium (mmol/L) | 3.9 | 3.9 | 3.9 | 0.160 a |
Chloride (mmol/L) | 101 | 99 | 101 | 0.194 a |
D-dimer (mg/L FEU) | 755 | 890 | 710 | 0.089 a |
Factors | B | SE | Sig.* | Odds Ratio | 95.0% CI for Odds Ratio | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Gender | −0.081 | 0.123 | 0.513 | 0.923 | 0.725 | 1.175 |
Sepsis | 0.195 | 0.152 | 0.198 | 1.215 | 0.903 | 1.635 |
Anemia | 0.220 | 0.241 | 0.362 | 1.246 | 0.777 | 1.997 |
Hypertension | 0.050 | 0.122 | 0.685 | 1.051 | 0.827 | 1.336 |
Hyperuricemia | −0.381 | 0.148 | 0.010 | 0.683 | 0.511 | 0.912 |
Diabetes | 0.057 | 0.128 | 0.658 | 1.058 | 0.823 | 1.361 |
Antiviral agent | −0.012 | 0.011 | 0.253 | 0.988 | 0.968 | 1.009 |
Antibiotic use | −0.014 | 0.005 | 0.011 | 0.986 | 0.976 | 0.997 |
Hypercholesterolemia | 0.029 | 0.215 | 0.894 | 1.029 | 0.675 | 1.569 |
Heart Disease Complication | 0.273 | 0.235 | 0.246 | 1.313 | 0.828 | 2.083 |
Hospitalization status | −0.081 | 0.123 | 0.513 | 0.923 | 0.725 | 1.175 |
Factor | B | SE | Sig.* | Odds Ratio | 95.0% CI for Odds Ratio | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Sepsis | −1.054 | 0.181 | p < 0.0001 | 0.349 | 0.245 | 0.497 |
Heart Disease Complication | 0.142 | 0.171 | 0.408 | 1.153 | 0.824 | 1.613 |
Hospitalization status | −1.203 | 0.181 | p < 0.0001 | 0.300 | 0.211 | 0.428 |
CKD Status | −0.319 | 0.441 | 0.470 | 0.727 | 0.306 | 1.727 |
CKD Stage | 0.071 | 0.097 | 0.467 | 1.073 | 0.887 | 1.299 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramatillah, D.L.; Michael, M.; Khan, K.; Natasya, N.; Sinaga, E.; Hartuti, S.; Fajriani, N.; Farrukh, M.J.; Gan, S.H. Factors Contributing to Chronic Kidney Disease following COVID-19 Diagnosis in Pre-Vaccinated Hospitalized Patients. Vaccines 2023, 11, 433. https://doi.org/10.3390/vaccines11020433
Ramatillah DL, Michael M, Khan K, Natasya N, Sinaga E, Hartuti S, Fajriani N, Farrukh MJ, Gan SH. Factors Contributing to Chronic Kidney Disease following COVID-19 Diagnosis in Pre-Vaccinated Hospitalized Patients. Vaccines. 2023; 11(2):433. https://doi.org/10.3390/vaccines11020433
Chicago/Turabian StyleRamatillah, Diana Laila, Michael Michael, Kashifullah Khan, Nia Natasya, Elizabeth Sinaga, Silvy Hartuti, Nuzul Fajriani, Muhammad Junaid Farrukh, and Siew Hua Gan. 2023. "Factors Contributing to Chronic Kidney Disease following COVID-19 Diagnosis in Pre-Vaccinated Hospitalized Patients" Vaccines 11, no. 2: 433. https://doi.org/10.3390/vaccines11020433
APA StyleRamatillah, D. L., Michael, M., Khan, K., Natasya, N., Sinaga, E., Hartuti, S., Fajriani, N., Farrukh, M. J., & Gan, S. H. (2023). Factors Contributing to Chronic Kidney Disease following COVID-19 Diagnosis in Pre-Vaccinated Hospitalized Patients. Vaccines, 11(2), 433. https://doi.org/10.3390/vaccines11020433