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Abstract: Messenger ribonucleic acid (RNA) vaccines are mainly used as SARS-CoV-2 vaccines.
Despite several issues concerning storage, stability, effective period, and side effects, viral vector
vaccines are widely used for the prevention and treatment of various diseases. Recently, viral vector-
encapsulated extracellular vesicles (EVs) have been suggested as useful tools, owing to their safety
and ability to escape from neutral antibodies. Herein, we summarize the possible cellular mechanisms
underlying EV-based SARS-CoV-2 vaccines.
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1. Introduction

Coronaviruses, enveloped viruses with a single, positive-strand RNA, are common
in animals, including humans [1]. These viruses are spherical, with a diameter of about
100 nm, and have distinctive crown-like projections or spikes on their surfaces, hence
the name “corona” (Latin for crown) [2]. Of the coronaviruses known to be infectious
and pathogenic to humans, SARS-CoV-2, the causative virus of coronavirus disease 2019
(COVID-19), utilizes S-glycoprotein [3]. S-glycoprotein contains two functional domains:
an S1 receptor-binding domain (RBD) and a second S2 domain mediating the fusion of
viral and host cell membranes to allow viral entry into host cells [4]. The S protein of
SARS-CoV-2 first binds to the angiotensin-converting enzyme 2 (ACE2) receptor on the
surface of the host cell via the S1 RBD. Then, the S1 domain is shed from the viral surface,
allowing the S2 domain to fuse with the host cell membrane [5]. This fusion depends on
the activation of the S protein by cleavage at two sites, S1/S2 and S2′, mediated by the
proteases furin and transmembrane protease serine 2 (TMPRSS2) [6,7]. Furin cleavage at
the S1/S2 sites leads to conformational changes in the S protein, exposing the RBD and S2
domains, and cleavage of the S protein of SARS-CoV-2 by TMPRSS2 enables the fusion of
the capsid with the host cell, allowing the virus to enter the cell. Exposure of the RBD of
the S1 protein subunit produces an unstable subunit conformation. As a result, this subunit
undergoes a conformational rearrangement between two states, which are temporarily
hidden or release RBD upon binding. Within the trimeric S protein, only one of the three
RBDs can bind to the human ACE2 host cell receptor [4].

The infectivity of SARS-CoV-2 compared to SARS-CoV can be explained by the large
number of receptors that, in addition to binding to ACE2, allow SARS-CoV-2 to bind to other
cell surface molecules. For example, both neuropilins 1, expressed in neurons, allow viruses
to enter the nervous system and bind to truncated forms of the S protein of SARS-CoV-2 to
mediate host cell entry [8]. In addition to the known ACE2 receptors, binding to cell surface
neuropilin receptors enhances SARS-CoV-2 infection [9]. Furthermore, the S protein of
SARS-CoV-2 binds to CD147 on the cell surface, the expression of which is increased by high
blood glucose levels, and subsequently enters cells, which is indicative of the poor prognosis
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of diabetics with COVID-19 [10]. In addition, the frequent targets of SARS-CoV-2 in humans
are nerve, vascular endothelial, and epithelial cells in the respiratory and gastrointestinal
tracts. However, ACE2 is expressed only at low levels in the brain. SARS-CoV-2 can also
bind to cell surface sialic acid glycoproteins and gangliosides, including neurons, which
are highly expressed on the surface of all cell types targeted by SARS-CoV-2 [11,12]. These
results suggest that sialic acid levels play an important role in SARS-CoV-2 cell entry.

Different types of currently used vaccines, such as inactivated vaccines, recombinant
protein vaccines, and peptide vaccines, utilize a mechanism that allows the human body
to be immunized by administering a portion of the viral protein [13]. In messenger RNA
(mRNA) and viral vector vaccines, part of the genetic information, which is the basis for
producing viral proteins, is injected [14]. Based on this information, some viral proteins
are produced in the human body in addition to the antibodies against them, thereby
establishing immunity. In the mRNA vaccine against SARS-CoV-2, the mRNA, which is the
blueprint for the spike protein, is encapsulated in a lipid membrane. When this vaccine is
inoculated and mRNA is taken up into human cells, a spike protein is produced within the
cell based on this mRNA. By inducing neutralizing antibody production and cell-mediated
immune responses against the spike protein, it becomes possible to prevent infectious
diseases caused by SARS-CoV-2. Moreover, in the viral vector vaccine, the gene encoding
the amino acid sequence of the SARS-CoV-2 spike protein is incorporated into the viral
vector. When this vaccine is inoculated and the gene is incorporated into human cells, a
spike protein is produced in the cells based on this gene. Similarly to mRNA vaccines, it is
possible to prevent SARS-CoV-2 infection by inducing neutralizing antibody production
and cell-mediated immunity against the spike protein. However, several issues, including
the efficacy and side effects of these vaccines, remain unaddressed.

In addition, extracellular vesicles (EVs), as communication tools derived from living
organisms, are attracting attention in various fields, including medicine, for the treatment
and diagnosis of diseases [15]. In particular, the possibility of manufacturing safe and
effective vaccines by encapsulating nucleic acids and viruses has been suggested, and
expectations for SARS-CoV-2 vaccines are increasing. In this review, we summarize the
advancements in and molecular mechanisms of SARS-CoV-2 vaccination with EV encapsu-
lation of target molecules.

2. Classification of Viruses

Viruses are officially classified by the International Committee on Taxonomy of Viruses
based on their molecular biological properties, including genomic composition and nu-
cleotide sequence similarity [16]. Coronaviruses are classified within the family Coronaviri-
dae of the order Nidoviridae and suborder Cornidoviridae. The family Coronaviridae is
further divided into the subfamilies Retovirinae and Orthocoronavirus, and the latter in-
cludes four genera: alpha (α), beta (β), gamma (γ), and delta (δ) (Figure 1) [17]. MERS-CoV,
a bat coronavirus that acquired pathogenicity in humans, was first isolated in 2012 from a
patient in the UK with severe pneumonia who had a history of staying for long periods
in the Middle East [18]. MERS-CoV is the causative virus of Middle East Respiratory Syn-
drome (MERS), with a fatality rate of 35%. MERS is transmitted to humans via dromedary
camels, the natural host; however, human-to-human transmission can also occur, and an
outbreak occurred in South Korea in 2015.

SARS-CoV-2 is the causative virus of coronavirus disease 19 (COVID-19), and SARS-
CoV-1 is the causative virus of severe acute respiratory syndrome (SARS), which was
first reported in 2002–2003 and spread throughout the world [18,19]. Bats are natural
hosts, and humans are infected through contact with infected bats or other animals in-
fected by bats. Thus, SARS, MERS, and the new COVID-19 coronavirus are all zoonotic
viruses transmitted from mammals, the natural hosts, to humans. Both SARS-CoV-1 and
SARS-CoV-2 are classified into the β-coronavirus subgenus Sarbecovirus and use ACE2
on the surface of human cells to infect humans. Five types of viruses are currently cate-
gorized as coronaviruses which infect humans. Four of the identified human pathogenic
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coronaviruses (HcoV-229E, HcoV-NL63, HcoV-OC43, and HcoV-HKU1) are cold coron-
aviruses [20]. Apart from MERS-CoV, whose receptor is dipeptidyl peptidase, HcoV-229E,
HcoV-NL63, HcoV-OC43, and HcoV-HKU1 are human coronaviruses (HCoVs) that rou-
tinely infect humans. Of these, HcoV-229E and HcoV-NL63 are members of the α-coronavirus
genus. HcoV-OC43, HcoV-HKU1, and MERS-CoV belong to the β-coronavirus genus, which
is divided into four lineages (A, B, C, D), with HcoV-OC43, HcoV-HKU1, SARS-CoV-1,
and SARS-CoV-2 belonging to the B lineage. Viruses isolated from wild bats in China in
2013 (bat/Yunnan/RaTG13/2013) and Malayan pangolins in 2019 are closely related to
SARS-CoV-2 and belong to the B lineage [21–24]. Phylogenetic analysis suggests that all
of the human coronaviruses mentioned above originated from wild animals, such as bats
and rodents. Coronaviruses, which originally existed in natural hosts such as bats and
rodents, first infected intermediate hosts before eventually infecting humans and causing
diseases. As for SARS-CoV-2, sequences of coronaviruses closely related to this virus
have been found in bats; therefore, it is highly likely that bats are also the natural hosts
of SARS-CoV-2. In addition, since a coronavirus closely related to SARS-CoV-2 has been
detected in Malayan pangolins, it is theorized that Malayan pangolins are an intermediate
host; however, this remains to be substantiated.
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3. Structural Characterization of SARS-CoV-2
3.1. Inner and Outer Structure of SARS-CoV-2

SARS-CoV-2 has a spherical shape of approximately 100 nm, consisting of a lipid bi-
layer membrane, called an envelope, surrounding the viral sphere, with spike (S), envelope
(E), and membrane (M) proteins that pierce this membrane and bind to receptors [25,26].
The spike protein is the outermost structure of the viral particle. When the human immune
system produces antibodies, it recognizes this spike protein and produces antibodies that
match its shape. Inside the sphere is an RNA genome of approximately 30 kb, the largest
known RNA viral genome, bound to a protein called nucleocapsid, which consists of the
N protein, the most abundant protein in viral particles [27,28]. The outer nucleocapsid
is enveloped and consists of lipid membranes, which are easily destroyed by washing
with soap and detergent or disinfecting with alcohol, rendering the virus infective. Genes
encoding nonstructural proteins, such as enzymes essential for viral replication, RNA
polymerase, and protease, are present at the 5′-end, and genes encoding structural proteins,
such as S, E, M, and N, are present at the 3′-end. Accessory genes also exist in regions where
structural protein genes exist, and they encode proteins that contribute to the optimization
of viral replication [29].
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3.2. SARS-CoV-2 Receptor

The homology of SARS-CoV-2 genomic RNA and viral proteins with SARS-CoV-1 is
79.0% for genomic RNA, 76.2% for S protein, 94.7% for E protein, 90.1% for M protein, and
90.1% for N protein. Similar to SARS-CoV-1, the S protein of SARS-CoV-2 enters host cells
by binding to human ACE2 through complex formation by binding the receptor-binding
domain (RBD) of the S protein and ACE2 [30,31]. However, the S protein of SARS-CoV-2
does not recognize the MERS-CoV receptor DPP4 or the HcoV-299E receptor APN. The RBD
of the SARS-CoV-1 S protein is composed of a core structure and a receptor-binding motif
(RBM) that directly binds to the ACE2 surface [32]. Furthermore, six amino acids, Y442,
L472, N479, D480, T487, and Y491, of the RBD of SARS-CoV-1 are important for binding
to ACE2 and involved in determining the host range of SARS-related coronaviruses. In
SARS-CoV-2, the corresponding six amino acids are L455, F486, Q493, S494, N501, and
Y505. Analysis of the binding affinity between the RBM of SARS-CoV-2 and ACE2 in
various animal species, including humans, revealed that the RBM of SARS-CoV-2 had
a high binding affinity with ACE2 in humans, muskrats, pigs, ferrets, cats, orangutans,
green monkeys (Chlorocebus sabaeus), and bats (Rhododendronidae) and a low binding
affinity with mouse and rat ACE2. One of the major differences between SARS-CoV-2 and
SARS-CoV-1 is the characteristic sequence of consecutive basic amino acids (RRAR) at the
S1/S2 cleavage site of the SARS-CoV-2 S protein, called the “furin cleavage site”, which is
efficiently cleaved by furin and other proteases (Figure 2) [6,33]. This furin cleavage site
is absent in SARS-CoV-1, but is present in the S proteins of MERS-CoV and HcoV-OC43.
During the viral replication cycle, the S protein is cleaved into S1 and S2; however, the
location and timing of cleavage differ depending on the type of coronavirus. In infected
cells, the S protein is synthesized and cleaved by host proteases, or the S protein binds to
the receptor and is then cleaved by host proteases when the virus enters the target cell.
Since SARS-CoV-1 uses the latter mechanism, the S protein is present on the surface of
the viral particle in an uncleaved state. When the virus invades the cell, the S protein
is cleaved by host proteases, trypsin, elastase, cathepsin, and TMPRSS2. In contrast, in
the case of SARS-CoV-2, cleavage occurs within the cell after S protein synthesis via the
first mechanism. The furin cleavage site of the S protein is necessary for SARS-CoV-2
to efficiently infect the human respiratory tract, and the activation of the S protein by
TMPRSS2 is also important [34].
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3.3. Replication Mechanism of SARS-CoV-2

SARS-CoV-2 is obligately intracellular and cannot multiply in the virion state. It needs
a parasite to enter a host cell, and then uses the functions of that cell to multiply itself
with the following steps. (i) Absorption: Viruses must first bind to receptors on animal
cell surfaces [35–37]. In SARS-CoV-2, this life cycle begins when the surface-protruding
S protein binds to the receptor of ACE2, an enzyme protein on the cell surface. The
receptor that recognizes and binds to the virus is determined by the virus. For example,
in the influenza virus, the structure of sialic acid sugar chains on the surface of upper
and lower respiratory tract cells functions as a viral receptor [38], and in HIV, a protein
called CD4 on immune cells functions as a viral receptor [39]. ACE2 is involved in the
breakdown of a blood pressure-regulating autocoid called angiotensin II; however, the
infection does not cause sudden changes in blood pressure. The sequence cleaved by a
human-produced protease, furin, does not exist in SARS-CoV-1. However, it does exist
in the S protein of SARS-CoV-2, and owing to the cleavage by furin, the S protein binds
ACE2 strongly and spreads infection. (ii) Entry: After the S protein binds to the ACE2
receptor, an enzyme called TMPRSS2, a type II transmembrane serine protease, on the cell
surface cleaves part of the S protein, altering its binding [7,40,41]. This triggers the fusion
of the viral envelope with the cell membrane, allowing it to enter the cell. (iii) Uncoating:
Infectious viral particles are decomposed and eliminated, and genomic RNA is exposed
and released into the cytoplasm of the host cell. In the case of SARS-CoV-2, it occurs almost
simultaneously with step (ii). (iv) Synthesis of the materials: This process involves the
production of various nucleic acids, proteins, and other components of viral particles from
the viral genome. Because the genome of SARS-CoV-2 is RNA-based, it consists of the
following steps. (iv-a) Synthesis of RNA-dependent RNA polymerase (RdRp): SARS-CoV-
2, which has (+)-strand RNA in its genome, first synthesizes RdRp encoded in the viral
genome using host ribosomes [42–47]. Unlike DNA-dependent RNA polymerases in the
host nucleus, RdRp is an enzymatic protein that synthesizes new RNA while reading the
RNA sequence of the viral genome. (iv-b) Replication of genomic RNA: RdRp in (iv-a)
synthesizes (−)-strand RNA from the (+)-strand RNA genome and further synthesizes (+)-
strand genomic RNA using the (−)-strand as a template. (iv-c) Transcription and translation:
In addition to genomic RNA, several short subgenomic mRNAs functioning as mRNAs are
synthesized and utilized for viral protein synthesis via human ribosomes. (iv-d) In most
cells, including human cells, the information for one type of protein is on one mRNA, and
the ribosome synthesizes the protein based on this information. However, in SARS-CoV-2,
information for multiple proteins is carried simultaneously on each subgenomic mRNA,
and the sequence information of one long protein is connected. The ribosome of the host
cell interprets all this information and synthesizes a single polypeptide chain. This chain is
cut into individual proteins by the action of a protease that cleaves a specific sequence. In
addition, this protease inhibitor has been put into practical use as an anti-HIV and anti-HCV
drug, and is expected to be effective against SARS-CoV-2 [48–51]. (v) Assembly/maturation
and (vi) release of viral particles: Among the various parts that make up the viral particle,
those that are incorporated into the envelope are synthesized on the rough endoplasmic
reticulum and incorporated into the endoplasmic reticulum membrane. In addition, the
capsid protein binds to the viral genome RNA to form a nucleocapsid, and the endoplasmic
reticulum membrane containing the viral proteins is cut off to surround it, forming viral
particles, which are released outside the cell by exocytosis via the Golgi apparatus. After
going through steps (i) to (vi), the virus is amplified several hundred times in the cell,
released outside the cell, and then adsorbed into the surrounding uninfected cells to repeat
the infection process.

Viruses other than SARS-CoV-2 cannot grow alone and can only grow inside host cells.
Unlike bacteria, they cannot multiply via cell division. Establishing a method to inactivate
an active virus is difficult because the active virus mostly uses the human host system. If
it is destroyed, it will also destroy the human system, and there are not many effective
means for treating viruses alone. Selective toxicity refers to the property of affecting only
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the target; however, antiviral drugs have side effects, making it difficult to develop drugs
with high selective toxicity. Despite this, the viral life cycles described by steps (i) to (vi)
also contain several promising target proteins as potential sites of action for highly selective
and toxic antiviral drugs. For example, RdRp is not present in the human system and
is, therefore, a promising target. Fusan (nafamostat), already in use as an inhibitor of
TMPRSS2, is expected to be an effective SARS-CoV-2 drug [52]. Furthermore, protease
inhibitors have been put into practical use against HIV and HCV, and further progress in
research is expected.

3.4. Viral Characterization Using Animal Models

Dozens of coronaviruses infect mammals other than humans and birds and are clas-
sified in either genus. However, so far, only α or β coronaviruses have been isolated and
identified as pathogenic to humans. Coronaviruses have a wide host range, infecting not
only humans and wild animals but also livestock, pets, and experimental animals, causing
various diseases. SARS-CoV-2 has been detected in two pet dogs and one cat in Hong
Kong, as well as in two pet cats and various feline animals, such as tigers and lions, in zoos
across New York. From the analysis of susceptibility to SARS-CoV-2 in animal species close
to humans, such as livestock and pets, the virus proliferated in the respiratory organs of
ferrets and cats, but not in dogs, pigs, chickens, and ducks. SARS-CoV-2 causes droplet
transmission, especially in ferrets [53,54]. Furthermore, SARS-CoV-2 is highly prolifera-
tive in the respiratory tracts of cats and can be easily transmitted among cats by contact;
however, cats infected with this virus do not show obvious symptoms [55]. In the hamster
model of the SARS-CoV-2 infection system, the virus proliferated well in the respiratory
tract and caused lesions in the lungs, similar to those of human patients with COVID-19. In
addition, non-infected hamsters treated with convalescent sera from infected individuals
inhibited SARS-CoV-2 proliferation [56].

4. Virulence of SARS-CoV-2

SARS-CoV-2, similar to other SARS viruses, is mainly transmitted by droplet and
contact infections [57]. The basic reproduction number, indicating the transmissibility of
the virus itself, is approximately two to three, and no examples of double-digit estimations
have been described, such as for the measles virus, which is airborne. Accordingly, airborne
transmission does not occur; however, the infection may occur through aerosols, which
are smaller than droplets. SARS-CoV-2 shows a wide range of disease symptoms, from
asymptomatic cases to cold and pneumonia, with aggravation of severe cases leading to
death [58]. Respiratory symptoms and oxygen saturation are used as indicators for severity
classification; however, the following mechanisms are possibly involved in SARS-CoV-2
infection, causing dyspnea [59–61].

• Respiratory failure due to pneumonia exacerbation
• Acute respiratory distress syndrome due to cytokine storms
• Pulmonary blood flow disorders due to thrombosis/embolisms

Of these, the first and second often occur in other viral pneumonia, and the third may
be closely related to the characteristic nature of SARS-CoV-2.

D-dimer levels increase with COVID-19 infection; thus, they represent a useful marker
of aggravation [62–65]. D-dimer is a fibrin breakdown product formed by blood clotting.
In addition, autopsy findings of patients who had died of COVID-19 showed thrombus
formation in the alveoli and deep veins. Therefore, COVID-19 may cause increased in-
travascular blood coagulation. This suggests that a cytokine storm causes dysfunction of
vascular endothelial cells, resulting in disseminated intravascular coagulation (DIC) [64–66].
However, there are some exceptions, such as cases with elevated D-dimer levels that are not
seen in DIC, and with elevated D-dimer levels, even in mild cases without a cytokine storm.
Combining these clinical findings and the fact that ACE2 is a novel SARS-CoV-2 infection
receptor expressed in vascular endothelial cells, there are cases in which a virus that has
directly entered the blood infects vascular endothelial cells and causes vascular injury,
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thereby inducing thrombus formation [67,68]. Furthermore, findings of SARS-CoV-2 infec-
tion in vascular endothelial cells and associated vasculitis have been reported. Therefore,
ACE2, by acting as a receptor, possibly causes aggravation through thrombus formation.
Based on these findings, rapidly progressing dyspnea causes pulmonary thromboembolism,
complications such as cerebral infarction and myocardial infarction, arterial thrombosis,
and frostbite-like skin lesions caused by ischemia due to thrombosis in peripheral blood
vessels [69–73]. In addition, if irreversible changes occur in various tissues due to blood
flow disturbances, sequelae remain even after the virus disappears. Considering this, SARS-
CoV-2 can not only cause pneumonia, but can also cause various systemic diseases. This
does not necessarily mean that the virus is unmanageable. Rather, it suggests the possibility
of treating it using appropriate measures against blood clots. Indeed, the combination of
D-dimer testing and anticoagulant therapy has been successful in preventing and treating
severe diseases.

Furthermore, other coronaviruses also use ACE2 as a receptor. For example, the
receptor for the SARS coronavirus, closely related to the novel SARS-CoV-2 coronavirus, is
also ACE2. SARS infected approximately 8000 people worldwide, far fewer than SARS-
CoV-2, with deaths recorded about eight months after initial reports. The number of deaths
was less than 800, and there were few reports on pathological autopsies; however, cases of
thrombus formation and vasculitis in various organs were reported. In contrast, coronavirus
NL63, which also uses ACE2 as a receptor, mainly causes upper respiratory tract infections
and reportedly does not cause severe pneumonia or thrombosis/embolisms [74–76]. The
S protein of NL63 has a weaker binding ability to ACE2 than the SARS coronavirus, and it
may have difficulty infecting the lower respiratory tract and moving into the blood.

5. Vaccination of SARS-CoV-2

Humans are equipped with two types of immune systems to defend against foreign
bodies, such as bacteria and viruses: innate immunity and acquired immunity [77–88].
Innate immunity is a mechanism whereby the body defends itself by recognizing the
general characteristics of invading viruses and bacteria, which are then phagocytized by
phagocytizing cells, such as white blood cells, neutrophils, and macrophages. Acquired
immunity is a mechanism that eliminates foreign substances more efficiently than innate
immunity. It makes use of more specialized immune cells, such as B cells, that eliminate
pathogens using antibodies, helper T cells that help B cells to make antibodies, and killer
T cells that eliminate pathogens by killing infected cells. Later, some of the B and T cells
become memory cells that can remember past infections, thus ensuring a more efficient
defense upon encountering the same pathogen a second time. The purpose of vaccination
is to induce these memory cells, which are divided into following main types: antibody-
producing cells, memory B cells, and memory T cells (helper and killer T cells) [89–98].
Antibody-producing cells are specialized cells that produce antibodies. The number of
antibodies present in the body, proportional to the number of antibody-producing cells,
plays a significant role in protecting the body from viruses. When vaccination is used to
induce the production of a sufficient number of antibodies in advance, a high infection
prevention effect can be obtained. However, the number of antibody-producing cells
produced by the SARS-CoV-2 vaccine gradually decreases, and after more than half a year,
the antibody concentration drops to approximately one-fourth of the peak level. Although
antibody concentrations decline over time, some memory cells produce large amounts
of new antibodies after infection; these are called memory B cells. In addition, another
type of memory cell, the memory T cell, can either become a helper T cell that helps
memory B cells to change into antibody-producing cells or a killer T cell that eliminates
viruses from infected cells. Thus, multiple types of memory cells can support the defense
of antibody-producing cells. Among these memory cells, some cells do not decrease in
number, and even if the antibody concentration drops significantly, the onset prevention
effect is maintained at a certain level or higher owing to the presence of these memory
cells. Nonetheless, booster vaccination is recommended, as the protective effect diminishes
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over time. While many COVID-19 vaccines are being developed around the world, at
present, the main vaccines are mRNA- and viral vector-based vaccines [99–116]. Vaccine
development is progressing using various methods, including conventional inactivated
and recombinant protein vaccines.

Mechanism of Action of Live and Inactivated Vaccines

Vaccines are methods of biological preparation containing attenuated or killed pathogens,
and their components are administered to confer pathogen-specific immunity, effective only
against targeted pathogens. Live vaccines that use attenuated pathogens are called inactivated
vaccines, which use killed pathogens or their components [102,117,118]. In addition,
vaccines using infectious viral vectors have been developed. The components of pathogens
used in previous inactivated vaccines were mainly proteins and polysaccharides, whereas
the COVID-19 vaccine (Pfizer and Moderna) used mRNA. Genetic vaccines, such as mRNA
vaccines and viral vector vaccines, have the advantage of being put into practical use
quickly, and are useful in pandemic scenarios requiring urgency [99–116]. mRNA vaccines
using the S protein present on the surface of SARS-CoV-2 have been developed and have
shown promising results. Generally, in viral infections, antibodies prevent the virus from
entering the body. When a virus invades the body, the immune cells, specifically CD8-
positive cytotoxic T cells (killer T cells), recognize some of the antigens presented by human
leukocyte antigens on infected cells and destroy all infected cells to prevent the disease
from spreading. This antigen fragment, called the epitope, is a specific peptide structural
unit of the virus consisting of several amino acids. Therefore, it is important to identify the
epitopes that prevent severe COVID-19. Since mRNA is easily destroyed by RNases in the
human body, it must be encapsulated by wrapping it in lipid nanoparticles (LNPs) after
modifying and optimizing its structure to facilitate its uptake into human cells to prevent
degradation. mRNA vaccines are administered by intramuscular injection. Proteins are
translated using mRNA as a template in immunocompetent cells, such as muscle and
dendritic cells, and some of the produced proteins are presented to lymphocytes, causing
an immune response. In addition, mRNA and LNP lipids act as adjuvants to stimulate
innate immunity, resulting in immune induction. The mRNA vaccines manufactured by
two pharmaceutical companies, Pfizer and Moderna, use the entire S protein gene. The
S protein is produced in muscle cells and antigen-presenting cells, and specific antibodies
against spike proteins are induced in vivo. For SARS-CoV-2 to enter human cells, it must
bind to ACE2 on human cells. Vaccine-induced specific neutralizing antibodies against the
S protein block SARS-CoV-2 entry into cells. In addition, humoral immunity by antibodies
and cellular immunity by cytotoxic T lymphocytes is induced.

In addition, a viral vector vaccine incorporates a specific gene into an infectious virus,
such as adenovirus or an adeno-associated virus, and is administered to the human body.
It has already been applied in the treatment of congenital metabolic diseases and cancer.
Moreover, it has been put into practical use as a vaccine for Ebola hemorrhagic fever.
Similarly to mRNA vaccines, proteins are synthesized from genes in human cells, and an
immune response occurs. Viruses as vectors and carriers themselves are not pathogenic;
however, some can replicate and multiply within the human body, while others cannot.
The AstraZeneca plc viral vector vaccine against SARS-CoV-2 uses chimpanzee adenovirus,
while the Johnson & Johnson vaccine uses adenovirus, which cannot replicate in humans.
The vector contains the entire gene encoding the SARS-CoV-2 S protein, which induces
humoral and cellular immunity against the S protein. In addition, there are other vaccines,
such as live vaccines and inactivated vaccines, which are preparations that weaken the
pathogenicity and toxicity of live viruses as much as possible so that symptoms do not
occur. In these types of vaccines, pathogenicity has been lost through the processes of heat
treatment, phenol addition, formalin treatment, and ultraviolet irradiation for pathogens
of cultured viruses. They have the advantages that the effects of live vaccines are likely
to be obtained due to induction of immunity in a state close to natural infection, and that
inactivated vaccines do not multiply in the body after vaccination and are highly safe.
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On the other hand, there are some issues; attenuated pathogens can multiply in the body,
causing live vaccines to result in certain symptoms, such as fever and rash. They may also
cause multiple doses and additives, called adjuvants, to be required due to their lower
efficacy compared to line vaccines.

6. Drug Delivery System by Extracellular Vesicle
6.1. Biogenesis and Characterization of EVs

EVs, nano- to micro-sized particles surrounded by a lipid bilayer membrane secreted
by almost all cells, play a role in transporting functional molecules with physiological
activity from cell to cell [119–123]. EV is a general term for membrane vesicles secreted by
cells, and there are various types of particles depending on the mechanism of formation,
size, and molecular composition. EVs include exosomes, which are between 30 and 150 nm
in diameter, derived from multivesicular endosomes. Exosomes are not formed directly
from the cell membrane but are formed intracellularly and then secreted out of the cell. In
addition, exosomes are formed by budding inside early endosomes from the cytoplasm,
and ESCRT (endosomal sorting complex required for transport) and tetraspanins are in-
volved in their formation [124]. In addition, endosomes containing many exosomes are
called multivesicular bodies (MVB) because of their shape. Since the lipids that comprise
the exosome membrane are rich in ceramide, sphingomyelin, and cholesterol, and are
similar to lipid rafts, they are thought to form from lipid raft-like regions of the MVB. In
fact, overexpression of nSMAse2/Smpd3 (neutral sphingomyelinase 2/sphingomyelin
phosphodiesterase 3), a ceramide synthase, increases exosome secretion. Apoptotic vesi-
cles, the largest heterogeneous population, are between 50 and 5000 nm in diameter and
are generated from cell fragments during programmed cell death; they are produced by
direct budding (shedding) from the cell membrane [124–126]. In addition, the existence of
nanoparticles, called exomeres, with sizes of approximately 50 nm and without a membrane
structure has also been reported [121,127]. EVs have membrane proteins and glycolipids
on their surface, as well as various proteins and nucleic acids, such as DNA, mRNA, and
miRNA. At the time of their discovery, EVs were thought to represent waste disposal
mechanisms in cells, and it was found that intercellular communication is carried out
by carrying the contents from one cell to another, which plays a critical role in various
phenomena of life, such as immune response and signal transduction. In addition, many
physiologically active substances have therapeutic effects on various diseases, and EVs are
attracting attention as new biopharmaceuticals. In particular, EVs derived from mesenchy-
mal stem cells harbor miRNAs and proteins associated with physiological and pathological
processes, such as epigenetic regulation, immune regulation, and tumor formation and
progression [128–134]. Furthermore, EVs have properties suitable for drug delivery com-
pared to synthetic nanoparticles and are expected to be used as novel drug delivery system
(DDS) nanocarriers. When the patient’s own EVs are used as carriers, their membrane
composition is derived from autologous cells; therefore, they are less immunogenic and
more biocompatible than synthetic nanoparticles. In addition, small-sized EVs can prevent
monocytes from phagocytosis, extravasate from tumors into blood vessels, accumulate
passively in tumor tissue, and penetrate in vivo barriers, such as the blood–brain bar-
rier [135,136]. Since EVs inherit the cell recognition ability of the surface layer of the cell
membrane from which they are derived, unique targeting is expected. In addition, EVs can
fuse with the cell membrane and transport substances efficiently to the cytoplasm. Using
EVs as carriers, it has become possible to deliver nucleic acid drugs, such as siRNA, protein
drugs, and low-molecular-weight drugs.

6.2. Transfer and Preparation of Cargo by EVs

However, when using EVs as therapeutic DDS carriers, the vesicles need to be loaded
with drugs to be delivered. There are two main methods for achieving this: pre-loading
therapeutic nucleic acids, such as siRNA or miRNA, into the cells to be produced, and
post-loading a drug externally into the produced EVs [137–145]. The former has drawbacks;
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for example, the mechanism by which contents such as nucleic acids are incorporated
into EVs has not been fully elucidated. Although the method of physically encapsulating
drugs in EVs does not have a high encapsulation rate, hydrophobic drugs, such as anti-
cancer drugs, can be passively loaded through hydrophobic interactions with lipid bilayers.
However, hydrophilic drugs, such as nucleic acids, require a technique to permeate through
a hydrophobic lipid bilayer membrane. To date, some methods, such as electroporation and
sonication, have been used to open pores by stimulating the EV membranes. However, in
practice, the efficiency of loading drugs into EVs is extremely low. In addition, if excessive
stimulation is applied, an aggregation of EVs may be induced, which may change the
morphological characteristics and increase cytotoxicity by altering the surface potential of
the membrane.

Since EVs have molecules with cell-recognition ability, such as membrane proteins, on
their surface, they originally have a certain degree of targeting. In reality, however, when
EVs are administered to the body, most of them accumulate in the liver and spleen, similarly
to normal liposomes, and are finally cleared by macrophages in these organs [146]. There-
fore, it is necessary to develop a method for efficient delivery to target tissues by enhancing
the targeting ability of EVs. To date, approaches such as endogenous modification using
biosynthetic processes, including genetic engineering and metabolic labelling, have been
proposed [147–149]. However, endogenous modifications may affect cell function, and the
properties of EVs may change from the original. When using EVs as therapeutic agents or
DDS carriers, the exogenous EVs administered in vivo should be reliably delivered to the
target cells. However, since a huge number of endogenous EVs are present in body fluids
in vivo, it is difficult to obtain a therapeutic effect due to competition for cellular uptake,
often resulting in insufficient therapeutic effects.

Even if EVs are derived from the same cell type or several populations with different
biophysical properties, such as size, density, and morphology, and containing a variety
of cargo elements, including proteins, lipids, nucleic acids, and glycans, it is still a major
problem to define the efficacy of EVs for therapeutic drug application and the characteristics
of the carrier when applied as a DDS carrier. However, to date, no optimal method has
been established to fully understand this heterogeneity at the level of a single EV. Therefore,
to realize the clinical application of EVs and evaluate reproducibility and safety from a
pharmaceutical perspective, it is essential to develop a method for understanding complex
and heterogeneous EVs. The clinical application of EVs requires the development of a
cost-effective approach to industrially producing large amounts of EVs. However, most
cells release EVs in very small amounts under normal conditions. Per minute, a single
cell releases only EVs, cancer cells release several hundred, monocytes release less than a
hundred, and mesenchymal stem cells produce less than one. Another bottleneck is the
method of isolating EVs. The most commonly used method at present is ultracentrifugation,
but this is associated with complicated operations and high equipment costs [15,150,151].
Various other methods with a range of advantages and disadvantages have been reported.
Problems such as low recovery rates, small sample volumes that can be processed, and
damage to EVs have been highlighted. Therefore, techniques for artificially modifying the
functions of EVs are attracting attention for further medical applications. Regarding the ge-
netic engineering of EVs, techniques such as modification of the EV membrane surface with
functional membrane proteins and introduction of functional nucleic acids are currently the
main methods in use. In addition, many methods of chemically and physically modifying
the synthesized extracellular small molecules with functional synthetic molecules and
macromolecules have been reported [152].

6.3. EVs-Based Vaccination

Additionally, dendritic cell-derived EVs express MHC (major histocompatibility com-
plex) class I and II on the membrane surface and act as antigen-presenting cells. Thus, they
facilitate the priming of cytotoxic T cells as well as antibody production. Thus, a novel
cell-free vaccine therapy using cancer cell-derived EVs has been proposed because cancer
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cell-derived EVs contain cancer antigens. Administration of these EVs induces cancer
antigen-specific immune response, and thereby provides an anti-tumor effect [153]. Al-
though the possibility of inducing anti-tumor immunity by using EVs derived from cancer
cells has been demonstrated, the effect was often inadequate. The reason for the issue is
that the delivery efficiency of EVs to antigen-presenting cells and the subsequent antigen
presentation efficacy are low, resulting in insufficient antigen presentation. Therefore, for
the development of vaccine therapy using EVs derived from cancer cells, it is necessary to
confer tropism to persistent antigen-delivering dendrite cells (DCs) by conferring retention
of EVs at the administration site, and to control the intracellular dynamics of engulfed
DCs. In addition, molecules contained in DC-derived EVs include molecules that trigger
antigen presentation to CD8+ and CD4+ T cells and subsequent T cell proliferation, such
as MHC I/II proteins and CD86. In addition, DC-derived EVs contain tetraspanins, in-
cluding CD9, CD37, CD53, CD63, CD81, and CD82, which regulate DC interactions and
are abundantly expressed. Thus, since DC-derived EVs contain many molecules involved
in antigen presentation, they are expected to be applied as vaccine therapy. In fact, by
inhaling virus-like particles (VLPs) in which EV is modified with the receptor binding
domain (RBD) of the recombinant SARS-CoV-2 spike protein in mice or hamsters, the
RBD was confirmed to be more tightly retained in both mucus-lined respiratory airways
and lung parenchyma than liposome-based vaccines [154]. To date, mRNA vaccines have
been approved against SARS-CoV-2 that are designed to induce systemic immunity via
intramuscular injection. In addition, it is necessary to develop a cold chain at the actual
place of vaccination. In contrast, EV-based vaccines can be stored at room temperature for
three months after drying and target the lung specifically and effectively. Inhalation with
an inhaler is also possible.

Additionally, there are several routes for viral budding, including direct budding from
the cell membrane and budding via the MVB. Many enveloped RNA viruses, including
retrovirus, flaviviruses, rhabdoviruses, and paramyxoviruses, interact with the ESCART
complex and ESCART-associated proteins to facilitate budding from the plasma mem-
brane [155]. In addition, hepatitis B virus (HBV) and hepatitis E virus (HEV) also interact
with the ESCART complex and ESCART-associated proteins and are released via the MVB.
Thus, viruses facilitate budding by hijacking the ESCRT machinery [156]. In addition to
budding, viruses are known to transport viral genomes and virus-associated proteins to
EVs by hijacking the ESCART mechanism, making EVs advantageous for virus survival. In
fact, EVs derived from HIV (human immunodeficiency virus)-infected cells are known to
contain Nef (negative regulatory factor), one of the HIV viral proteins, and cells that have
taken up EVs containing Nef have increased susceptibility to HIV [157]. In addition, EVs
derived from EBV-positive B-cell lymphomas are known to contain EBV-encoded microR-
NAs, and macrophages that have taken up these EVs induce changes in their properties
similar to those of tumor-associated macrophages, promoting tumor cell proliferation [158].

6.4. Transfer and Preparation of Cargo by Liposome

Similar to EVs, liposomes are nanovesicles with a lipid bilayer membrane. Since there
is a hydrophobic region between lipid bilayers and an internal aqueous phase, they can en-
capsulate both hydrophobic and hydrophilic drugs and reduce the toxicity of encapsulated
drugs. Furthermore, techniques for preparing liposomes and loading functional molecules
have been established. The composition of lipid membranes can be easily adjusted, and
interior and surface modifications are relatively easy. By fusing such liposomes with EVs,
it becomes possible to load drugs inside the EVs and modify the lipid composition and
surface of the cell membrane [159,160]. One such technique for fusing EVs and liposomes
involves using a fusogenic agent, polyethylene glycol (PEG), by which liposomes and
EVs fuse through mixing so that more than 60% of membrane and soluble contents are
translocated from liposomes to EVs under optimized conditions. By mixing these two
types of particles and the gene plasmid, they can be efficiently loaded into the hybrid
vesicle. A physical fusion method involves the use of an extruder, in which a thin lipid film
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used for liposome preparation is prepared, an EV dispersion is added to hydrate it, and
hybrid vesicles with uniform sizes and high colloidal stability are then prepared by passing
through 400 nm and 200 nm membrane filters using an extruder. Furthermore, by mixing
hybrid vesicles and doxorubicin with an extruder, drug encapsulation is also possible.
Moreover, liposomes and EVs are also fused using a physiochemical process called the
freeze–thaw method, in which EVs and liposomes are mixed, frozen in liquid nitrogen, and
thawed at room temperature to induce membrane fusion. This fusion proceeds relatively
efficiently, regardless of the type of liposomal lipid or EVs. Furthermore, in hybrid vesicles
incorporating various lipids, including neutral, anionic, cationic, and PEG-modified lipids,
cellular uptake can be controlled by changing the type of lipid. In particular, hybrid vesicles
containing PEG modifications have an increased uptake efficiency compared to unmodified
EVs. With regard to constructing hybrid EVs using liposomes to incorporate viral fusogenic
proteins that induce fusion under acidic conditions, it is possible to reconstitute functional
membrane proteins into liposomes in one step by cell-free protein synthesis [161–163].

7. Conclusions

Various application methods are conceivable, such as protection from in vivo degrada-
tive enzymes by encapsulating nucleic acid drugs of interest in EVs and delivery systems
that utilize the specificity of molecules present in the vesicle membrane. Thus, based on the
possibility of nucleic acid therapy by DDS using EVs, nucleic acid medicine may become a
novel drug delivery modality for COVID-19 vaccine development.
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