Booster Dose Vaccination and Dynamics of COVID-19 Pandemic in the Fifth Wave: An Efficient and Simple Mathematical Model for Disease Progression
Abstract
:1. Introduction
2. Mathematical Model and Analysis
2.1. Model Descriptions
2.2. Disease-Free Equilibrium
2.3. Next-Generation Matrix and Basic Reproduction Number
2.4. Stability Analysis
3. Numerical Simulations and Fitting
Parameter Estimation
4. Effect of Vaccination on Disease Dynamics
5. Effective Reproduction Number and Simulation Outcome
6. Discussion
Ref | Control | Measure Model | Country |
---|---|---|---|
[32] | Vaccination | SEIR + Quarantined + Hospitalized SAIR | Saudi Arabia |
[33] | Full dose vaccination | SIR | Bangladesh |
[34] | Vaccination | two-strain mode/SEIARD | USA |
[35] | Vaccination | SEIR+ Asymptotic | Senegal |
[36] | Double dose vaccination | SEIR | Ghana |
[37] | Quarantine with treatment, | SEIR | Ethiopia |
[38] | Double dose vaccination | SEIR | Tanzania |
[27] | Low- and high-risk populations with pharmaceutical and non-pharmaceutical measures | SEIR+ vaccination | Thailand |
This study | Double dose vaccination + Booster dose | SEIR+ vaccination | Thailand |
7. Implications
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DDC | Department of Disease Control |
DFE | Disease-free equilibrium |
EEP | Endemic equilibrium point |
ICU | Intensive care unit |
SIR | Susceptible-infected-removal |
TSRI | Thailand Science Research and Innovation |
Appendix A
Appendix A.1. Proof of Theorem 1
Appendix A.2. Proof of Theorem 3
References
- BostonGlobe. A New Coronavirus Variant Has Taken Over, Sparking Concerns of A Winter Surge—The Boston Globe. Available online: https://www.bostonglobe.com/2022/11/21/nation/new-coronavirus-variant-has-taken-over-sparking-concerns-winter-surge/ (accessed on 30 October 2022).
- Sarun, C.; Craven, M.; Lamb, J.; Sabow, A.; Singhal, S.; Wilson, M. When Will the COVID-19 Pandemic End? Available online: https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/when-will-the-covid-19-pandemic-end (accessed on 1 November 2022).
- WHO. One Year Since The Emergence of COVID-19 Virus Variant Omicron. Available online: https://www.who.int/news-room/feature-stories/detail/one-year-since-the-emergence-of-omicron (accessed on 1 November 2022).
- Google News. Coronavirus (COVID-19)—Google News. Available online: https://news.google.com/covid19/map?hl=en-IN&gl=IN&ceid=IN%3Aen (accessed on 15 December 2022).
- Kyriakidis, N.C.; Lopez-Cortes, A.; Gonzalez, E.V.; Grimaldos, A.B.; Prado, E.O. SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates. NPJ Vaccines 2021, 6, 28. [Google Scholar] [CrossRef]
- Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Di Napoli, R. Features, Evaluation, and Treatment of Coronavirus (COVID-19); StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Ritchie, H.; Mathieu, E.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Ortiz-Ospina, E.; Hasell, J.; Macdonald, B.; Beltekian, D.; Roser, M. Coronavirus Pandemic (COVID-19). Our World Data 2022. Available online: https://ourworldindata.org/coronavirus. (accessed on 3 November 2022).
- El-Elimat, T.; AbuAlSamen, M.M.; Almomani, B.A.; Al-Sawalha, N.A.; Alali, F.Q. Acceptance and attitudes toward COVID-19 vaccines: A cross-sectional study from Jordan. PLoS ONE 2021, 16, e0250555. [Google Scholar] [CrossRef] [PubMed]
- Durmaz, N.; Suman, M.; Ersoy, M.; Orun, E. Parents’ attitudes toward childhood vaccines and COVID-19 vaccines in a Turkish pediatric outpatient population. Vaccines 2022, 10, 1958. [Google Scholar] [CrossRef] [PubMed]
- Almeshari, M.; Abanomy, A.; Alzamil, Y.; Alyahyawi, A.; Al-Thomali, A.W.; Alshihri, A.A.; Althomali, O.W. Public acceptance of COVID-19 vaccination among residents of Saudi Arabia: A cross-sectional online study. BMJ Open 2022, 12, e058180. [Google Scholar] [CrossRef]
- Kartono, A.; Karimah, S.V.; Wahyudi, S.T.; Setiawan, A.A.; Sofian, I. Forecasting the Long-Term Trends of Coronavirus Disease 2019 (COVID-19) Epidemic Using the Susceptible-Infectious-Recovered (SIR) Model. Infect. Dis. Rep. 2021, 13, 668–684. [Google Scholar] [CrossRef] [PubMed]
- Tolles, J.; Luong, T. Modeling epidemics with compartmental models. JAMA 2020, 323, 2515–2516. [Google Scholar] [CrossRef]
- Abou-Ismail, A. Compartmental models of the COVID-19 pandemic for physicians and physician-scientists. SN Compr. Clin. Med. 2020, 2, 852–858. [Google Scholar] [CrossRef]
- Hoertel, N.; Blachier, M.; Blanco, C.; Olfson, M.; Massetti, M.; Rico, M.S.; Limosin, F.; Leleu, H. A stochastic agent-based model of the SARS-CoV-2 epidemic in France. Nat. Med. 2020, 26, 1417–1421. [Google Scholar] [CrossRef]
- Kong, L.; Duan, M.; Shi, J.; Hong, J.; Chang, Z.; Zhang, Z. Compartmental structures used in modeling COVID-19: A scoping review. Infect. Dis. Poverty 2022, 11, 72. [Google Scholar] [CrossRef]
- Tantrakarnapa, K.; Bhopdhornangkul, B.; Nakhaapakorn, K. Influencing factors of COVID-19 spreading: A case study of Thailand. J. Public Health 2022, 30, 621–627. [Google Scholar] [CrossRef]
- Pongsakornrungsilp, S.; Pongsakornrungsilp, P.; Kumar, V.; Maswongssa, B. The art of survival: Tourism businesses in Thailand Recovering from COVID-19 through brand management. Sustainability 2021, 13, 6690. [Google Scholar] [CrossRef]
- Shadmi, E.; Chen, Y.; Dourado, I.; Faran-Perach, I.; Furler, J.; Hangoma, P.; Hanvoravongchai, P.; Obando, C.; Petrosyan, V.; Rao, K.D.; et al. Health equity and COVID-19: Global perspectives. Int. J. Equity Health 2020, 19, 104. [Google Scholar] [CrossRef]
- Diekmann, O.; Heesterbeek, J.A.; Roberts, M.G. The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface 2010, 7, 873–885. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhao, X.-Q. Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Differ. Equ. 2008, 20, 699–717. [Google Scholar] [CrossRef]
- van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef]
- DDC. DDC COVID-19 Interactive Dashboard 1-Dash-Tiles-W. Available online: https://ddc.moph.go.th/covid19-dashboard (accessed on 31 October 2022).
- Bangkokbiznews. How Is the Situation of “COVID-19” Around the World after Facing “Omicron”? Available online: https://www.bangkokbiznews.com/social/1000909 (accessed on 30 October 2022).
- Chulalongkorn. COVID-19 “Omicron”. Available online: https://chulalongkornhospital.go.th/kcmh/ (accessed on 30 October 2022).
- UKHSA. SARS-CoV-2 Variants of Concern and Variants under Investigation in England. Available online: https://eprints.whiterose.ac.uk/185514/ (accessed on 10 November 2022).
- Riyapan, P.; Shuaib, S.E.; Intarasit, A. A Mathematical Model of COVID-19 Pandemic: A Case Study of Bangkok, Thailand. Comput. Math. Methods Med. 2021, 2021, 6664483. [Google Scholar] [CrossRef] [PubMed]
- Ritraksa, S.; Photphanloet, C.; Shuaib, S.E.; Intarasit, A.; Riyapan, P. Mathematical modeling to study the interactions of two risk populations in COVID-19 spread in Thailand. AIMS Math. 2023, 8, 2044–2061. [Google Scholar] [CrossRef]
- Suphanchaimat, R.; Teekasap, P.; Nittayasoot, N.; Phaiyarom, M.; Cetthakrikul, N. Forecasted trends of the new COVID-19 epidemic due to the Omicron variant in Thailand, 2022. Vaccines 2022, 10, 1024. [Google Scholar] [CrossRef] [PubMed]
- Algarni, A.D.; Ben Hamed, A.; Hamdi, M.; Elmannai, H.; Meshoul, S. Mathematical COVID-19 model with vaccination: A case study in Saudi Arabia. PeerJ Comput. Sci. 2022, 8, e959. [Google Scholar] [CrossRef]
- Paul, A.K.; Kuddus, M.A. Mathematical analysis of a COVID-19 model with double dose vaccination in Bangladesh. Results Phys. 2022, 35, 105392. [Google Scholar] [CrossRef]
- de Leon, U.A.; Avila-Vales, E.; Huang, K.L. Modeling COVID-19 dynamic using a two-strain model with vaccination. Chaos Solitons Fractals 2022, 157, 111927. [Google Scholar] [CrossRef]
- Diagne, M.L.; Rwezaura, H.; Tchoumi, S.Y.; Tchuenche, J.M. A Mathematical Model of COVID-19 with Vaccination and Treatment. Comput Math. Methods Med. 2021, 2021, 1250129. [Google Scholar] [CrossRef] [PubMed]
- Akuka, P.N.A.; Seidu, B.; Bornaa, C.S. Mathematical analysis of COVID-19 transmission dynamics model in Ghana with double-dose vaccination and quarantine. Comput. Math. Methods Med. 2022, 2022, 7493087. [Google Scholar] [CrossRef] [PubMed]
- Teklu, S.W. Mathematical analysis of the transmission dynamics of COVID-19 infection in the presence of intervention strategies. J. Biol. Dyn. 2022, 16, 640–664. [Google Scholar] [CrossRef] [PubMed]
- Ayoola, T.A.; Kolawole, M.K.; Popoola, A.O. Mathematical model of COVID-19 transmission dynamics with double dose vaccination. Tanzan. J. Sci. 2022, 48, 499–512. [Google Scholar] [CrossRef]
- Hfocus. Thai COVID Is Not Yet Endemic. Available online: https://www.hfocus.org/content/2022/04/24967 (accessed on 30 October 2022).
- KRUNGTHAI. Comparison of COVID-19 Vaccines, Effectiveness and Side Effects. Available online: https://www.krungthai-axa.co.th/th/health-tip-compared-site-effects-of-the-covid-vaccine (accessed on 10 November 2022).
- NSO. National Statistical Office Thailand. Available online: https://www.nso.go.th/sites/2014en (accessed on 10 November 2022).
- Gantmakher, F.R. Matrix Theory; American Mathematical Soc: New York, NY, USA, 2000. [Google Scholar]
Parameters | |
---|---|
Vaccine efficiency of ith dose of vaccination | |
Infection rate | |
Vaccination rates of ith dose of vaccination | |
Vaccine ineffectiveness rate | |
Recovery from infection | |
Recovery from infection while in hospital | |
Hospital admission rate | |
ICU admission rate of infected hospitalized individuals | |
The recovery rate from infection in the ICU, returning to the hospital | |
The death rate of the population admitted to the ICU. | |
The death rate of the infected population | |
The death rate of the hospitalized population |
Parameters | Value | Unit | Source | |
---|---|---|---|---|
Vaccine efficacy | % | [25] | ||
Infection rates in the population | 1.95 | Per day | fitted | |
Vaccination rates of risk populations | Per day | [22] | ||
Vaccine ineffectiveness rate | 8.55 | Per day | fitted | |
Rate of recovery from infection | Per day | [22,23] | ||
Rate of recovery from infection | 1/10 | Per day | [22,23] | |
Rates of hospital admissions from infected groups | 1/3 | Per day | [24] | |
The rate of admission to the ICU from the group of infected people admitted to the hospital | 1/10 | Per day | [4,23] | |
The rate of recovery from infection in the ICU, returning to the hospital | 1/20 | Per day | [22] | |
Death rate of the population admitted to the ICU. | Per day | [22,23] | ||
Death rate of the infected population | 1.51 | Per day | fitted | |
Death rate of the hospitalized population | 1/10 | Per day | [22,23] |
Parameters | Value | Parameters | Value |
---|---|---|---|
0 | 0 | ||
0.004574 | 0.58 | ||
0.004966 | 0.64 | ||
0.00299 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theparod, T.; Kreabkhontho, P.; Teparos, W. Booster Dose Vaccination and Dynamics of COVID-19 Pandemic in the Fifth Wave: An Efficient and Simple Mathematical Model for Disease Progression. Vaccines 2023, 11, 589. https://doi.org/10.3390/vaccines11030589
Theparod T, Kreabkhontho P, Teparos W. Booster Dose Vaccination and Dynamics of COVID-19 Pandemic in the Fifth Wave: An Efficient and Simple Mathematical Model for Disease Progression. Vaccines. 2023; 11(3):589. https://doi.org/10.3390/vaccines11030589
Chicago/Turabian StyleTheparod, Thitiya, Pannathon Kreabkhontho, and Watchara Teparos. 2023. "Booster Dose Vaccination and Dynamics of COVID-19 Pandemic in the Fifth Wave: An Efficient and Simple Mathematical Model for Disease Progression" Vaccines 11, no. 3: 589. https://doi.org/10.3390/vaccines11030589
APA StyleTheparod, T., Kreabkhontho, P., & Teparos, W. (2023). Booster Dose Vaccination and Dynamics of COVID-19 Pandemic in the Fifth Wave: An Efficient and Simple Mathematical Model for Disease Progression. Vaccines, 11(3), 589. https://doi.org/10.3390/vaccines11030589