Identification of Immunodominant Proteins of the Leishmania (Viannia) naiffi SubProteome as Pan-Specific Vaccine Targets against Leishmaniasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statements
2.2. Parasite Culture and Isolation of Soluble Extract (sLnAg)
2.3. Human Serum
2.4. Immunoblotting of the sLnAg Extract
2.5. In-Gel Tryptic Digestion
2.6. Mass Spectrometry Analysis
2.7. Data Analysis
2.8. Analysis of Sequence Similarity between Leishmania and Human Proteins
2.9. Prediction of Linear Epitopes Recognized by B lymphocytes
2.10. Prediction of Class II HLA-Binding Epitopes
2.11. Prediction of Class I HLA-Binding Epitopes
2.12. Antigenicity Analysis
2.13. Homology Analysis
3. Results
3.1. Antigenic Fraction from the L. naiffi Soluble Antigen Is between 35 and 70 kDa
3.2. sLnAg Proteins with Less than 30% Similarity to Human Proteins Represent 39% of Identified Proteins
3.3. sLnAg Proteins Less Similar to Human Proteins Have Predicted BCR-Binding Epitopes
3.4. The sLnAg Proteins Have Predicted HLA II-Binding Epitopes and/or HLA I-Binding Epitopes
3.5. Consensus Predictions Determined the Potential Immunodominance of sLnAg Proteins
3.6. Of the Most Immunodominant Sequences, 20 Are also Antigenic
3.7. Potential Vaccine Targets Are the Most Immunodominant and Conserved sLnAg Sequences
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global leishmaniasis surveillance: 2021, assessing the impact of the COVID-19 pandemic. Wkly. Epidemiol. 2022, 97, 575–590. Available online: https://www.who.int/publications/i/item/who-wer9745-575-590 (accessed on 18 February 2023).
- World Health Organization. Leishmaniasis. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 18 February 2023).
- Rezvan, H.; Moafi, M.; Sherkat, R.; Taleban, R. Leishmania vaccines entered in clinical trials: A review of literature. Int. J. Prev. Med. 2019, 10, 95. [Google Scholar] [CrossRef]
- Moyle, P.M.; Toth, I. Modern Subunit Vaccines: Development, Components, and Research Opportunities. Chemmedchem 2013, 8, 360–376. [Google Scholar] [CrossRef] [PubMed]
- De Brito, R.C.F.; Cardoso, J.M.D.O.; Reis, L.E.S.; Vieira, J.F.; Mathias, F.A.S.; Roatt, B.; Aguiar-Soares, R.D.D.O.; Ruiz, J.C.; Resende, D.; Reis, A.B. Peptide Vaccines for Leishmaniasis. Front. Immunol. 2018, 9, 1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhoundi, M.; Kuhls, K.; Cannet, A.; Votypka, J.; Marty, P.; Delaunay, P.; Sereno, D. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Negl. Trop. Dis. 2016, 10, e0004349. [Google Scholar] [CrossRef] [PubMed]
- Palatnik-De-Sousa, C.B. Nucleoside Hydrolase NH 36: A Vital Enzyme for the Leishmania Genus in the Development of T-Cell Epitope Cross-Protective Vaccines. Front. Immunol. 2019, 10, 813. [Google Scholar] [CrossRef] [Green Version]
- Manson-Bahr, P.; Heisch, R.; Garnham, P. Studies in leishmaniasis in East Africa. IV. The Montenegro test in Kala-Azar in Kenya. Trans. R. Soc. Trop. Med. Hyg. 1959, 53, 380–383. [Google Scholar] [CrossRef]
- da Silva-Couto, L.; Ribeiro-Romão, R.P.; Saavedra, A.F.; Souza, B.L.D.S.C.; Moreira, O.C.; Gomes-Silva, A.; Rossi-Bergmann, B.; Da-Cruz, A.M.; Pinto, E.F. Intranasal Vaccination with Leishmanial Antigens Protects Golden Hamsters (Mesocricetus auratus) Against Leishmania (Viannia) braziliensis Infection. PLoS Negl. Trop. Dis. 2015, 9, e3439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, E.F.; Cortezia, M.D.M.; Rossi-Bergmann, B. Interferon-gamma-inducing oral vaccination with Leishmania amazonensis antigens protects BALB/c and C57BL/6 mice against cutaneous leishmaniasis. Vaccine 2003, 21, 3534–3541. [Google Scholar] [CrossRef] [PubMed]
- Romano, A.; Doria, N.A.; Mendez, J.; Sacks, D.L.; Peters, N.C. Cutaneous Infection with Leishmania major Mediates Heterologous Protection against Visceral Infection with Leishmania infantum. J. Immunol. 2015, 195, 3816–3827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goto, Y.; Bhatia, A.; Raman, V.S.; Liang, H.; Mohamath, R.; Picone, A.F.; Vidal, S.E.Z.; Vedvick, T.S.; Howard, R.F.; Reed, S.G. KSAC, the First Defined Polyprotein Vaccine Candidate for Visceral Leishmaniasis. Clin. Vaccine Immunol. 2011, 18, 1118–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karmakar, S.; Volpedo, G.; Zhang, W.-W.; Lypaczewski, P.; Ismail, N.; Oliveira, F.; Oristian, J.; Meneses, C.; Gannavaram, S.; Kamhawi, S.; et al. Centrin-deficient Leishmania mexicana confers protection against Old World visceral leishmaniasis. Npj Vaccines 2022, 7, 157. [Google Scholar] [CrossRef]
- Brito, R.C.F.; Guimarães, F.G.; Velloso, J.P.L.; Corrêa-Oliveira, R.; Ruiz, J.C.; Reis, A.B.; Resende, D.M. Immunoinformatics Features Linked to Leishmania Vaccine Development: Data Integration of Experimental and In Silico Studies. Int. J. Mol. Sci. 2017, 18, 371. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Freier, A.; Boussoffara, T.; Das, S.; Oswald, D.; Losch, F.O.; Selka, M.; Sacerdoti-Sierra, N.; Schönian, G.; Wiesmüller, K.-H.; et al. Modular Multiantigen T Cell Epitope–Enriched DNA Vaccine Against Human Leishmaniasis. Sci. Transl. Med. 2014, 6, 234ra56. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.E.; Goulart, L.R.; Pereira, N.C.D.J.; Lima, M.I.S.; Duarte, M.C.; Martins, V.T.; Lage, P.S.; Menezes-Souza, D.; Ribeiro, T.G.; Melo, M.N.; et al. Mimotope-Based Vaccines of Leishmania infantum Antigens and Their Protective Efficacy against Visceral Leishmaniasis. PLoS ONE 2014, 9, e110014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsagozis, P.; Karagouni, E.; Dotsika, E. CD8+ T cells with parasite-specific cytotoxic activity and a Tc1 profile of cytokine and chemokine secretion develop in experimental visceral leishmaniasis. Parasite Immunol. 2003, 25, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Carvalho, R.; Mendes-Aguiar, C.O.; Oliveira-Neto, M.P.; Covas, C.J.F.; Bertho, A.L.; Da-Cruz, A.M.; Gomes-Silva, A. Leishmania braziliensis-Reactive T Cells Are Down-Regulated in Long-Term Cured Cutaneous Leishmaniasis, but the Renewal Capacity of T Effector Memory Compartments Is Preserved. PLoS ONE 2013, 8, e81529. [Google Scholar] [CrossRef]
- Egui, A.; Ledesma, D.; Pérez-Antón, E.; Montoya, A.; Gómez, I.; Robledo, S.M.; Infante, J.J.; Vélez, I.D.; López, M.C.; Thomas, M.C. Phenotypic and Functional Profiles of Antigen-Specific CD4+ and CD8+ T Cells Associated with Infection Control in Patients With Cutaneous Leishmaniasis. Front. Cell. Infect. Microbiol. 2018, 8, 393. [Google Scholar] [CrossRef] [PubMed]
- Matta, N.E.; Cysne-Finkelstein, L.; Machado, G.M.C.; Da-Cruz, A.M.; Leon, L. Differences in the Antigenic Profile and Infectivity of Murine Macrophages of Leishmania (Viannia) Parasites. J. Parasitol. 2010, 96, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Reed, S.G.; Carvalho, E.M.; Sherbert, C.H.; Sampaio, D.P.; Russo, D.M.; Bacelar, O.; Pihl, D.L.; Scott, J.M.; Barral, A.; Grabstein, K.H. In vitro responses to Leishmania antigens by lymphocytes from patients with leishmaniasis or Chagas’ disease. J. Clin. Investig. 1990, 85, 690–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, R.; Jarvis, K.L.; Hyland, K.J. Protein measurement using bicinchoninic acid: Elimination of interfering substances. Anal. Biochem. 1989, 180, 136–139. [Google Scholar] [CrossRef] [PubMed]
- Salotra, P.; Raina, A.; Negi, N.S. Immunoblot analysis of the antibody response to antigens of Leishmania donovani in Indian kala-azar. Br. J. Biomed. Sci. 1999, 56, 263–267. [Google Scholar]
- Neuhoff, V.; Arold, N.; Taube, D.; Ehrhardt, W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 1988, 9, 255–262. [Google Scholar] [CrossRef]
- Cuervo, P.; de Jesus, J.B.; Junqueira, M.; Mendonça-Lima, L.; González, L.J.; Betancourt, L.; Grimaldi, G.; Domont, G.B.; Fernandes, O.; Cupolillo, E. Proteome analysis of Leishmania (Viannia) braziliensis by two-dimensional gel electrophoresis and mass spectrometry. Mol. Biochem. Parasitol. 2007, 154, 6–21. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Pinho, N.; Wiśniewski, J.R.; Dias-Lopes, G.; Saboia-Vahia, L.; Bombaça, A.C.S.; Mesquita-Rodrigues, C.; Menna-Barreto, R.; Cupolillo, E.; de Jesus, J.B.; Padrón, G.; et al. In-depth quantitative proteomics uncovers specie-specific metabolic programs in Leishmania (Viannia) species. PLOS Neglected Trop. Dis. 2020, 14, e0008509. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016, 11, 2301–2319. [Google Scholar] [CrossRef]
- The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Rost, B. Twilight zone of protein sequence alignments. Protein Eng. Des. Sel. 1999, 12, 85–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, S.Y.; Subbiah, S. A structural explanation for the twilight zone of protein sequence homology. Structure 1996, 4, 1123–1127. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, A.P.; Canavaci, A.M.C.; McCall, L.-I.; Matlashewski, G. A2 and Other Visceralizing Proteins of Leishmania: Role in Pathogenesis and Application for Vaccine Development. Subcell Biochem. 2014, 74, 77–101. [Google Scholar] [CrossRef] [PubMed]
- Daniel, S.; Pichugin, A.; Torano, H.; Renn, J.P.; Kwan, J.; Cowles, M.V.; Conteh, S.; Lambert, L.E.; Alani, N.; MacDonald, N.J.; et al. Plasmodium Preerythrocytic Vaccine Antigens Enhance Sterile Protection in Mice Induced by Circumsporozoite Protein. Infect. Immun. 2021, 89, IAI0016521. [Google Scholar] [CrossRef]
- Gillis, T.P.; Tullius, M.V.; Horwitz, M.A. rBCG30-Induced Immunity and Cross-Protection against Mycobacterium leprae Challenge Are Enhanced by Boosting with the Mycobacterium tuberculosis 30-Kilodalton Antigen 85B. Infect. Immun. 2014, 82, 3900–3909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jespersen, M.C.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017, 45, W24–W29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vita, R.; Mahajan, S.; Overton, J.A.; Dhanda, S.K.; Martini, S.; Cantrell, J.R.; Wheeler, D.K.; Sette, A.; Peters, B. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2019, 47, D339–D343. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Raghava, G.P.S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins Struct. Funct. Bioinform. 2006, 65, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Raghava, G.P. Prediction Methods for B-cell Epitopes. Methods Mol. Biol. 2007, 409, 387–394. [Google Scholar] [CrossRef]
- Saha, S.; Bhasin, M.; Raghava, G.P.S. Bcipep: A database of B-cell epitopes. BMC Genom. 2005, 6, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, J.; Barker, D.J.; Georgiou, X.; Cooper, M.A.; Flicek, P.; Marsh, S.G.E. IPD-IMGT/HLA Database. Nucleic Acids Res. 2020, 48, D948–D955. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Guo, L.; Liu, D.; Liu, W.; Wu, Y. HLAsupE: An integrated database of HLA supertype-specific epitopes to aid in the development of vaccines with broad coverage of the human population. BMC Immunol. 2016, 17, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Sette, A.; Peters, B. Applications for T-cell epitope queries and tools in the Immune Epitope Database and Analysis Resource. J. Immunol. Methods 2011, 374, 62–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynisson, B.; Barra, C.; Kaabinejadian, S.; Hildebrand, W.H.; Peters, B.; Nielsen, M. Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data. J. Proteome Res. 2020, 19, 2304–2315. [Google Scholar] [CrossRef] [PubMed]
- Hoof, I.; Peters, B.; Sidney, J.; Pedersen, L.E.; Sette, A.; Lund, O.; Buus, S.; Nielsen, M. NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 2008, 61, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stranzl, T.; Larsen, M.V.; Lundegaard, C.; Nielsen, M. NetCTLpan: Pan-specific MHC class I pathway epitope predictions. Immunogenetics 2010, 62, 357–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doytchinova, I.A.; Flower, D.R. Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine 2007, 25, 856–866. [Google Scholar] [CrossRef] [PubMed]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernández-Plaza, A.; Forslund, S.K.; Cook, H.V.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J.; et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019, 47, D309–D314. [Google Scholar] [CrossRef] [Green Version]
- Kriventseva, E.V.; Kuznetsov, D.; Tegenfeldt, F.; Manni, M.; Dias, R.; Simão, F.A.; Zdobnov, E.M. OrthoDB v10: Sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 2018, 47, D807–D811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2023, 51, D418–D427. [Google Scholar] [CrossRef]
- Coughlan, S.; Taylor, A.S.; Feane, E.; Sanders, M.; Schonian, G.; Cotton, J.A.; Downing, T. Leishmania naiffi and Leishmania guyanensis reference genomes highlight genome structure and gene evolution in the Viannia subgenus. R. Soc. Open Sci. 2018, 5, 172212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llanes, A.; Restrepo, C.M.; Del Vecchio, G.; Anguizola, F.J.; Lleonart, R. The genome of Leishmania panamensis: Insights into genomics of the L. (Viannia) subgenus. Sci. Rep. 2015, 5, 8550. [Google Scholar] [CrossRef] [Green Version]
- Peacock, C.S.; Seeger, K.; Harris, D.; Murphy, L.; Ruiz, J.C.; Quail, M.A.; Peters, N.; Adlem, E.; Tivey, A.; Aslett, M.; et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat. Genet. 2007, 39, 839–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderon-Copete, S.P.; Dickens, N.J.; Zangger, H.; Martin, R.; Dobson, D.E.; Xenarios, I.; Smith, D.; Mottram, J.; Beverley, S.M.; Hertz-Fowler, C.; et al. Comparative genomics of metastatic and non-metastatic Leishmania guyanensis provides insights into polygenic factors involved in Leishmania RNA virus infection. In Proceedings of the 11th European Conference on Computational Biology, Basel, Switzerland, 9–12 September 2012. [Google Scholar]
- Canouï, E.; Launay, O. Histoire et principes de la vaccination (History and principles of vaccination). Rev. Mal. Respir. 2019, 36, 74–81. (In French) [Google Scholar] [CrossRef]
- Ducharme, O.; Simon, S.; Ginouves, M.; Prévot, G.; Couppie, P.; Demar, M.; Blaizot, R. Leishmania naiffi and lainsoni in French Guiana: Clinical features and phylogenetic variability. PLoS Negl. Trop. Dis. 2020, 14, e0008380. [Google Scholar] [CrossRef]
- Pratlong, F.; Deniau, M.; Darie, H.; Eichenlaub, S.; Pröll, S.; Garrabe, E.; le Guyadec, T.; Dedet, J.P. Human cutaneous leishmaniasis caused by Leishmania naiffi is wide-spread in South America. Ann. Trop. Med. Parasitol. 2002, 96, 781–785. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.R.; Smithyman, A.M.; Rajasekariah, G.-H.; Hochberg, L.; Stiteler, J.M.; Martin, S.K. Enzyme-Linked Immunosorbent Assay Based on Soluble Promastigote Antigen Detects Immunoglobulin M (IgM) and IgG Antibodies in Sera from Cases of Visceral and Cutaneous Leishmaniasis. J. Clin. Microbiol. 2002, 40, 1037–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leifso, K.; Cohen-Freue, G.; Dogra, N.; Murray, A.; McMaster, W.R. Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: The Leishmania genome is constitutively expressed. Mol. Biochem. Parasitol. 2007, 152, 35–46. [Google Scholar] [CrossRef]
- Machado, A.S.; Martins, V.T.; Humbert, M.V.; Christodoulides, M.; Coelho, E.A.F. In Silico Design of Recombinant Chimera T Cell Peptide Epitope Vaccines for Visceral Leishmaniasis. Methods Mol. Biol. 2022, 2410, 463–480. [Google Scholar] [CrossRef] [PubMed]
- Hamrouni, S.; Bras-Gonçalves, R.; Kidar, A.; Aoun, K.; Chamakh-Ayari, R.; Petitdidier, E.; Messaoudi, Y.; Pagniez, J.; Lemesre, J.-L.; Meddeb-Garnaoui, A. Design of multi-epitope peptides containing HLA class-I and class-II-restricted epitopes derived from immunogenic Leishmania proteins, and evaluation of CD4+ and CD8+ T cell responses induced in cured cutaneous leishmaniasis subjects. PLoS Negl. Trop. Dis. 2020, 14, e0008093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meira, C.D.S.; Gedamu, L. Protective or Detrimental? Understanding the Role of Host Immunity in Leishmaniasis. Microorganisms 2019, 7, 695. [Google Scholar] [CrossRef] [Green Version]
- Aebischer, T. Leishmania spp. Proteome Data Sets: A Comprehensive Resource for Vaccine Development to Target Visceral Leishmaniasis. Front. Immunol. 2014, 5, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassani-Sternberg, M.; Pletscher-Frankild, S.; Jensen, L.J.; Mann, M. Mass Spectrometry of Human Leukocyte Antigen Class I Peptidomes Reveals Strong Effects of Protein Abundance and Turnover on Antigen Presentation. Mol. Cell. Proteom. 2015, 14, 658–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, C.; Tiwana, H.; Ebringer, A. Molecular mimicry between HLA-DR alleles associated with rheumatoid arthritis and Proteus mirabilis as the aetiological basis for autoimmunity. Microbes Infect. 2000, 2, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Múnera, M.; Farak, J.; Pérez, M.; Rojas, J.; Villero, J.; Sánchez, A.; Emiliani, Y. Prediction of molecular mimicry between antigens from Leishmania sp. and human: Implications for autoimmune response in systemic lupus erythematosus. Microb. Pathog. 2020, 148, 104444. [Google Scholar] [CrossRef] [PubMed]
- Da-Cruz, A.M.; Bittar, R.; Mattos, M.; Oliveira-Neto, M.P.; Nogueira, R.; Pinho-Ribeiro, V.; Azeredo-Coutinho, R.B.; Coutinho, S.G. T-Cell-Mediated Immune Responses in Patients with Cutaneous or Mucosal Leishmaniasis: Long-Term Evaluation after Therapy. Clin. Vaccine Immunol. 2002, 9, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Weaver, J.M.; Lazarski, C.A.; Richards, K.A.; Chaves, F.A.; Jenks, S.A.; Menges, P.R.; Sant, A.J. Immunodominance of CD4 T Cells to Foreign Antigens Is Peptide Intrinsic and Independent of Molecular Context: Implications for Vaccine Design. J. Immunol. 2008, 181, 3039–3048. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.V.; Lundegaard, C.; Lamberth, K.; Buus, S.; Lund, O.; Nielsen, M. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinform. 2007, 8, 424. [Google Scholar] [CrossRef] [Green Version]
- Llanes, A.; Restrepo, C.M.; Lleonart, R. VianniaTopes: A database of predicted immunogenic peptides for Leishmania (Viannia) species. Database 2018, 2018, bay111. [Google Scholar] [CrossRef] [Green Version]
- Posteraro, B.; Pastorino, R.; Di Giannantonio, P.; Ianuale, C.; Amore, R.; Ricciardi, W.; Boccia, S. The link between genetic variation and variability in vaccine responses: Systematic review and meta-analyses. Vaccine 2014, 32, 1661–1669. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Silva, A.; Souza, M.A.; Afonso-Cardoso, S.R.; Andrade, L.R.; Dietze, R.; Lemos, E.; Belli, A.; Júnior, S.F.; Ferreira, M.S. Serological reactivity of different antigenic preparations of Leishmania (Leishmania) amazonensis and the Leishmania braziliensis complex. Rev. da Soc. Bras. de Med. Trop. 2008, 41, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Rafati, S.; Nakhaee, A.; Taheri, T.; Taslimi, Y.; Darabi, H.; Eravani, D.; Sanos, S.; Kaye, P.; Taghikhani, M.; Jamshidi, S. Protective vaccination against experimental canine visceral leishmaniasis using a combination of DNA and protein immunization with cysteine proteinases type I and II of L. infantum. Vaccine 2005, 23, 3716–3725. [Google Scholar] [CrossRef]
- Guedes, H.L.D.M.; Pinheiro, R.O.; Chaves, S.P.; De-Simone, S.G.; Rossi-Bergmann, B. Serine proteases of Leishmania amazonensis as immunomodulatory and disease-aggravating components of the crude LaAg vaccine. Vaccine 2010, 28, 5491–5496. [Google Scholar] [CrossRef]
- Agallou, M.; Margaroni, M.; Athanasiou, E.; Toubanaki, D.K.; Kontonikola, K.; Karidi, K.; Kammona, O.; Kiparissides, C.; Karagouni, E. Identification of BALB/c Immune Markers Correlated with a Partial Protection to Leishmania infantum after Vaccination with a Rationally Designed Multi-epitope Cysteine Protease A Peptide-Based Nanovaccine. PLoS Negl. Trop. Dis. 2017, 11, e0005311. [Google Scholar] [CrossRef] [Green Version]
- Brakat, R.; Mahmoud, A.; El Gayed, E.A.; Soliman, S.; Sharaf-El-Deen, S. Evaluation of calpain T-cell epitopes as vaccine candidates against experimental Leishmania major infection: A pilot study. Parasitol. Res. 2022, 121, 3275–3285. [Google Scholar] [CrossRef] [PubMed]
- Jha, M.K.; Sarode, A.Y.; Bodhale, N.; Mukherjee, D.; Pandey, S.P.; Srivastava, N.; Rub, A.; Silvestre, R.; Sarkar, A.; Saha, B. Development and Characterization of an Avirulent Leishmania major Strain. J. Immunol. 2020, 204, 2734–2753. [Google Scholar] [CrossRef]
- Lin, X.; Chen, W.; Wei, F.; Xie, X. TV-circRGPD6 Nanoparticle Suppresses Breast Cancer Stem Cell-Mediated Metastasis via the miR-26b/YAF2 Axis. Mol. Ther. 2021, 29, 244–262. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, X.; Song, Y.; Liu, Y.; Liu, R.; Wu, J.; Li, X.; Yuan, Q.; Fu, G.; Xia, N.; et al. SAMD4 family members suppress human hepatitis B virus by directly binding to the Smaug recognition region of viral RNA. Cell. Mol. Immunol. 2021, 18, 1032–1044. [Google Scholar] [CrossRef]
- Mishra, M.; Porter-Kelley, J.M.; Singh, P.K.; Bennett, J.R.; Chaudhuri, G. Enhanced activity of antisense phosphorothioate oligos against Leishmania amastigotes: Augmented uptake of oligo, ribonuclease H activation, and efficient target intervention under altered growth conditions. Biochem. Pharmacol. 2001, 62, 569–580. [Google Scholar] [CrossRef] [PubMed]
Uniprot Accession | Protein Description | Epitope Prediction (Ligand Epitopes Predicted) | Promiscuity of HLA-Binding Epitope Prediction | Antig * | Length (aa) * | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BCR | HLAII | HLA1 | HLAII | HLA1 | |||||||
ABC Pred | Bepi-Pred | Consensus | Net-MHCII | Net-CTLpan | Net-MHCpan | Net-MHCII | Net-MHCPan | ||||
E7BK82 | A2 protein | 9 | 1 | 10 | 8 | 2 | 4 | 2 | 2 | 0.3 | 113 |
P0C2T1 | Ag85A | 35 | 6 | 34 | 109 | 69 | 46 | 23 | 22 | 0.5 | 338 |
Q7K740 | CSP | 39 | 1 | 28 | 26 | 42 | 30 | 8 | 20 | 0.9 | 397 |
A0A088RVR2 | Uncharacterized protein | 155 | 17 | 106 | 483 | 242 | 111 | 26 | 26 | 0.6 | 1507 |
A4HFH6 | Putative calpain-like cysteine Peptidase | 618 | 46 | 361 | 2406 | 1172 | 577 | 27 | 26 | 0.6 | 6164 |
A0A088RTE8 | Calpain-like cysteine peptidase, putative | 630 | 75 | 501 | 2248 | 1376 | 673 | 27 | 26 | 0.6 | 6169 |
A0A088RQR0 | Uncharacterized protein | 310 | 34 | 172 | 1004 | 436 | 223 | 27 | 26 | 0.6 | 2972 |
A0A1E1J8C7 | Uncharacterized protein | 232 | 50 | 226 | 759 | 557 | 337 | 27 | 26 | 0.6 | 2243 |
A4HFV6 | Uncharacterized protein | 239 | 32 | 135 | 743 | 336 | 223 | 27 | 26 | 0.6 | 2305 |
A4HBS7 | Uncharacterized protein | 229 | 34 | 332 | 599 | 515 | 390 | 27 | 20 | 0.5 | 2245 |
A0A088S1Z8 | Uncharacterized protein | 120 | 22 | 95 | 418 | 286 | 190 | 27 | 26 | 0.5 | 1145 |
A4HFK9 | Uncharacterized protein | 75 | 21 | 122 | 394 | 178 | 110 | 27 | 26 | 0.6 | 757 |
A4HPC1 | Membrane-bound acid phosphatase | 53 | 13 | 102 | 391 | 189 | 138 | 25 | 26 | 0.4 | 516 |
A4HF39 | Putative mitotubule-associated protein Gb4 | 264 | 47 | 227 | 954 | 503 | 298 | 27 | 26 | 0.5 | 2524 |
A0A088SJT7 | Hsp70 protein-like protein, putative | 70 | 12 | 154 | 384 | 239 | 145 | 27 | 26 | 0.4 | 724 |
A4HJ80 | Uncharacterized protein | 119 | 14 | 64 | 382 | 179 | 91 | 26 | 26 | 0.6 | 1150 |
A4HN04 | Uncharacterized protein | 108 | 19 | 162 | 355 | 262 | 168 | 25 | 26 | 0.6 | 1088 |
A4HHR1 | SAM domain-containing protein | 126 | 32 | 107 | 345 | 196 | 111 | 26 | 26 | 0.6 | 1238 |
A4H3R9 | Uncharacterized protein | 101 | 8 | 17 | 495 | 25 | 43 | 18 | 20 | 0.6 | 677 |
A4HHB1 | Uncharacterized protein | 99 | 17 | 124 | 431 | 140 | 64 | 27 | 26 | 0.6 | 564 |
A4HAB4 | Uncharacterized protein | 279 | 7 | 208 | 1024 | 147 | 210 | 27 | 22 | 0.7 | 2630 |
A0A088RMK8 | Uncharacterized protein | 33 | 10 | 90 | 427 | 240 | 160 | 27 | 26 | 0.7 | 1151 |
A0A1E1J3K6 | Uncharacterized protein | 93 | 14 | 104 | 388 | 158 | 100 | 27 | 26 | 0.5 | 545 |
A4H7P6 | Putative immunodominant antigen | 86 | 21 | 159 | 373 | 170 | 94 | 27 | 26 | 0.5 | 473 |
A0A1E1J997 | N-acetyltransferase subunit Nat1, putative | 70 | 10 | 142 | 284 | 233 | 120 | 27 | 26 | 0.4 | 711 |
A4H7I6 | VWFA domain-containing protein | 74 | 15 | 122 | 278 | 246 | 168 | 25 | 26 | 0.6 | 716 |
A0A1E1J337 | Uncharacterized protein | 28 | 16 | 44 | 189 | 212 | 130 | 26 | 26 | 0.4 | 757 |
Uniprot Identifier | Description | Existence | Organism | Family | Length (aa) |
---|---|---|---|---|---|
A0A088RVR2 | GRIP domain-containing protein | Predicted | L. panamensis | Golgin | 1507 |
A0A088RTE8 | Calpain-like cysteine peptidase, putative | Predicted | L. panamensis | Peptidase C2, calpain family (IPR022684); Calpain family cysteine protease (PF00648), and Calpain-like thiol protease family (SM00230) | 6169 |
A0A088RQR0 | Uncharacterized protein | Predicted | L. panamensis | Myosin heavy chain, non-muscle (PTHR45615) | 2972 |
A4HFV6 | Uncharacterized protein | Predicted | L. braziliensis | Centrosomal protein 2 | 2305 |
A4HBS7 | CCR4-NOT transcription complex subunit 1 | Predicted | L. braziliensis | CCR4-NOT transcription complex subunit 1 | 2245 |
A0A088S1Z8 | C2H2-type domain-containing protein | Predicted | L. panamensis | Not predicted | 1145 |
A4HFK9 | Contig, possible fusion of chromosomes 20 and 34 | Predicted | L. braziliensis | EF-hand domain-containing protein EFHC1/EFHC2/EFHB | 757 |
A4HN04 | ATP-dependent RNA helicase | Predicted | L. braziliensis | Not predicted | 1088 |
A4HHR1 | SAM domain-containing protein | Predicted | L. braziliensis | Not predicted | 1238 |
A4HHB1 | FH2 domain-containing protein | Predicted | L. braziliensis | Not predicted | 995 |
A0A088RMK8 | FHA domain-containing protein | Predicted | L. panamensis | Not predicted | 1151 |
A0A1E1J3K6 | Ribonuclease | Predicted | L. guyanensis | RNA-induced silencing complex, nuclease component Tudor-SN | 933 |
A4H7P6 | Putative immunodominant antigen | Predicted | L. braziliensis | Enhancer of mRNA-decapping protein 4-like | 846 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesus-Oliveira, P.; Silva-Couto, L.; Pinho, N.; Da Silva-Ferreira, A.T.; Saboia-Vahia, L.; Cuervo, P.; Da-Cruz, A.M.; Gomes-Silva, A.; Pinto, E.F. Identification of Immunodominant Proteins of the Leishmania (Viannia) naiffi SubProteome as Pan-Specific Vaccine Targets against Leishmaniasis. Vaccines 2023, 11, 1129. https://doi.org/10.3390/vaccines11071129
Jesus-Oliveira P, Silva-Couto L, Pinho N, Da Silva-Ferreira AT, Saboia-Vahia L, Cuervo P, Da-Cruz AM, Gomes-Silva A, Pinto EF. Identification of Immunodominant Proteins of the Leishmania (Viannia) naiffi SubProteome as Pan-Specific Vaccine Targets against Leishmaniasis. Vaccines. 2023; 11(7):1129. https://doi.org/10.3390/vaccines11071129
Chicago/Turabian StyleJesus-Oliveira, Prisciliana, Luzinei Silva-Couto, Nathalia Pinho, André Teixeira Da Silva-Ferreira, Leonardo Saboia-Vahia, Patricia Cuervo, Alda Maria Da-Cruz, Adriano Gomes-Silva, and Eduardo Fonseca Pinto. 2023. "Identification of Immunodominant Proteins of the Leishmania (Viannia) naiffi SubProteome as Pan-Specific Vaccine Targets against Leishmaniasis" Vaccines 11, no. 7: 1129. https://doi.org/10.3390/vaccines11071129
APA StyleJesus-Oliveira, P., Silva-Couto, L., Pinho, N., Da Silva-Ferreira, A. T., Saboia-Vahia, L., Cuervo, P., Da-Cruz, A. M., Gomes-Silva, A., & Pinto, E. F. (2023). Identification of Immunodominant Proteins of the Leishmania (Viannia) naiffi SubProteome as Pan-Specific Vaccine Targets against Leishmaniasis. Vaccines, 11(7), 1129. https://doi.org/10.3390/vaccines11071129