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Abstract: Infectious diseases pose significant public health risks, necessitating effective control
strategies. One such strategy is implementing a voluntary vaccination policy, which grants individuals
the autonomy to make their own decisions regarding vaccination. However, exploring different
approaches to optimize disease control outcomes is imperative, and involves assessing their associated
costs and benefits. This study analyzes the advantages and disadvantages of employing a mixed-
strategy approach under a voluntary vaccination policy in infectious disease control. We examine
the potential benefits of such an approach by utilizing a vaccination game model that incorporates
cost and benefit factors, where lower costs and higher benefits lead to reduced infection rates. Here,
we introduce a mixed-strategy framework that combines individual-based risk assessment (IB-RA)
and society-based risk assessment (SB-RA) strategies. A novel dynamical equation is proposed
that captures the decision-making process of individuals as they choose their strategy based on
personal or communal considerations. In addition, we explore the implications of the mixed-strategy
approach within the context of social dilemmas. We examine deviations from expected behavior
and the concept of social efficiency deficit (SED) by allowing for the evolution of vaccine strategy
preferences alongside risk perception. By comprehensively evaluating the financial implications
and societal advantages associated with the mixed-strategy approach, decision-makers can allocate
resources and implement measures to combat infectious diseases within the framework of a voluntary
vaccination policy.

Keywords: cost–benefit; mixed-strategy; vaccination game; repeated season

1. Introduction

Infectious diseases present serious public health threats, necessitating effective control
measures. One such approach is a voluntary vaccination policy, which respects individual
decision-making. However, to optimize disease control, exploring diverse strategies and
weighing their costs and benefits is vital. This study analyzes the merits and drawbacks of
a mixed-strategy approach within such a policy. By combining individual and societal risk
assessments, we aim to uncover potential advantages while addressing social dilemmas
and efficiency deficits. This research informs decision-makers about resource allocation
with regard to combating infectious diseases within voluntary vaccination frameworks.

The application of the evolutionary game [1] theory when analyzing the dynamics of
epidemic models has provided valuable insights into the behavior of infectious diseases
and the effectiveness of various intervention strategies [2–4]. One critical aspect of epidemic
control is vaccination [5–7], which aims to mitigate the spread of diseases by immunizing
individuals. However, vaccination programs [8–12] have associated costs and benefits that
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must be carefully evaluated to maximize their effectiveness. This paper uses evolutionary
game theory to explore the concept of cost–benefit vaccination in the context of an epidemic
model. By considering the trade-offs between the costs of vaccination and the benefits of
reduced infection rates and disease burden, this study aims to shed light on the optimal
strategies for vaccine distribution and allocation.

In epidemic-based evolutionary game theory models, incorporating both individual
and society-based risk assessment is crucial to a comprehensive understanding of dis-
ease dynamics and the impact of intervention strategies [13,14]. Individual-based risk
assessment (IB-RA) involves evaluating the risks and benefits of vaccination for a single
individual, considering personal factors such as susceptibility to the disease, potential
side effects, and perceived benefits of vaccination. On the other hand, society-based risk
assessment (SB-RA) considers the collective welfare of the community, assessing the overall
benefits and costs of vaccination at a population level. By integrating these two concepts,
one can develop sophisticated models that capture the complex interplay between individ-
ual decision-making and community outcomes, providing insights into optimal vaccination
strategies and addressing potential dilemmas between personal and societal interests. This
approach helps inform policies that promote the common good while respecting individ-
ual autonomy.

Epidemic compartmental models [15,16] are instrumental when it comes to compre-
hending and forecasting the dissemination of contagious diseases among communities.
Furthermore, they facilitate the acquisition of insights into the behavior of diseases and
inform decision-making processes for effective disease control and prevention strategies.
For instance, the SVIR (susceptible–vaccinated–infected–recovered) mathematical epi-
demiological model is a mathematical framework used to analyze and comprehend the
population-wide transmission of infectious diseases [17,18]. Recognizing the impact of
vaccination campaigns on disease dynamics, the SVIR model incorporates an extra com-
partment to account for vaccinated (V) individuals. Susceptible individuals are at risk of
contracting the disease, vaccinated individuals have received a vaccine and accomplished
protection against infection, infected individuals are actively spreading the disease, and
recovered individuals have either survived the infection and developed immunity or have
been successfully treated.

Evolutionary game theory (EGT) has emerged as a valuable mathematical framework
for studying cooperative behavior in various domains, including epidemics [19,20]. Bauch
and Bhattacharyya [21] proposed incorporating EGT into the analysis of individual behavior
within an epidemic context. Chen and Fu [22] applied social learning theory to examine
decision-making related to vaccination and self-isolation during health crises. Zho et al. [23]
studied the impact of determined individuals on voluntary vaccination behavior based on
information-driven decisions and benefit–cost analysis. Lim and Zhang [24] investigated
factors influencing vaccination choices using a nonlinear public good game. Other studies
explored the effects of intermediate defensive mechanisms [25], developed analytical
frameworks for vaccination games [26], and examined the influence of individual imitation
and population structure on achieving widespread immunity [27]. Kabir et al. [28,29]
assessed behavioral incentives in vaccination scenarios and proposed models to guide
policymaking. Various other studies employed EGT to analyze economic shutdowns during
the COVID-19 pandemic [30], examine the impact of human behavior and memory [31],
and study the effects of vaccination and treatment on epidemic transmission patterns [32].

Furthermore, it is worth noting that the beneficial effects of vaccination in the EGT
model have yet to be noticed by previous authors. In this study, we aim to fill this gap by
incorporating the positive impact of vaccination into the EGT framework. By considering
the beneficial effects of vaccination, we can elucidate how it influences human decision-
making and, consequently, aid policymakers in implementing effective measures to curb
the spread of infectious diseases. Moreover, integrating individual and society-based risk
assessment within these sophisticated models allows for a comprehensive understanding
of the intricate dynamics between individual choices and community outcomes. This
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approach provides valuable insights into optimal vaccination strategies while addressing
potential conflicts between personal and societal interests.

In recent years, a growing body of research has focused on the dynamics of epidemic
control strategies, commonly known as the intervention game, both theoretically and
numerically [33–37]. Bauch et al. [21,38] and others [17,32–34,37] adopted an approach
considering a scenario in which disease spread and individuals’ behavioral changes due to
social learning evolve simultaneously within one season, resembling real-world dynamics
in specific social contexts. However, Kuga et al. [13] and Kabir et al. [14] developed
vaccination epidemic game models, respectively, which consider the spread of the disease
within a single season, referred to as the “local time scale,” with strategy updates occurring
at the end of each season on the “global time scale” or generation. We also investigated the
concept of Social Efficiency Deficit (SED) [39] to understand the social dilemma better. In
line with this concept, we aim to construct a mathematical formulation of the vaccination
game that accounts for disease transmission and strategy updates for vaccination behavior
within different time scales.

2. Model Formulation

The efficiency of a defense against contagion to prevent infection should be expressed
as η(0 ≤ η ≤ 1), which refers to how the defensive measure can reduce the likelihood
of contracting the virus. In constructing the following efficiency model, we consider the
vaccinated state as the state that is ready to defend against contagion. Utilizing the compart-
ment model, which allows people in a community to be categorized into susceptible (S),
infected (I), recovered (R), and vaccinated (V) stages, we explain the dynamics of a propa-
gating epidemic (see Figure 1). If exposed to infectious persons at the disease transmission
rate of β (per day per person), an unvaccinated, susceptible person who is vulnerable to
infection (more accurately, one who is unprepared with the defense against contagion)
may contract the disease. A person in S compartment equipped with resistance against
contagion may also contract the infection at the rate (1− η)β. The rate of recovery for
an infected person is γ (per day). Thus, the system of nonlinear differential equations to
represent the SIR/V model is

dS
dt

= −βS(x, t)I(x, t), (1a)

dV
dt

= −β(1− η)V(x, t)I(x, t), (1b)

dI
dt

= βS(x, t)I(x, t) + β(1− η)V(x, t)I(x, t)− γI(x, t), (1c)

dR
dt

= γI(x, t). (1d)

Therefore,
S(x, t) + V(x, t) + I(x, t) + R(x, t) = 1. (1e)

The utilization of the control reproduction number Rc, rather than the basic repro-
duction number R0, is appropriate due to the presence of a non-completely susceptible
population. In this particular scenario, the estimation of Rc can be determined as:

Rc =
β

γ
[S(x, 0) + (1− η)V(x, 0)] = R0[S(x, 0) + (1− η)V(x, 0)] (2)

With the initial conditions: S(x, 0) = 1− x, V(x, 0) = x, and I(x, 0) = 0, the ultimate
magnitude of the epidemic and its various proportions can be represented as [13,14],

S(x, 0) = (1− x)exp[−R0R(x, ∞)], (3a)
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V(x, 0) = xexp[−(1− η)R0R(x, ∞)], (3b)

R(x, 0) = 1− (1− x)exp[−R0R(x, ∞)]− xexp[−(1− η)R0R(x, ∞)]. (3c)

At the point of convergence in this process, the proportions of the four distinct cate-
gories of individuals at a state of equilibrium are presented concisely in Table 1.
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Figure 1. Schematic diagram of the model in which the population is divided into four states:
susceptible (S), vaccinated (V), infected (I), and recovered (R), which applies in the epidemic season
on a local time scale. On the other hand, the evolutionary decision-making process based on the
Fermi pairwise game occurs globally. An individual chooses whether to vaccinate at the onset of each
epidemic season based on two updated dynamics: IB-RA (individual-based risk assessment) and
SB-RA (society-based risk assessment). The vaccine efficiency (VE) models determine the fraction of
vaccinated and corresponding immunity systems.

Table 1. Payoff structure for the fractions of four individuals.

Strategy Healthy Infected

Vaccinated
HV (Healthy and vaccinators) IV (Infected and vaccinators)

x exp[−(1− η)R0R(x, ∞)] x(1− exp[−(1− η)R0R(x, ∞)])

Non-vaccinated
SFR (Successful Free-Rider) FFR (Failed Free-Rider)

(1− x)exp[−R0R(x, ∞)] (1− x)(1− exp[−R0R(x, ∞)])

2.1. Cost–Benefit Payoff Matrix

The evolutionary process incorporates two distinct decision-making strategy updates:
individual-based risk assessment (IB-RA) and society-based risk assessment (SB-RA). Accord-
ing to the prescribed procedure, it is assumed that all rules dictate a synchronized strategy
update for each individual after every flu season during repeated vaccination seasons.
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In a vaccination program, individuals can participate by paying a cost (Cv) for the
vaccine, which comes with benefits (B); B represents the healthy situation. Let us introduce
the cost of infection as Cd. Generally, B does mean much more than a cost gap with regard
to receiving a vaccination (Cv) as well as infection (Cd). That is because B also confers a
sort of psychological advantage related to their ability to escape infection. Alternatively,
individuals can choose not to get vaccinated, incurring no cost but still reaping the ben-
efits (B) through free riding. If individuals participate but get infected, their payoff is
−Cv − Cd, while failed free riders (unvaccinated and infected) have a payoff of −Cd. Four
distinct groups emerge: those who are vaccinated and healthy (HV), vaccinated but infected
(IV), successful free riders (SFR) who remain unvaccinated but healthy, and failed free
riders (FFR). These groups represent the various outcomes individuals experience based
on their vaccination decisions and infection statuses (Table 2).

Table 2. Cost–benefit payoff matrix of vaccination game (without normalization).

SFR HV FFR IV

B B− Cv −Cd −Cv − Cd

Without loss of generality, to maintain the general applicability, we can introduce an
“additive” operation in Table 2, as PW-Fermi focuses solely on the payoff gap. Therefore,
by subtracting the value of B from all elements, we obtain Table 3.

Table 3. Cost–benefit payoff matrix after using additive properties (without normalization).

SFR HV FFR IV

0 −Cv −Cd − B −Cv − Cd − B

By normalizing Table 3 with regard to the sum of Cd and Cd as (Cd + B), we obtain
Table 4, as shown below.

Table 4. Normalized cost–benefit payoff matrix.

SFR HV FFR IV

0 −Cv/(Cd + B) −1 −Cv/(Cd + B)− 1

By introducing another normalized parameter, Cv
Cd+B ≡ Cr, it is possible to achieve

the exact same payoff structure as shown in Table 5, which is the original one. This means
that the conventional vaccination game [13] encompasses the proposed model (Table 6).
In conclusion, through appropriate normalization and the inclusion of Cr (relative cost of
vaccination), the proposed model aligns with the standard framework of the vaccination
game, highlighting its compatibility and consistency with existing models in the field.

Table 5. Conventional vaccination game with normalization.

SFR
(Healthy)

HV
(Healthy)

FFR
(Infected)

IV
(Infected)

Payoff 0 −Cr −1 −Cr − 1
Cr

1− CrPayoff gap
Cr
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Table 6. Proposed cost–benefit vaccination game with normalization.

SFR
(Healthy)

HV
(Healthy)

FFR
(Infected)

IV
(Infected)

Payoff 0 − Cv
Cd+B −1 − Cv

Cd+B − 1
Cv

Cd+B
1− Cv

Cd+BPayoff gap
Cv

Cd+B

Now, the expected payoffs can be assessed by calculating the average social payoff < π >,
the average corporative (vaccinated) payoff < πC >, and the average defective (non-
vaccinated) payoff < πD > for the respective provisions, namely imperfect vaccination
and defense against contagion.

< π >= − Cv
Cd+B (x exp[−(1− η)R0R(x, ∞)]) +

(
− Cv

Cd+B − 1
)
(x(1− exp[−(1− η)R0R(x, ∞)]) + (−1)(1− x)(1−

exp[−R0R(x, ∞)]),
(4)

< πC >= − Cv

Cd + B
(x exp[−(1− η)R0R(x, ∞)]) +

(
− Cv

Cd + B
− 1

)
(x(1− exp[−(1− η)R0R(x, ∞)]) (5)

< πD >= (−1)(1− x)(1− exp[−R0R(x, ∞)]) (6)

2.2. Evolutionary Dynamical Equation

Updating strategies is an effective practice after each epidemic flu season, as previously
defined. The mean-field approximation is utilized to model the potential increase or
decrease in the vaccinator fraction, denoted as x. Therefore, the following two categories of
evolutionary dynamics are being taken into account:

2.3. IB-RA (Individual-Based Risk Assessment)

The cognitive process of an actor considering the option of relying on a single neigh-
bor in an updating manner is called individual-based risk assessment (IB-RA) [13,14].
Assuming that “i” and “j” represent the respective payoffs of an individual actor and their
neighbor, the probability in this scenario is denoted as Pr

(
si ← sj

)
and expressed using the

Fermi pairwise function as outlined in Table 7. The dynamical equation is as follows:

.
xIB−RA = HV(x, ∞)SFR(x, ∞)[PSFR←HV − PHV←SFR]

+HV(x, ∞)FFR(x, ∞)[PFFR←HV − PFFR←HV ]

+IV(x, ∞)SFR(x, ∞)[PSFR←IV − PIV←SFR]

+IV(x, ∞)FFR(x, ∞)[PFFR←IV − PIV←FFR]. (7)

2.4. SB-RA (Society-Based Risk Assessment)

Within the context of societal risk assessment, an individual actor can evaluate their
potential gain against that of a collective group or the broader society [13,14]. The modified
Fermi pairwise function articulates the mean anticipated gain obtained by averaging the
proportion of the similar tactic, denoted as Pr

(
si ← < π j >

)
, as presented in Table 8. The

dynamical equation is as follows:



Vaccines 2023, 11, 1476 7 of 20

.
xSB−RA = HV(x, ∞)NV(x, ∞)PHV←NV − IV(x, ∞)NV(x, ∞)PIV←NV + SFR(x, ∞)V(x, ∞)PSFR←V

+FFR(x, ∞)V(x, ∞)PFFR←V
(8)

Table 7. Transition probability of IB-RA.

Transition Probability

Original form of PW-Fermi considering each agent; Pr
(

si ← sj

)
= 1

1+exp[−(πj−πi)/κ]
Pr(SFR← HV) = 1

1+exp[−(−Cv/(Cd+B)−0)/κ]

Pr(FFR← HV) = 1
1+exp[−(−Cv/(Cd+B)+1)/κ]

Pr(SFR← IV) = 1
1+exp[−(−Cv/(Cd+B)−1−0)/κ]

Pr(FFR← IV) = 1
1+exp[−(−Cv/(Cd+B)−1+1)/κ]

Pr(HV ← SRF) = 1
1+exp[−(0+Cv/(Cd+B))/κ]

Pr(HV ← FFR) = 1
1+exp[−(−1+Cv/(Cd+B))/κ]

Pr(IV ← SFR) = 1
1+exp[−(0+Cv/(Cd+B)+1)/κ]

Pr(IV ← FFR) = 1
1+exp[−(1+Cv/(Cd+B)+1)/κ]

Table 8. Transition probability of SB-RA.

Transition Probability

Fermi pairwise rules for SB-RA, Pr
(

si ← < π j >
)
= 1

1+exp[−(<π j>−Si)/κ]
Pr(HV ← NV) = 1

1+exp[−(πD+Cv/(Cd+B))/κ]

Pr(IV ← NV) = 1
1+exp[−(πD+Cv/(Cd+B)+1)/κ]

Pr(SFR← V) = 1
1+exp[−(πC−0)/κ]

Pr(FFR← V) = 1
1+exp[−(πC+1)/κ]

2.5. Mutual Strategy Selection Dynamics

In our approach, we utilize a combined strategy selection method that incorporates
two strategies: IB-RA and SB-RA. Whether an individual chooses to get vaccinated is
determined by a parameter called selection intensity, denoted as n. When n is set to zero
or one, individuals switch their strategy based solely on IB-RA or SB-RA, respectively.
However, for values of n between 0 and 1, individuals modify their strategy using a
combination of IB-RA and SB-RA update rules. Let x be defined as follows:

.
x = (1− n) · .

xIB−RA + n · .
xSB−RA (9)

The SB-RA strategy is considered the primary method for updating procedures, in
which individuals compare their strategy with that of the society or community. Indi-
viduals tend to prefer updating their approach based on the choices of their immediate
neighbors. However, as the proportion of cooperators (vaccinators) in the population in-
creases, individuals who wish to update their strategy will increasingly look at the overall
community rather than just their immediate neighbors. Hence, we can define the dynamics
of individual selection as follows:

.
n = ωn(1− n)[ θx− (1− x)]. (10)

The social behavior within the society is influenced by the scalar value n(1− n), where
the term n(1− n) ensures that the state of the community remains within the range of [0,1].
Additionally, the parameter θ, referred to as the enhancing parameter, signifies the relative
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speed at which the cognitive behavior in society transforms compared to the frequency of
rational actors (strategists or individuals making strategic vaccination decisions).

The Social Efficiency Deficit [40] captures the extent to which the evolutionary equi-
librium falls short of the social optimum. It measures the potential inefficiency or sub-
optimality arising from self-interested decision-making without considering the broader
societal welfare. By quantifying this disparity, we can better understand the implications of
individual actions and the potential gains that could be achieved by moving closer to the
social optimum. Thus, the Social Efficiency Difference (SED) is a metric that can be used
to assess the gap between the expected benefits in an ideal social optimum scenario and
the outcomes that emerge naturally through evolutionary processes. The Social Efficiency
Difference (SED) refers to the difference between the expected overall benefits in a social
optimum scenario (ΠSO) and those in an evolutionary equilibrium situation (ΠNE).

Therefore,
SED = ΠSO −ΠNE. (11)

The deviation of the final epidemic size refers to the disparity between the values of
the final epidemic size at the social optimum and those at the evolutionary equilibrium. It
quantifies the difference in the size of the epidemic when comparing the ideal scenario in
which societal welfare is maximized to the outcome resulting from self-interested decision-
making. Similarly, the deviation of the fraction of vaccination refers to the difference
between the values of the fraction of individuals vaccinated at the social optimum and
those at the evolutionary equilibrium. It quantifies the discrepancy in vaccination rates
between the ideal scenario in which societal welfare is maximized and the outcome result-
ing from self-interested decision-making. Therefore, the deviation of the final epidemic
size and the deviation of the vaccination fraction provide measures of the disparities be-
tween the optimal outcomes at the social optimum and those resulting from self-interested
decision-making. These deviations help us assess the suboptimality of individual decision-
making and identify potential areas for improvement to achieve better epidemic control
and vaccination rates.

Therefore,
DFES = FESSO − FESNE (12a)

DFOV = FOVSO − FOVNE . (12b)

3. Result and Discussion

In this discussion, we examine the impact of vaccination on reducing disease trans-
mission and analyze the cost–benefit effects of a vaccination game. To gain a deeper
understanding, we assign values to various variables for evaluation purposes. These vari-
ables include the final epidemic size (FES), the fraction of vaccination coverage (FOV),
the average social payoff (ASP), the social efficiency deficit (SED), the deviation of FES
(DFES), and the deviation of vaccination coverage (DVC) at each social equilibrium. We
compare the outcomes using two different strategy update rules: individual-based risk as-
sessment (IB-RA) and society-based risk assessment (SB-RA). The comparison is presented
in a 2D phase diagram illustrating the relationship between the vaccination cost (Cv) and
vaccination efficiency (η). Figures 2–7 showcase the outcomes of the individual-based risk
assessment (IB-RA), society-based risk assessment (SB-RA), and a combination of both
strategies (intermediate) for three distinct levels of strategy selection intensity rate, (a-*)
n = 0.0, (c-*) n = 1.0, and (b-*) n = 0.5, respectively. The figures also depict three different
values of benefit rate (*-i) B = 0.0, (*-ii) B = 0.5, and (*-iii) B = 1.0, which are utilized to
adjust the vaccine cost and efficiencies.
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In this figure, we present results for different combinations of selection intensity rates—specifically,
(a-*) n = 0.0 in the first row, (b-*) n = 0.5 in the second row, and (c-*) n = 1.0 in the third row.
Additionally, the first, second, and third columns depict results for different benefit rates: (*-i) B = 0.0,
(*-ii) B = 0.5, and (*-iii) B = 1.0. It is important to note that we have kept other parameters constant,
with β = 0.8333 and γ = 0.333 [13,14].
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The findings from Figure 2 (*-i) with a benefit rate of B = 0.0 (without any benefits)
indicate that during a pandemic, the majority of individuals opt for vaccination either
through individual-based risk assessment (IB-RA) when n = 0.0 or society-based risk
assessment (SB-RA) when n = 1.0. This observation aligns with the findings of a previous
study [13]. However, individuals who adopt an intermediate strategy (0 < n < 1), instead
of prioritizing either IB-RA or SB-RA, follow an embedded approach to update their
strategy regarding the transmission of the infection.

In panel 2(a–i), when the cost of vaccination is higher and its efficiency is negligible, a
full-scale spread of the infection becomes inevitable. This is because individuals who are
having doubts about its reliability and affordability tend to avoid vaccination altogether.
To control the spread of the epidemic, the boundary between the monotone region and
the remaining region plays a crucial role in transitioning the phase from a pandemic to
a controlled (disease-free) state. In the controlled phase, a distinct blue area signifies
lower infection rates due to higher efficiency and lower cost. Similarly, detailed full-phase



Vaccines 2023, 11, 1476 11 of 20

diagrams for panels 2(b–i) and 2(c–i), representing the intermediate strategy and SB-RA
approach, respectively, exhibit differences. However, the overall trend remains similar to
that which is observed in Figure 2(a–i) in certain aspects. Increasing the value of n (strategy
selection intensity rate) reduces the size of the red region and expands the disease-free (blue)
region. The updating rule based on global knowledge (SB-RA) rather than local knowledge
(IB-RA) provides a more effective means of suppressing the spread of the disease.
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Figure 5. The 2D heatmap depicting the social efficiency deficit (SED) is generated by manipulating
two key parameters: the x-axis represents the vaccination cost (Cv), while the y-axis signifies vaccina-
tion efficacy (η). Within this graphical representation, the results are organized into three rows, each
presenting variation in the selection intensity rate n: the first row corresponds to (a-*) n = 0.0, the
second to (b-*) n = 0.5, and the third to (c-*) n = 1.0. Similarly, the results are arranged into three
columns, each reflecting change in the benefit rate: (*-i) B = 0.0 in the first column, (*-ii) B = 0.5 in
the second column, and (*-iii) B = 1.0 in the third column. We must note that we have maintained
the constancy of other parameters throughout, with β = 0.8333 and γ = 0.333 [13,14].

When we shift our attention to the benefit parameter B in panels 2(*-ii) and 2(*-iii),
we notice that as B increases, the disease-free region, represented by the blue region,
expands, meaning that a more significant portion of the population remains unaffected by
the epidemic. Additionally, an increase in B leads to a decrease in the final epidemic size,
which refers to the total number of individuals affected by the disease. In other words, by
increasing the benefit parameter B, we enhance the efficacy of measures or interventions to
prevent the spread of the disease. This could involve various actions such as public health
campaigns, vaccination efforts, improved healthcare infrastructure, and other strategies
designed to limit transmission and mitigate the epidemic’s impact.
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Figure 6. We present a 2D heatmap illustrating two aspects: (A) the deficiency of final epidemic size
(DFES) and (B) the deficiency of the fraction of vaccination (DFOV). These visualizations involve the
manipulation of two key parameters: the x-axis represents the vaccination cost (Cv), while the y-axis
represents vaccination efficacy (η). Within this figure, you will find three rows, each showcasing the
outcomes of varying the selection intensity rate (a-*) with values of n = 0.0 in the first row, n = 0.5 in
the second row, and n = 1.0 in the third row. Additionally, the figure features three columns, each
presenting the results of varying the benefit rate: (*-i) B = 0.0 in the first column, (*-ii) B = 0.5 in the
second column, and (*-iii) B = 1.0 in the third column. It is important to note that we have kept other
parameters constant throughout the analysis, specifically β = 0.8333 and γ = 0.333 [13,14].

Vaccines 2023, 11, x FOR PEER REVIEW 13 of 22 
 

 

  
(A) (B) 

Figure 6. We present a 2D heatmap illustrating two aspects: (A) the deficiency of final epidemic size 
(𝐷ிாௌ) and (B) the deficiency of the fraction of vaccination (𝐷ிை). These visualizations involve the 
manipulation of two key parameters: the 𝑥-axis represents the vaccination cost (𝐶௩), while the 𝑦-
axis represents vaccination efficacy (𝜂). Within this figure, you will find three rows, each showcasing 
the outcomes of varying the selection intensity rate (a-*) with values of 𝑛 =  0.0 in the first row, 𝑛 =  0.5 in the second row, and 𝑛 =  1.0 in the third row. Additionally, the figure features three 
columns, each presenting the results of varying the benefit rate: (*-i) 𝐵 =  0.0 in the first column, 
(*-ii) 𝐵 =  0.5 in the second column, and (*-iii) 𝐵 =  1.0 in the third column. It is important to note 
that we have kept other parameters constant throughout the analysis, specifically 𝛽 =  0.8333 and 𝛾 =  0.333 [13,14]. 

  
(A) (B) 

Figure 7. We present a 2D heatmap representing (A) individual-based deficiency of final epidemic 
size (𝐼𝐵ிாௌ) and (B) society-based deficiency of fraction of vaccination (𝑆𝐵ிாௌ). These visualiza-
tions involve the manipulation of two key parameters: the 𝑥-axis denotes the vaccination cost (𝐶), 
while the 𝑦-axis represents vaccination efficacy (𝜂). Within this figure, you will find three rows, each 
showcasing the outcomes of varying the process parameter (a-*) with values of 𝜃 =  0.1 in the first 
row, 𝜃 =  0.5 in the second row, and 𝜃 =  0.9 in the third row. Additionally, the figure features 
three columns, each presenting the results of varying the benefit rate: (*-i) 𝐵 =  0.0 in the first col-
umn, (*-ii) 𝐵 =  0.5 in the second column, and (*-iii) 𝐵 =  1.0 in the third column. It is important 
to note that we have maintained the constancy of other parameters throughout the analysis, specif-
ically 𝛽 =  0.8333 and 𝛾 =  0.333 [13,14]. 

Figure 7. We present a 2D heatmap representing (A) individual-based deficiency of final epidemic size(
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involve the manipulation of two key parameters: the x-axis denotes the vaccination cost (CV), while the
y-axis represents vaccination efficacy (η). Within this figure, you will find three rows, each showcasing
the outcomes of varying the process parameter (a-*) with values of θ = 0.1 in the first row, θ = 0.5 in
the second row, and θ = 0.9 in the third row. Additionally, the figure features three columns, each
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presenting the results of varying the benefit rate: (*-i) B = 0.0 in the first column, (*-ii) B = 0.5 in
the second column, and (*-iii) B = 1.0 in the third column. It is important to note that we have
maintained the constancy of other parameters throughout the analysis, specifically β = 0.8333 and
γ = 0.333 [13,14].

Figure 3 illustrates the results obtained by assuming different information benefit
rates (B) concerning a fraction of vaccinators (FOV). The depicted scenarios correspond to B
values of 0.0, 0.5, and 1.0. Additionally, three types of strategy-updating aspects are shown:
(a-*) IB-RA, (b-*) intermediate, and (c-*) SB-RA. These aspects are associated with varying
vaccination costs and efficiencies. In the controlled epidemic phase, we can observe a green-
colored region in the diagrams, indicating a high vaccination coverage. A combination of
higher efficiency and lower vaccination prices characterizes this region. It is interesting
to note that even when a significant portion of the population receives the vaccination,
the epidemic cannot be eliminated due to the lower reliability of the vaccine. Figure 4
likely provides additional information about the average social payoff (ASP). Although
they are different from Figure 4, the detailed full-phase diagrams follow a similar overall
trend. Overall, the findings from Figures 3 and 4 suggest that the information benefit rates
(B), along with the selection of strategy updating aspects and associated vaccination costs
and efficiencies, play crucial roles in shaping the outcomes of the epidemic control efforts.
Higher B values and effective strategies can increase vaccination coverage and mitigate the
epidemic’s impact. However, despite high vaccination rates, the reliability of the vaccine
remains a critical factor in determining the success of epidemic elimination.

Figure 5 presents a 2D heat map illustrating the social efficiency deficit (SED) as it
varies, with Cv and η represented. We consider every combination of Cv and η to calculate
the Average Social Payoff (ASP) at the social equilibrium (NE). Additionally, we estimate
the ASP at the social optimum (SO) without employing the game approach by determining
the maximum ASP for each Cv and η while varying the vaccination coverage (x) from 0 to
1. We then calculate the difference between the ASP at SO and NE using a defined Equation
(11), which gives us the SED value. In the heat map, the black region represents no SED and,
therefore, no dilemma. In this case, lower efficacy does not motivate people to vaccinate,
resulting in a dominant defection (D) state as the social optimum (SO), meaning everyone
chooses not to commit to vaccination. Similarly, in the fraction of vaccination coverage
(FOV) heat map (Figure 3), the corresponding triangular region displays a dominant
defection (D) NE, resulting in identical ASP values (Figure 4) as observed at SO. In other
words, the payoff at NE cannot be improved further, leading to the absence of any social
dilemma. However, another region characterized by low cost in Figure 5(*-i) exhibits
no SED. In the FOV phase diagram (Figure 3), the equivalent area indicates dominant
cooperation (C) NE, where all individuals choose to commit to vaccination, despite the
efficiency not being very high. Furthermore, the ASPs associated with this region (Figure 4)
are nearly identical at NE and SO, indicating the absence of SED and, therefore, no social
dilemma occurs. On the other hand, the remaining part of Figure 5(*-i) shows varying SED
levels, indicating a social dilemma. In this region, we observe non-monotonic changes in
SED when the vaccination cost is not excessively high.

An interesting observation can be made when the benefit parameter is increased, as
depicted in Figure 5(*-ii) and 5(*-iii); the IB-RA and SB-RA strategies show contrasting
tendencies. In the IB-RA strategy, as the benefit parameter B increases, a non-zero SED
becomes more pronounced, indicating that a dilemma arises, implying that there is still
room to reduce infection despite trade-offs. This suggests that increasing the benefit
parameter in the IB-RA strategy leads to a higher likelihood of encountering a social
dilemma. However, the SED is comparatively lower in the SB-RA strategy when the
benefit parameter B is higher. This suggests that as B increases, the occurrence of a social
dilemma diminishes in the SB-RA strategy. This observation implies that the SB-RA strategy,
which involves individual group decisions based on social benefits, is more authentic and
beneficial for everyone involved. Therefore, when the benefit parameter is increased, the
IB-RA strategy shows a higher presence of the social dilemma, indicating trade-offs and
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the need for further efforts to reduce infection. However, the SB-RA strategy exhibits lower
SED levels with higher values of B, indicating a reduced presence of the social dilemma.
The SB-RA strategy emphasizes individual group decisions and social benefits and is
considered more advantageous and authentic when it comes to managing the epidemic.

Overall, the heat map in Figure 5 helps visualize the distribution of SED levels across
different values of Cv, η and n. The absence of SEDs in certain regions reflects scenarios
where there is no social dilemma. At the same time, SED in other areas indicates situations
in which trade-offs and non-monotonic changes occur in the decision-making process
regarding vaccination strategies.

From an in-depth perspective, Figure 6 provides a detailed analysis of the deficiencies
of FES and FOV in the 2D heatmap, illustrating the relationship between vaccine efficiency
and vaccination cost. Panel A represents the deficiency of FES, while Panel B shows the
deficiency of FOV denoted by DFES and DFOV , respectively. To calculate the FES and FOV
at NE, we consider every combination of Cv and η and determine their values. Next, we
estimate the FES and FOV at the social optimum (SO) to maximize the overall societal
welfare, varying the vaccination coverage (x) from 0 to 1. This allows us to determine
the maximality of ASP for different Cv and η values at SO. Finally, we obtain the values
of (DFES) and (DFOV) by taking the difference between the FES/FOV values at SO and
NE. These values indicate the extent of deficiency or improvement in FES and FOV when
moving from NE to SO.

The Social Efficiency Deficit (SED) solely informs us about the presence or absence of
a dilemma situation. In contrast, FES (DFES) and FOV (DFOV) deficiencies offer actionable
insights to address this dilemma. When aiming to reduce the spread of disease, two main
approaches can be considered: reducing FES, indicated by the red portion in the figure,
to improve the overall SED; or implementing vaccination strategies to mitigate the SED.
However, it is essential to acknowledge that FES is, to some extent, influenced by FOV.
Increasing vaccination coverage (FOV) generally leads to a decrease in FES. Nevertheless,
factors such as free riding and the effects of herd immunity can introduce unexpected
dynamics that complicate the relationship between FOV and FES. Comparing Panel A
(DFES) and Panel B (DFOV), it becomes evident that the DFES region is more extensive and
prominent than the corresponding the DFOV region. This observation implies that relying
solely on implementing vaccination measures may not be sufficient to eradicate infections or
resolve the dilemma entirely. It indicates that additional strategies or interventions beyond
vaccination are required to effectively mitigate the spread of the disease and alleviate the
dilemma. By studying Figure 6, we gain valuable insights that complement the findings
from Figure 5 (SED). These insights suggest possible strategies and courses of action that
may reduce infection rates while effectively addressing the underlying dilemma. Therefore,
Figure 6 serves as a crucial tool for guiding decision-making processes and identifying
appropriate measures to combat the spread of the disease and tackle the challenges posed
by the social equilibrium dilemma.

Figures 7–9 depict 2D graphs illustrating the relationship between Cv and η for two
scenarios: (Panel A) deviation from Individual-Based Risk Assessment (IB-RA), denoted
as IBD, and (Panel B) deviation from Society-Based Risk Assessment (SB-RA), denoted
as SBD. These figures provide insights into decision-making outcomes and the effects of
changing strategies. To calculate the FES, FOV, and ASP for IBD and SBD, we systematically
consider every combination of Cv and η and determine IB-RA (n = 0) and SB-RA (n = 1)
values. In doing so, we evaluate the baseline outcomes for these two decision-making
approaches. Subsequently, we estimate the FES, FOV, and ASP for the dynamic equation
of n (as defined in Equation (8)). This allows us to examine decision-making outcomes
for different values of theta and assess the influence of dynamic decision-making on these
measures. Finally, we calculate the values of IBD and SBD by comparing the FES, FOV,
and ASP values obtained for the constant values of n (= 0 or = 1) with those obtained for
the dynamic of n. These calculated values highlight how decisions change from myopic
or individual-based associations (n = 0) to more community-based associations (n = 1).
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These calculations demonstrate the impact of different decision-making approaches on
FES, FOV, and ASP, shedding light on how myopic or community-based decision-making
strategies influence individual choices and outcomes.

Vaccines 2023, 11, x FOR PEER REVIEW 16 of 22 
 

 

Increasing vaccination coverage (FOV) generally leads to a decrease in FES. Nevertheless, 
factors such as free riding and the effects of herd immunity can introduce unexpected 
dynamics that complicate the relationship between FOV and FES. Comparing Panel A 
(𝐷ிாௌ) and Panel B (𝐷ிை), it becomes evident that the 𝐷ிாௌ region is more extensive and 
prominent than the corresponding the 𝐷ிை region. This observation implies that relying 
solely on implementing vaccination measures may not be sufficient to eradicate infections 
or resolve the dilemma entirely. It indicates that additional strategies or interventions be-
yond vaccination are required to effectively mitigate the spread of the disease and allevi-
ate the dilemma. By studying Figure 6, we gain valuable insights that complement the 
findings from Figure 5 (SED). These insights suggest possible strategies and courses of 
action that may reduce infection rates while effectively addressing the underlying di-
lemma. Therefore, Figure 6 serves as a crucial tool for guiding decision-making processes 
and identifying appropriate measures to combat the spread of the disease and tackle the 
challenges posed by the social equilibrium dilemma. 

Figures 7–9 depict 2D graphs illustrating the relationship between 𝐶௩ and 𝜂 for two 
scenarios: (Panel A) deviation from Individual-Based Risk Assessment (IB-RA), denoted 
as 𝐼𝐵, and (Panel B) deviation from Society-Based Risk Assessment (SB-RA), denoted as 𝑆𝐵 . These figures provide insights into decision-making outcomes and the effects of 
changing strategies. To calculate the FES, FOV, and ASP for 𝐼𝐵 and 𝑆𝐵, we systemati-
cally consider every combination of 𝐶௩ and 𝜂 and determine IB-RA (𝑛 = 0) and SB-RA 
(𝑛 = 1) values. In doing so, we evaluate the baseline outcomes for these two decision-
making approaches. Subsequently, we estimate the FES, FOV, and ASP for the dynamic 
equation of 𝑛 (as defined in Equation (8)). This allows us to examine decision-making 
outcomes for different values of theta and assess the influence of dynamic decision-mak-
ing on these measures. Finally, we calculate the values of 𝐼𝐵 and 𝑆𝐵 by comparing the 
FES, FOV, and ASP values obtained for the constant values of 𝑛 (= 0 𝑜𝑟 = 1) with those 
obtained for the dynamic of 𝑛. These calculated values highlight how decisions change 
from myopic or individual-based associations (𝑛 = 0) to more community-based associ-
ations (𝑛 = 1). These calculations demonstrate the impact of different decision-making 
approaches on FES, FOV, and ASP, shedding light on how myopic or community-based 
decision-making strategies influence individual choices and outcomes. 

  
(A) (B) 

Figure 8. We present a 2D heatmap that illustrates (A) the deficiency of vaccination fraction at the 
individual level (𝐼𝐵ிை) and (B) the deficiency of vaccination fraction at the societal level (𝑆𝐵ிை). 
These visualizations involve the manipulation of two essential parameters: the 𝑥-axis corresponds 
to the vaccination cost (𝐶௩), and the 𝑦-axis represents vaccination efficacy (𝜂). Within this graphical 
representation, you will find three rows showcasing the outcomes of varying the process parameter 
(a-*) with values of 𝜃 = 0.1 in the first row, 𝜃 = 0.5 in the second row, and 𝜃 = 0.9 in the third 

Figure 8. We present a 2D heatmap that illustrates (A) the deficiency of vaccination fraction at the

individual level
(

IBFOV
D

)
and (B) the deficiency of vaccination fraction at the societal level

(
SBFOV

D

)
.

These visualizations involve the manipulation of two essential parameters: the x-axis corresponds
to the vaccination cost (Cv), and the y-axis represents vaccination efficacy (η). Within this graphical
representation, you will find three rows showcasing the outcomes of varying the process parameter
(a-*) with values of θ = 0.1 in the first row, θ = 0.5 in the second row, and θ = 0.9 in the third row.
Additionally, the figure includes three columns, each displaying the results of varying the benefit
rate: (*-i) B = 0.0 in the first column, (*-ii) B = 0.5 in the second column, and (*-iii) B = 1.0 in the
third column. It is essential to emphasize that we have maintained the constancy of other parameters
throughout the analysis, specifically β = 0.8333 and γ = 0.333 [13,14].

Panels A of Figures 7 and 8 show negative values for IBFES
D (red) and positive values

for IBFOV
D (green) along the boundary between the disease-free equilibrium and the en-

demic equilibrium. The negative IBFES
D indicates that relying on dynamic decision-making

(using dynamic n) rather than Individual-Based Rationality (IB-RA) reduces the disease.
This observation is also evident in the positive values of IBFOV

D , where disease reduction
is observed when entirely positive values occur. Furthermore, as the values of theta in-
crease, the red region (IBFES

D ) in Figure 7 and the green region (IBFOV
D ) in Figure 8 expand,

implying that as cooperation intensity increases, individuals are more inclined to adopt
a community-based decision strategy to reduce the risk of infection. Similarly, increased
benefits also lead to a similar tendency towards a community-based decision strategy.
Suppose we shift our focus to the Average Social Payoff (ASP). In that case, we can observe
a similar trend in FES and FOV, referring to the dynamics of decision making and the
resulting outcomes regarding disease reduction align with the patterns observed in FES
and FOV. Thus, adopting a dynamic decision-making approach (using dynamic n) instead
of relying solely on IB-RA can reduce disease, increasing cooperation intensity, and these
benefits further promote adopting community-based decision strategies.

Now, Panel B in Figures 7 and 8 reveals both negative (red) and positive (blue) values
for SBFES

D (deviation from SB-RA) along the boundary region between the disease-free and
endemic equilibrium. Notably, in regions characterized by low vaccine cost and low η
values, positive SBFES

D (negative SBFOV
D ) is observed, indicating a preference for the SB-RA
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strategy. Conversely, in regions characterized by higher cost and higher η values, negative
SBFES

D (positive SBFOV
D ) is present, indicating a stronger inclination towards relying on the

dynamic decision parameter, n. This observed tendency can be attributed to the interplay
between higher cost and higher reliability of vaccination. Individuals are more inclined
towards vaccination in regions with higher costs and excellent vaccination reliability.
However, the higher cost presents a dilemma for individuals, prompting them to seek the
benefits of free-riding through the attainment of herd immunity. Consequently, individuals
are more prone to relying on the dynamic decision parameter, n, in these circumstances.
Interestingly, as the benefit (B) increases (sub-panels (*-ii) and (*-iii)), the red region that
represents negative SBFES

D diminishes. This signifies that increased benefits can help
alleviate the dilemma and reduce infection rates by encouraging individuals to participate
in vaccination programs. In other words, higher benefits create more substantial incentives
for individuals to overcome the dilemma and choose vaccination as a preventive measure.
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Figure 9. We present a 2D heatmap illustrating (A) the individual-based average social payoff(
IBASP

D

)
and (B) the society-based average social payoff

(
SBASP

D

)
. These visualizations involve

the variation of two key parameters: the x-axis represents the vaccination cost (CV), and the y-axis
denotes vaccination efficacy (η). The first, second, and third rows in this figure delineate the results
of altering the process parameter (a-*) with values of θ = 0.1 in the first row, θ = 0.5 in the second
row, and θ = 0.9 in the third row. Similarly, the first, second, and third columns portray the outcomes
of adjusting the benefit rate: (*-i) B = 0.0 in the first column, (*-ii) B = 0.5 in the second column, and
(*-iii) B = 1.0 in the third column. Notably, we have maintained the constancy of other parameters
throughout the analysis, specifically β = 0.8333 and γ = 0.333 [13,14].

As a final step, Figure 10 provides a comprehensive 2D phase-plane analysis, exploring
the impact of varying η (vaccine efficiency) and benefit B across relative vaccination costs
Cv. Sub-panels (a-*), (b-*), and (c-*) correspond to different values of θ (= 0.1, 0.5, and
0.9, respectively). Across all cases, it is evident that vaccine efficiency (η) influences both
FES and FOV, with higher η values leading to a reduction in FES. This outcome aligns
with expectations, as higher vaccination reliability makes individuals more inclined to take
vaccines. Additionally, as both η and benefit B increase, FES decreases significantly. This
result is intuitive, as individuals are more likely to participate in vaccination programs
when both the reliability of the vaccine and the associated benefits are high. Consequently,
a substantial reduction in FES is observed. Furthermore, the relative vaccination cost (Cr) is
crucial in reducing infection rates, but only when the vaccine cost is relatively low. In such
cases, the impact of vaccination costs on infection reduction is significant. Interestingly, as
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θ (the updating process parameter) increases, a paraboloid-shaped region emerges in the
vaccination (and FES) region. This is accompanied by an increase in FOV and a reduction
in FES. The presence of the paraboloid-shaped region suggests the occurrence of the non-
free-riding effect, mainly when vaccine efficiency is relatively intermediate. These findings
underscore the complementary relationship between vaccine benefits, individual strategy
selection processes, and their impact on disease control. Policymakers can consider the
costs and benefits associated with participation in vaccination programs. However, the
selection of individual strategies is determined by the nature of the updating process. This
indicates the importance of understanding the decision-making dynamics and designing
effective strategies to encourage vaccine uptake and mitigate disease spread. The results
also highlight the role of these factors in shaping FES and FOV while revealing the effects of
the updating process and the presence of free-riding dynamics. These insights can inform
policymakers in devising effective strategies to promote vaccine participation and combat
the spread of infectious diseases.
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Figure 10. We present a 2D heatmap displaying (A) the final epidemic size (FES), (B) the fraction of
vaccination (FOV), and (C) the average social payoff (ASP) while varying two critical parameters: the
x-axis represents the vaccination benefit (B) and the y-axis signifies vaccination efficacy (η). Within
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this graphical representation, the first, second, and third rows showcase the outcomes of altering
the process parameter (a-*), with values of θ = 0.1 in the first row, θ = 0.5 in the second row, and
θ = 0.9 in the third row. Correspondingly, the first, second, and third columns reveal the results of
modifying the vaccination cost: (*-i) Cv = 0.1 in the first column, (*-ii) Cv = 0.5 in the second column,
and (*-iii) Cv = 0.9 in the third column. It is noteworthy that we have kept other parameters constant
throughout the analysis, specifically β = 0.8333 and γ = 0.333 [13,14].

4. Conclusions

The ongoing pandemic has highlighted the crucial role of human behavior in re-
sponding to and controlling diseases. Evolutionary game theory provides a valuable
framework for studying the dynamics of human behavior and how it influences interven-
tion strategies in natural systems. To address this, we have developed an evolutionary
game theoretical approach that considers vaccination’s benefits and relative costs, incor-
porating a global time-scale analysis of epidemic disease dynamics. Our study integrated
two strategy-updating processes, namely Individual-Based Random Aspiration (IB-RA)
and Social-Based Random Aspiration (SB-RA), into the evolutionary game theory frame-
work. In doing so, we explored how different dynamics and factors impact the outcomes
of epidemics, mainly when the relative cost of vaccination is lower, and the benefits de-
rived from vaccination are higher. This shift in incentives promotes cooperative behavior
among individuals.

Our findings shed light on the impact of strategy-dependent dynamics of vaccine
behavior, revealing variations in final epidemic size and vaccination coverage. This has
important implications for various issues, including vaccine reliability, vaccination cost,
vaccine dilemma, benefit assessment, refusal rates, free riding, and disease incidence.
Our model provides a valuable framework for quantifying the cost–benefit analysis and
dilemmas inherent in vaccination games. It becomes evident that increasing vaccine
efficacy and benefits while simultaneously reducing vaccination costs leads to an increase
in vaccination coverage, ultimately reducing the final epidemic size.

Further, our study highlights that their cooperation or defection strategies influence
individuals’ strategy-updating processes. We observed differences between traditional
IB-RA and SB-RA strategy-updating processes, which have implications for understanding
the dynamics of strategy adoption. Through our analysis, we identified social dilemma sit-
uations for each scenario, employing the concepts of FES and FOV deficiency to determine
strategies that minimize such dilemmas. This approach enhances our understanding of how
different combinations of cost–benefit analyses can improve the final epidemic size, taking
into account factors like vaccination reliability and strategies. Despite the advantages of
our approach, there have been limited efforts to apply this theoretical framework to the
evolution of cognitive factors that influence strategy selection, including beliefs, ideas,
behaviors, social influence, persuasion, and the associated costs and benefits. Additionally,
there is potential to expand our research to incorporate an optimal control analysis into
the existing general model, utilizing the mixed-strategy approach introduced in this study.
Also, it is worth noting that these models find practical applications in the context of vaccine
strategies for livestock farming [40] to optimize vaccination programs and mitigate the
spread of infectious diseases among animals, which is crucial for maintaining the health
and productivity of livestock populations.
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