Summary of the Current Status of African Swine Fever Vaccine Development in China
Abstract
:1. Introduction
2. Gene-Deleted Live Attenuated Vaccines (LAVs)
2.1. Progress of Seven-Gene-(Dual-Gene)-Deleted LAV Research
2.2. Research Progress of Other Gene-Deleted LAVs
3. Other Vaccines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, X.; Li, N.; Luo, Y.; Liu, Y.; Miao, F.; Chen, T.; Zhang, S.; Cao, P.; Li, X.; Tian, K.; et al. Emergence of African Swine Fever in China, 2018. Transbound. Emerg. Dis. 2018, 65, 1482–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, S.; Li, J.; Fan, X.; Liu, F.; Li, L.; Wang, Q.; Ren, W.; Bao, J.; Liu, C.; Wang, H.; et al. Molecular Characterization of African Swine Fever Virus, China, 2018. Emerg. Infect. Dis. 2018, 24, 2131–2133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.; Liu, R.; Zhang, X.; Li, F.; Wang, J.; Zhang, J.; Liu, X.; Wang, L.; Zhang, J.; Wu, X.; et al. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerg. Microbes Infect. 2019, 8, 438–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbano, A.C.; Ferreira, F. African swine fever control and prevention: An update on vaccine development. Emerg. Microbes Infect. 2022, 11, 2021–2033. [Google Scholar] [CrossRef]
- Manso Ribeiro, J.; Nunes Petisca, J.L.; Lopes Frazao, F.; Sobral, M. Vaccination contre la peste porcine africaine. Bull. De L’office Int. Des Epizoot. 1963, 60, 921–937. [Google Scholar]
- Boinas, F.S.; Hutchings, G.H.; Dixon, L.K.; Wilkinson, P.J. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J. Gen. Virol. 2004, 85, 2177–2187. [Google Scholar] [CrossRef]
- Gallardo, C.; Soler, A.; Rodze, I.; Nieto, R.; Cano-Gómez, C.; Fernandez-Pinero, J.; Arias, M. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transbound. Emerg. Dis. 2019, 66, 1399–1404. [Google Scholar] [CrossRef]
- Sun, E.; Huang, L.; Zhang, X.; Zhang, J.; Shen, D.; Zhang, Z.; Wang, Z.; Huo, H.; Wang, W.; Huangfu, H.; et al. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerg. Microbes Infect. 2021, 10, 2183–2193. [Google Scholar] [CrossRef]
- Rock, D.L. Thoughts on African Swine Fever Vaccines. Viruses 2021, 13, 943. [Google Scholar] [CrossRef]
- Gonzalez, A.; Calvo, V.; Almazan, F.; Almendral, J.M.; Ramirez, J.C.; Delavega, I.; Blasco, R.; Vinuela, E. MULTIGENE FAMILIES IN AFRICAN SWINE FEVER VIRUS-FAMILY-360. J. Virol. 1990, 64, 2073–2081. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.M.; Yanez, R.J.; Pan, R.; Rodriguez, J.F.; Salas, M.L.; Vinuela, E. Multigene Families In African Swine Fever Virus-Family-505. J. Virol. 1994, 68, 2746–2751. [Google Scholar] [CrossRef] [Green Version]
- Yozawa, T.; Kutish, G.F.; Afonso, C.L.; Lu, Z.; Rock, D.L. 2 Novel Multigene Families, 530 And 300, In The Terminal Variable Regions Of African-Swine-Fever Virus Genome. Virology 1994, 202, 997–1002. [Google Scholar] [CrossRef]
- Afonso, C.L.; Piccone, M.E.; Zaffuto, K.M.; Neilan, J.; Kutish, G.F.; Lu, Z.; Balinsky, C.A.; Gibb, T.R.; Bean, T.J.; Zsak, L.; et al. African swine fever virus multigene family 360 and 530 genes affect host interferon response. J. Virol. 2004, 78, 1858–1864. [Google Scholar] [CrossRef] [Green Version]
- Monteagudo, P.L.; Lacasta, A.; Lopez, E.; Bosch, L.; Collado, J.; Pina-Pedrero, S.; Correa-Fiz, F.; Accensi, F.; Navas, M.J.; Vidal, E.; et al. BA71DeltaCD2: A New Recombinant Live Attenuated African Swine Fever Virus with Cross-Protective Capabilities. J. Virol. 2017, 91, e01058-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, V.; Holinka, L.G.; Gladue, D.P.; Sanford, B.; Krug, P.W.; Lu, X.Q.; Arzt, J.; Reese, B.; Carrillo, C.; Risatti, G.R.; et al. African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parental Virus. J. Virol. 2015, 89, 6048–6056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alejo, A.; Matamoros, T.; Guerra, M.; Andres, G. A Proteomic Atlas of the African Swine Fever Virus Particle. J. Virol. 2018, 92, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, J.M.; Yanez, R.J.; Almazan, F.; Vinuela, E.; Rodriguez, J.F. African swine fever virus encodes a CD2 homolog responsible for the adhesion of erythrocytes to infected cells. J. Virol. 1993, 67, 5312–5320. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhao, D.; He, X.; Liu, R.; Wang, Z.; Zhang, X.; Li, F.; Shan, D.; Chen, H.; Zhang, J.; et al. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Sci. China Life Sci. 2020, 63, 623–634. [Google Scholar] [CrossRef]
- Bu, Z. Latest progress in prevention and control of African swine fever and vaccine development. Vet. Orientat. 2021, 371, 6–7. [Google Scholar]
- Zhang, Y.; Chen, T.; Zhang, J.; Qi, Y.; Miao, F.; Bo, Z.; Wang, L.; Guo, X.; Zhou, X.; Yang, J.; et al. Construction and immunoprotective properties of a gene-deleted vaccine strain of African swine fever virus. Chin. J. Vet. Sci. 2019, 39, 1421–1427. [Google Scholar] [CrossRef]
- Borca, M.V.; Ramirez-Medina, E.; Silva, E.; Vuono, E.; Rai, A.; Pruitt, S.; Holinka, L.G.; Velazquez-Salinas, L.; Zhu, J.; Gladue, D.P. Development of a Highly Effective African Swine Fever Virus Vaccine by Deletion of the I177L Gene Results in Sterile Immunity against the Current Epidemic Eurasia Strain. J. Virol. 2020, 94, e02017-19. [Google Scholar] [CrossRef]
- Sereda, A.D.; Balyshev, V.M.; Kazakova, A.S.; Imatdinov, A.R.; Kolbasov, D.V. Protective Properties of Attenuated Strains of African Swine Fever Virus Belonging to Seroimmunotypes I–VIII. Pathogens 2020, 9, 274. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Luo, R.; Sun, Y.; Qiu, H.J. Current efforts towards safe and effective live attenuated vaccines against African swine fever: Challenges and prospects. Infect. Dis. Poverty 2021, 10, 137. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Xie, Z.; Ao, Q.; Di, D.; Yu, W.; Lv, L.; Zhong, Q.; Song, Y.; Liao, X.; et al. Development and in vivo evaluation of MGF100-1R deletion mutant in an African swine fever virus Chinese strain. Vet. Microbiol. 2021, 261, 109208. [Google Scholar] [CrossRef]
- Li, D.; Liu, Y.; Qi, X.; Wen, Y.; Li, P.; Ma, Z.; Liu, Y.; Zheng, H.; Liu, Z. African Swine Fever Virus MGF-110-9L-deficient Mutant Has Attenuated Virulence in Pigs. Virol. Sin. 2021, 36, 187–195. [Google Scholar] [CrossRef]
- Huang, H.; Dang, W.; Shi, Z.; Ding, M.; Xu, F.; Li, T.; Feng, T.; Zheng, H.; Xiao, S. Identification of African swine fever virus MGF505-2R as a potent inhibitor of innate immunity in vitro. Virol. Sin. 2022, 38, 84–95. [Google Scholar] [CrossRef]
- Li, D.; Yang, W.; Li, L.; Li, P.; Ma, Z.; Zhang, J.; Qi, X.; Ren, J.; Ru, Y.; Niu, Q.; et al. African Swine Fever Virus MGF-505-7R Negatively Regulates cGAS-STING-Mediated Signaling Pathway. J. Immunol. 2021, 206, 1844–1857. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J.; Yang, W.; Li, P.; Ru, Y.; Kang, W.; Li, L.; Ran, Y.; Zheng, H. African swine fever virus protein MGF-505-7R promotes virulence and pathogenesis by inhibiting JAK1- and JAK2-mediated signaling. J. Biol. Chem. 2021, 297, 101190. [Google Scholar] [CrossRef]
- Liu, X.; Ao, D.; Jiang, S.; Xia, N.; Xu, Y.; Shao, Q.; Luo, J.; Wang, H.; Zheng, W.; Chen, N.; et al. African Swine Fever Virus A528R Inhibits TLR8 Mediated NF-κB Activity by Targeting p65 Activation and Nuclear Translocation. Viruses 2021, 13, 2046. [Google Scholar] [CrossRef]
- Li, D.; Wu, P.; Liu, H.; Feng, T.; Yang, W.; Ru, Y.; Li, P.; Qi, X.; Shi, Z.; Zheng, H. A QP509L/QP383R-deleted African swine fever virus is highly attenuated in swine but does not confer protection against parental virus challenge. J. Virol. 2021, 96, Jvi0150021. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, Z.; Feng, T.; Ma, Z.; Xue, Q.; Wu, P.; Li, P.; Li, S.; Yang, F.; Cao, W.; et al. African Swine Fever Virus E120R Protein Inhibits Interferon Beta Production by Interacting with IRF3 To Block Its Activation. J. Virol. 2021, 95, e0082421. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Feng, T.; Zhang, X.; Yang, F.; Cao, W.; Chen, H.; Liu, H.; Zhang, K.; Zhu, Z.; et al. African Swine Fever Virus F317L Protein Inhibits NF-κB Activation to Evade Host Immune Response and Promote Viral Replication. mSphere 2021, 6, e00658-21. [Google Scholar] [CrossRef]
- Zhang, J. Functional Identification of African Swine Fever Virus L7L-L11L Gene and Vaccine Candidate Strains. Ph.D. Thesis, Ningxia University, Yinchuan, China, 2021. [Google Scholar]
- Zhang, K.; Yang, B.; Shen, C.; Zhang, T.; Hao, Y.; Zhang, D.; Liu, H.; Shi, X.; Li, G.; Yang, J.; et al. MGF360-9L Is a Major Virulence Factor Associated with the African Swine Fever Virus by Antagonizing the JAK/STAT Signaling Pathway. mBio 2022, 13, e02330-21. [Google Scholar] [CrossRef]
- Zhang, Y.; Ke, J.; Zhang, J.; Yang, J.; Yue, H.; Zhou, X.; Qi, Y.; Zhu, R.; Miao, F.; Li, Q.; et al. African Swine Fever Virus Bearing an I226R Gene Deletion Elicits Robust Immunity in Pigs to African Swine Fever. J. Virol. 2021, 95, e0119921. [Google Scholar] [CrossRef]
- Huang, L.; Xu, W.; Liu, H.; Xue, M.; Liu, X.; Zhang, K.; Hu, L.; Li, J.; Liu, X.; Xiang, Z.; et al. African Swine Fever Virus pI215L Negatively Regulates cGAS-STING Signaling Pathway through Recruiting RNF138 to Inhibit K63-Linked Ubiquitination of TBK1. J. Immunol. 2021, 207, 2754–2769. [Google Scholar] [CrossRef]
- Li, L.; Fu, J.; Li, J.; Guo, S.; Chen, Q.; Zhang, Y.; Liu, Z.; Tan, C.; Chen, H.; Wang, X. African Swine Fever Virus pI215L Inhibits Type I Interferon Signaling by Targeting Interferon Regulatory Factor 9 for Autophagic Degradation. J. Virol. 2022, 96, e0094422. [Google Scholar] [CrossRef]
- Ran, Y.; Li, D.; Xiong, M.G.; Liu, H.N.; Feng, T.; Shi, Z.W.; Li, Y.H.; Wu, H.N.; Wang, S.Y.; Zheng, H.X.; et al. African swine fever virus I267L acts as an important virulence factor by inhibiting RNA polymerase III-RIG-I-mediated innate immunity. PLoS Pathog. 2022, 18, e1010270. [Google Scholar] [CrossRef]
- Sun, M.; Yu, S.; Ge, H.; Wang, T.; Li, Y.; Zhou, P.; Pan, L.; Han, Y.; Yang, Y.; Sun, Y.; et al. The A137R Protein of African Swine Fever Virus Inhibits Type I Interferon Production via the Autophagy-Mediated Lysosomal Degradation of TBK1. J. Virol. 2022, 96, e0195721. [Google Scholar] [CrossRef]
- Ding, M.; Dang, W.; Liu, H.; Xu, F.; Huang, H.; Sunkang, Y.; Li, T.; Pei, J.; Liu, X.; Zhang, Y.; et al. Combinational Deletions of MGF360-9L and MGF505-7R Attenuated Highly Virulent African Swine Fever Virus and Conferred Protection against Homologous Challenge. J. Virol. 2022, 96, e0032922. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, Z.; Li, Y.; Song, Y.; Di, D.; Liu, J.; Gong, L.; Chen, Z.; Wu, J.; Ye, Z.; et al. Evaluation of An I177L gene-based five-gene-deleted African swine fever virus as a live attenuated vaccine in pigs. Emerg. Microbes Infect. 2022, 12, 2148560. [Google Scholar] [CrossRef]
- Teklue, T.; Wang, T.; Luo, Y.; Hu, R.; Sun, Y.; Qiu, H.-J. Generation and Evaluation of an African Swine Fever Virus Mutant with Deletion of the CD2v and UK Genes. Vaccines 2020, 8, 763. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, Y.; Di, D.; Liu, J.; Gong, L.; Chen, Z.; Li, Y.; Yu, W.; Lv, L.; Zhong, Q.; et al. Protection Evaluation of a Five-Gene-Deleted African Swine Fever Virus Vaccine Candidate Against Homologous Challenge. Front. Microbiol. 2022, 13, 902932. [Google Scholar] [CrossRef]
- Gao, Z.; Shao, J.; Chang, Y.; Zhang, G.; Kong, J.; Ge, S.; Chang, H. Predictive analysis of p72 protein antigenic epitopes of African swine fever virus and construction of multi-epitope vaccine. Chin. J. Vet. Med. 2020, 56, 13–17+142–144. [Google Scholar]
- Zhou, X.; Mao, R.; Zhu, Z.; Sun, D.; Zhu, Y.; Wang, L.; Qi, M.; Zheng, H. Screening and antigenicity analysis of T-cell epitopes of African swine fever virus CP312R protein. Chin. Vet. Sci. 2022, 52, 410–416. [Google Scholar] [CrossRef]
- Cai, J.; Cao, X.; Yang, Y.; Dai, B.; Cao, Q. Analysis of the dominant B and T cell antigenic epitopes of the MGF multigene family of African swine fever virus Pig/HLJ/2018 isolate. Mod. Anim. Husb. Sci. Technol. 2021, 8, 1–5. [Google Scholar] [CrossRef]
- Cao, Q.; Dai, B.; Cao, X.; Yang, Y. Bioinformatics analysis of protein pp220 encoded by African swine fever virus Pig/HLJ/2018 strain CP2475L. Swine Ind. Sci. 2021, 38, 100–105. [Google Scholar]
- Jia, R.; Zhang, G.; Bai, Y.; Liu, H.; Chen, Y.; Ding, P.; Zhou, J.; Feng, H.; Li, M.; Tian, Y.; et al. Identification of Linear B Cell Epitopes on CD2V Protein of African Swine Fever Virus by Monoclonal Antibodies. Microbiol. Spectr. 2022, 10, e0105221. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, W.; Gao, Z.; Chang, Y.; Yang, S.; Peng, Q.; Ge, S.; Kang, B.; Shao, J.; Chang, H. Antigenic and immunogenic properties of recombinant proteins consisting of two immunodominant African swine fever virus proteins fused with bacterial lipoprotein OprI. Virol. J. 2022, 19, 16. [Google Scholar] [CrossRef]
- Zhang, G.L.; Liu, W.; Gao, Z.; Yang, S.C.; Zhou, G.Q.; Chang, Y.Y.; Ma, Y.Y.; Liang, X.X.; Shao, J.J.; Chang, H.Y. Antigenicity and immunogenicity of recombinant proteins comprising African swine fever virus proteins p30 and p54 fused to a cell-penetrating peptide. Int. Immunopharmacol. 2021, 101, 108251. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, H.; Wu, Z.; Zhang, X.; Zhang, Q.; Zhu, S.; Zhu, H.; Sun, H. Comparison of mucosal immune responses to African swine fever virus antigens intranasally delivered with two different viral vectors. Res. Vet. Sci. 2022, 150, 204–212. [Google Scholar] [CrossRef]
- Fang, N.; Yang, B.; Xu, T.; Li, Y.; Li, H.; Zheng, H.; Zhang, A.; Chen, R. Expression and Immunogenicity of Recombinant African Swine Fever Virus Proteins Using the Semliki Forest Virus. Front. Vet. Sci. 2022, 9, 870009. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, X.; Shao, G.; Shao, Y.; Hu, Z.; Feng, K.; Xie, Z.; Li, H.; Chen, W.; Lin, W.; et al. Construction and Evaluation of Recombinant Pseudorabies Virus Expressing African Swine Fever Virus Antigen Genes. Front. Vet. Sci. 2022, 9, 832255. [Google Scholar] [CrossRef]
- Lu, H.; Zhou, X.; Wu, Z.; Zhang, X.; Zhu, L.; Guo, X.; Zhang, Q.; Zhu, S.; Zhu, H.; Sun, H. Comparison of the mucosal adjuvanticities of two Toll-like receptor ligands for recombinant adenovirus-delivered African swine fever virus fusion antigens. Vet. Immunol. Immunopathol. 2021, 239, 110307. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Hua, D.; Shi, J.; Tan, Z.; Zhu, M.; Tan, K.; Zhang, L.; Huang, J. Porcine Immunoglobulin Fc Fused P30/P54 Protein of African Swine Fever Virus Displaying on Surface of S. cerevisiae Elicit Strong Antibody Production in Swine. Virol. Sin. 2021, 36, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Huang, M. Construction of Recombinant Adenoviral Vector Expressing ASFV Protective Antigen and Immunogenicity Study. Master’s Thesis, Yangzhou University, Yangzhou, China, 2021. [Google Scholar]
- Wu, B. Construction of African Swine Fever Virus Vector Vaccine Candidates Based on rAAV and Preliminary Evaluation. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2020. [Google Scholar]
- Liang, W. Preliminary Study of a Recombinant Pseudorabies Vaccine Expressing the CD2v and P12 Proteins of African Swine Fever Virus. Master’s Thesis, Fujian Normal University, Fuzhou, China, 2021. [Google Scholar]
Period | Progress/Achievements | References |
---|---|---|
October–November 2018 | Isolation and acquisition of endemic ASFV strains in China, completion of whole genome sequence determination and analysis and establishment of infection pathogenesis model | [3] |
November 2018–May 2019 | Screening out one safe and effective LAV candidate strain HLJ/18-7GD | [18] |
December 2019 | Approval of the gene-deleted LAV candidate strain for environmental release test after national review | [19] |
June 2019–February 2020 | Completion of vaccine laboratory product quality research, large-scale production process research and intermediate trial production, as well as biosafety evaluation intermediate test | [19] |
March 2020 | Approved for clinical trial of veterinary biological products by the Ministry of Agriculture and Rural Affairs | [19] |
April–June 2020 | Biosafety evaluation environmental release testing and Phase I clinical trial conducted in four independent pig farms | [19] |
August–October 2020 | Approved by the Ministry of Agriculture and Rural Affairs to enter the biological safety evaluation production test phase, and field biological safety production tests conducted at two enclosed test bases. | [19] |
September–October 2020 | Approved by the Ministry of Agriculture and Rural Affairs for conducting Phase II clinical trials at four clinical trial enclosed bases | [19] |
Year | Targeted Genes | Immunizing Dose | Survival Rate | Challenge Timepoint (dpv) | Challenge Dose | Survival Rate | References |
---|---|---|---|---|---|---|---|
2019 | MGF 360/505 | 103 TCID50, 104 TCID50 | 10/10 | 28 | 103 TCID50 | 5/5 | [20] |
MGF 360/505 + CD2v | 103 TCID50, 104 TCID50 | 10/10 | 28 | 103 TCID50 | 10/10 | ||
2020 | MGF 360/505 + CD2v | 103 TCID50, 105 TCID50 | 8/8 | 21 | 200 PLD50 | 8/8 | [18] |
MGF 360/505 | 103 TCID50, 105 TCID50 | 8/8 | 21 | 200 PLD50 | 8/8 | ||
9GL + UK | 103 TCID50, 105 TCID50 | 12/12 | 21 | 200 PLD50 | 0/12 | ||
CD2v | 103 TCID50, 105 TCID50 | 3/8 | 21 | / | / | ||
CD2v + UK | 103 TCID50, 105 TCID50 | 4/8 | 21 | / | / | ||
CD2v + UK | 104 TCID50 | 5/5 | 28 | 104 TCID50 | 5/5 | [42] | |
2021 | I226R | 104 TCID50, 107 TCID50 | 10/10 | 21 | 102.5 TCID50/104 TCID50 | 10/10 | [35] |
MGF 505-7R | 10 HAD50 | 6/6 | 21 | / | / | [27,28] | |
MGF 110-9L | 10 HAD50 | 3/5 | 17 | / | / | [25] | |
QP509L/QP383R | 104 HAD50 | 6/6 | 17 | 102 HAD50 | 0/6 | [30] | |
2022 | MGF360-9L | 1HAD50 | 4/5 | 17 | / | / | [34] |
I267 | 10 HAD50 | 1/6 | 21 | / | / | [38] | |
MGF360-9L + MGF505-7R | 104 HAD50 | 6/6 | 23 | 102 HAD50 | 5/6 | [40] | |
EP153R/EP402R + MGF 360-12L/13L/14L | 105 TCID50 | 5/5 | 28 | 102 HAD50 | 5/5 | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, N.; Qu, H.; Xu, T.; Hu, Y.; Zhang, Y.; Ge, S. Summary of the Current Status of African Swine Fever Vaccine Development in China. Vaccines 2023, 11, 762. https://doi.org/10.3390/vaccines11040762
Han N, Qu H, Xu T, Hu Y, Zhang Y, Ge S. Summary of the Current Status of African Swine Fever Vaccine Development in China. Vaccines. 2023; 11(4):762. https://doi.org/10.3390/vaccines11040762
Chicago/Turabian StyleHan, Naijun, Hailong Qu, Tiangang Xu, Yongxin Hu, Yongqiang Zhang, and Shengqiang Ge. 2023. "Summary of the Current Status of African Swine Fever Vaccine Development in China" Vaccines 11, no. 4: 762. https://doi.org/10.3390/vaccines11040762
APA StyleHan, N., Qu, H., Xu, T., Hu, Y., Zhang, Y., & Ge, S. (2023). Summary of the Current Status of African Swine Fever Vaccine Development in China. Vaccines, 11(4), 762. https://doi.org/10.3390/vaccines11040762