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Abstract: The innate and adaptive immune systems collaborate to detect SARS-CoV-2 infection,
minimize the viral spread, and kill infected cells, ultimately leading to the resolution of the infection.
The adaptive immune system develops a memory of previous encounters with the virus, providing
enhanced responses when rechallenged by the same pathogen. Such immunological memory is
the basis of vaccine function. Here, we review the current knowledge on the immune response to
SARS-CoV-2 infection and vaccination, focusing on the pivotal role of T cells in establishing protective
immunity against the virus. After providing an overview of the immune response to SARS-CoV-2
infection, we describe the main features of SARS-CoV-2-specific CD4+ and CD8+ T cells, including
cross-reactive T cells, generated in patients with different degrees of COVID-19 severity, and of
Spike-specific CD4+ and CD8+ T cells induced by vaccines. Finally, we discuss T-cell responses
to SARS-CoV-2 variants and hybrid immunity and conclude by highlighting possible strategies to
improve the efficacy of COVID-19 vaccination.
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1. Introduction

The T cell-mediated immunity is key to controlling intracellular pathogens, such as
viruses. CD8+ T cells directly kill infected cells, whereas CD4+ T cells provide “help”
through cytokine production and optimize durable and effective CD8+ T-cell and humoral
responses [1].

Naïve T cells are activated in secondary lymphoid organs upon interacting with
antigen-loaded dendritic cells (DCs). DCs present antigens to T cells by loading short
peptides onto the major histocompatibility complex (MHC). They stimulate the specific
T-cell receptor (TCR), provide costimulatory signals, and produce polarizing cytokines and
metabolites that regulate the function and migration of activated T cells. When stimulated,
activated naïve T cells start to proliferate and differentiate into effector T cells that enter the
circulation and travel to peripheral tissues, where they carry out their protective function [2].
After clearance of the pathogen, most effector T cells die by apoptosis, and only a small
fraction of them persist as central memory, effector memory, and resident memory T cells
that will provide an enhanced systemic or local immune protection to the host when
reexposed to the same antigen [3]. The immunological memory is a peculiar property of
the adaptive immune system and underlies vaccine-induced protective immunity.

Here, we aim to review the current knowledge of the immune response to SARS-CoV-2
infection and vaccination, revolving around T cells and cellular immunity. First, we will
give an overview of the immune response to SARS-CoV-2 infection, including a brief
description of the role of innate immunity in controlling the virus. We will then focus on the
role of T cells, highlighting their capacity to provide immune protection in the absence of
humoral immune responses. We will describe the different features of SARS-CoV-2-specific
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CD4+ and CD8+ T cells generated in patients with mild and severe COVID-19 and compare
them with Spike-specific CD4+ and CD8+ T cells induced by vaccination. Finally, we will
highlight some open questions and future perspectives in the field, discussing possible
strategies to improve the efficacy of COVID-19 vaccines.

We are aware and would like to remind the readers that the large majority of pub-
lished studies on the topic have been conducted on the peripheral blood of patients with
COVID-19 and vaccinated individuals, which may convey a partial view of the immune
response to SARS-CoV-2 infection and vaccination since most of immune cells are not
in circulation [4]. Nonetheless, by being relatively easy to perform and minimally inva-
sive, investigating the immune responses in peripheral blood has allowed longitudinal
sampling to monitor the evolution of the effector response and the generation of immuno-
logical memory against SARS-CoV-2. Moreover, by being performed on large cohorts of
individuals, it has enabled the scientific community to identify correlates of protective
immunity, generating fundamental knowledge that has been instrumental in tackling the
COVID-19 pandemic.

2. Overview of the Immune Response to SARS-CoV-2 Infection

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded
positive-sense RNA virus that causes the Coronavirus Disease 2019 (COVID-19). It belongs
to the Sarbecovirus subgroup of the Betacoronavirus genus, which also includes the SARS-
CoV-1 and MERS viruses that have caused epidemic and pandemic outbreaks of diseases
in the last 20 years [5].

SARS-CoV-2 infection occurs without symptoms or with mild ones in most individuals
and is usually resolved in 10–20 days [6]. When symptomatic, it results in an influenza-like
illness that can eventually progress to interstitial pneumonia, acute respiratory distress
syndrome, and death. The most common COVID-19 symptoms include fever, dry cough,
and shortness of breath, followed by fatigue, myalgias, headache, rhinorrhea, anosmia,
ageusia, diarrhea, nausea, and vomiting [7–9].

The optimal immune response to SARS-CoV-2 requires innate and adaptive immunity
to function coordinately (Figure 1). The proper setup of an innate immune response medi-
ated by type I and type III interferons (IFNs) is critical for establishing an effective antiviral
adaptive immune response [10,11]. The innate immune system can detect the presence of
SARS-CoV-2 and other RNA viruses through Toll-like receptors (TLR3 and TLR7/8) and
RIG-I-like receptors (RIG-I and MDA5) [12]. The signaling downstream of these two classes
of pattern recognition receptors converges into the activation of IRF3 and IRF7 transcription
factors that cooperate with the nuclear factor κB (NF-κB) to produce type I and type-III IFNs.
Type I and type III IFNs bind their cognate receptors IFNAR1/IFNAR2 and IFNRL1/IL10R2
on infected cells and antigen-presenting cells (APCs) and initiate a signaling cascade that
induces the STAT1/STAT2/IRF9-driven activation of several interferon-stimulated genes
(ISGs), which interfere with the viral life cycle [13], and proinflammatory cytokines pro-
duction. In addition, type I IFN can directly act on T cells to support clonal expansion and
memory formation in response to viral infections [14,15].

SARS-CoV-2 can inhibit or delay type I/III IFN-mediated immune response by an-
tagonizing type I/III IFN production and the downstream signaling through different
mechanisms mediated, sometimes redundantly, by several structural and nonstructural
viral proteins [16,17]. Therefore, temporally delayed and lower levels of type I or type-III
IFNs are detected in the lungs or the peripheral blood of patients with severe COVID-19
compared with other respiratory infections [18,19]. The suppression of the type I/III re-
sponse results in higher viral replication, delayed activation of the adaptive immune system,
excessive inflammation, and tissue damage [20], which underlie the systemic inflammatory
syndrome that characterizes severe COVID-19 cases [21]. Notably, genetic mutations and
autoantibodies that interfere with IFN pathways have been detected, respectively, in about
3–5% of younger adults and 15–20% of patients over 70 years old with critical COVID-19
pneumonia [22–24], indicating that the IFN-mediated immune response is impaired both
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by virus-dependent and host-dependent mechanisms in a sizeable proportion of patients
with severe disease.
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Figure 1. Coordinated innate and adaptive immune responses to SARS-CoV-2 infection correlate
with better clinical outcomes. Protective immunity to SARS-CoV-2 infection requires the prompt
stimulation of the innate immune system that, through the activation of type I/III IFN pathways,
limits viral replication and triggers the timely induction of adaptive immune responses. In turn,
SARS-CoV-2-specific TH1 and TFH CD4+ T cells optimize the effector function of cytotoxic CD8+

T cells and the production of potent neutralizing Abs, leading to the resolution of the infection in
about two weeks. On the contrary, the defective activation of type I/III IFN responses results in
unrestrained viral replication, delayed activation of the adaptive immune response, and sustained late
production of proinflammatory cytokines. The impaired induction of SARS-CoV-2-specific cytotoxic
CD8+ T cells and the wrong polarization of CD4+ T cells results in a reduced capacity to control the
infection, while excessive inflammation causes extensive tissue damage.

Despite the important role of innate immunity, the best control of SARS-CoV-2 infection
and protection from severe COVID-19 is achieved by a coordinated adaptive immune
response made by virus-specific neutralizing antibodies (nAbs) and CD4+ and CD8+ T
cells [25]. Indeed, the early induction of SARS-CoV-2-specific T cells and nAbs positively
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correlates with a better clinical outcome in patients with COVID-19 [26,27] (Figure 1).
Antibodies recognize viral epitopes in their native conformation and can block the binding
of the viral Spike protein to the ACE2 receptor on human cells, thus preventing infection.
Moreover, antibodies can promote the killing of virus-infected cells, either by binding to
Fc receptors on NK cells and inducing the antibody-dependent cellular cytotoxicity [28]
or by activating the classical pathway of the complement, which leads to the lysis of
the infected cells and facilitates their clearance by phagocytes [29]. Antibodies act on
the extracellular virus and are most effective when present before the beginning of an
infection. On the contrary, T cells cannot recognize a virus until cells are infected, as
they need viral epitopes to be processed and presented by MHC molecules on APCs.
However, T cells can recognize epitopes derived from any viral protein, thus broadening
the repertoire of targetable viral structures [30]. CD8+ T cells identify and directly kill
infected cells and are critical in eliminating the virus in many viral infections [31]. CD4+

T cells contribute to antiviral immunity by at least three distinct mechanisms involving
follicular helper T (TFH) cells, TH1 cells, and cytotoxic (CD4+-CTL) cells. TFH cells help the
humoral response to sustain the affinity maturation of B cells and the generation of durable
antibody responses [32]. TH1 cells produce IFN-γ and other cytokines that activate cell-
intrinsic antiviral responses in infected cells and phagocytes and promote the recruitment
of effector cells at the site of infection. They have been shown to contribute to immune
protection against influenza [33] and SARS-CoV-1 [34] infections. Finally, CD4+-CTL cells
bear a cytotoxic activity similar to CD8+ T cells and can directly kill MHC-II-expressing
infected cells. They have been detected in several viral infections and associated with
protection in patients infected by influenza [33] and Dengue [35] viruses. Notably, MHC-II-
expression has been widely detected in the inflamed lung epithelial and endothelial cells of
patients with lethal COVID-19 [36], suggesting that CD4+-CTL cells may cooperate with
CD8+ T cells in killing SARS-CoV-2 infected cells.

Several studies on transplanted patients undergoing immunosuppressive therapy con-
firmed the critical role of the immune system in controlling viral infection [37,38]. During
the first wave of the COVID-19 pandemic, up to 90% of patients receiving immunosup-
pressive drugs due to solid organ transplantation (SOT) needed hospitalization [39,40],
compared with 12–15% of the general population, with crude mortality rates of 20–25%.
Despite a significant reduction in the mortality of SOT patients in the subsequent waves of
the pandemic due to improved clinical management of the disease, their hospitalization
and mortality rates remained significantly higher than the general population. Moreover,
they only partially benefitted from introducing COVID-19 vaccines [41–44]. Interestingly, a
study reported that treatment with different immunosuppressive drugs may significantly
alter the risk of hospitalization in specific SOT settings [38]. The authors speculated about
a possible association between certain immunosuppressive drugs (e.g., mycophenolic acid),
the impairment of a particular branch of the immune system (i.e., a cytostatic effect on
lymphocytes), and the clinical outcome (i.e., worse outcome) [38]. However, additional
investigation is required to functionally support this and similar statements.

Important information about the contribution of the different arms of the immune
system in controlling SARS-CoV-2 infection comes from large studies performed on in-
dividuals with various types of inborn errors of immunity (IEI). These studies showed
that IEI patients typically experience prolonged viral shedding and have higher mortality
rates compared to the age-matched general population [45–47]. However, most IEI patients
(90–95%) can resolve the infection, often with mild or moderate symptoms, highlighting
redundancies and compensatory mechanisms in the human immune system for host de-
fense against SARS-CoV-2 [45–47]. The largest group of patients with IEI analyzed so far
was made by individuals affected by deficiency in antibody production, such as common
variable immunodeficiency and hypogammaglobulinemia, indicating that SARS-CoV-2
infection can be controlled by the immune system in the absence of nAbs production, likely
by T cells. Similarly, therapeutic depletion of B cells by rituximab in patients with multiple
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sclerosis is associated with an increased risk of developing a severe disease requiring
hospitalization but does not significantly correlate with higher mortality rates [48–50].

Investigating the opposite scenario, namely, the ability of B cells and antibodies to
control SARS-CoV-2 infection without T cells, is more difficult because a complete lack of T
cells is incompatible with life. However, evidence about the important role of T cells in the
resolution of SARS-CoV-2 infection emerges from various clinical settings. In patients with
Acquired Immune Deficiency Syndrome (AIDS) having an active SARS-CoV-2 infection,
CD4+ T-cell lymphopenia is associated with poorer outcomes [51,52], even when nAbs
are produced. Among patients with hematologic cancer, the ones with defective CD4+

and CD8+ T-cell responses had the highest mortality, regardless of the presence of B-cell
responses [53]. On the contrary, in patients having compromised humoral immunity due
to the disease or therapy, the presence of SARS-CoV-2-specific CD8+ T cells was associated
with improved survival [53]. This is consistent with the observation that CD8+ T cells can
control viral loads upon rechallenge with SARS-CoV-2 in convalescent rhesus macaques
with waning antibody titers [54]. The ability of T cells to control SARS-CoV-2 infection in the
absence of humoral response is corroborated by the identification of SARS-CoV-2-specific T
cells in the absence of seroconversion in asymptomatic individuals exposed to the virus and
in some patients with paucisymptomatic COVID-19 [55,56]. Notably, we and others have
reported cases of patients with COVID-19 who failed to mount a T-cell response, measured
by either T-cell clonal expansion [57] or antigen-specific stimulation [25], and succumbed to
the disease despite the production of SARS-CoV-2-specific antibodies, further supporting
the important role for T cells in resolving SARS-CoV-2 infection.

Altogether, these data demonstrate that the best protection against SARS-CoV-2 infec-
tion is provided by integrated and coordinated innate and adaptive immune responses and
indicate a superior capacity of T cells to control the virus.

3. Qualitative and Quantitative Alterations of T-Cell Populations in Patients
with COVID-19

One of the main clinical features of patients with COVID-19 is T-cell lymphopenia
correlating with the severity of the disease. A transient lymphopenia occurring during
an acute infection before the peak in the T-cell response is a characteristic common to
many severe viral infections, can be induced by type I IFN signaling, and may be useful to
create the space for a robust virus-specific T-cell response [58]. However, in patients with
severe COVID-19, the T-cell lymphopenia can persist weeks after infection or symptoms
onset [59]. An increased CD4+/CD8+ T-cell ratio has been reported in patients with severe
COVID-19 [60,61], suggesting that SARS-CoV-2 infection might preferentially impair CD8+

T cells, especially from the effector memory population [57]. Initial speculation suggested
that the stronger reduction in circulating T cells in patients with severe COVID-19 could be
due to an increased migration of T cells to the site of infection. However, the observation
that the number of T cells in the bronchoalveolar lavage (BAL) fluid was lower in patients
with severe disease than those with moderate disease [62] argues against this hypothesis.
Presumably, a temporally dysregulated type I IFN response, the inability to mount a virus-
specific T-cell response, the increased apoptosis of T cells, or a combination of these factors
may better explain the stronger lymphopenia in patients with severe disease.

Defects in type 1 immune responses [60] and skewing toward type 2 immunity [57,63]
have been associated with COVID-19 severity, similar to what was observed in fatal SARS-
CoV-1 infections [64] and in an experimental model of influenza infection [65], indicating
that an inappropriate immune response to the virus may cause delayed viral clearance and
disease deterioration.

The impaired ability to mount an effective antiviral T cell-mediated immune response
underlies the uncoordinated adaptive immune response in the elderly [25] that, together
with a higher rate of comorbidities, renders age the major risk factor in developing severe
COVID-19 (Figure 2). In addition to the mentioned alteration in type I IFN signaling due
to the production of autoantibodies and a decline in the antigen presentation potential of
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APCs [66], the capacity of setting up an adaptive immune response to SARS-CoV-2 in older
adults is dampened by the age-related decrease in the repertoire of naïve T cells [67], which
causes a contraction in the pool of T cells able to react to a new pathogen (Figure 2). The
reduction in naïve T cells is stronger among CD8+ than CD4+ T cells, possibly because CD8+

T cells are more susceptible to the homeostatic proliferation-induced differentiation [68]
and can be exacerbated by common chronic infections [69], which leads to the expansion
of terminally differentiated and exhausted T cells. Both terminally differentiated CD8+ T
cells and memory-like CD8+ T cells differentiated in response to cytokines include innate-
like cytotoxic cells that can be activated in the absence of TCR stimulation [70,71]. Early
activation of these bystander-activated cytotoxic T cells can cooperate in viral clearance [72],
but their prolonged complement-mediated activation can also contribute to the excessive
inflammation and tissue damage characterizing severe COVID-19 [73].
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Together, these data indicate that prolonged T-cell lymphopenia and maladapted CD4+

and CD8+ T-cell responses are associated with severe COVID-19 and that these conditions,
for different reasons, occur more frequently in the elders who are, indeed, at higher risk of
clinical deterioration upon SARS-CoV-2 infection.

4. SARS-CoV-2 T-Cell Antigens and Immunodominant Epitopes

CD4+ and CD8+ T cells activated by SARS-CoV-2 infection recognize a broad range
of viral antigens derived from structural and nonstructural proteins. A meta-analysis of
25 studies identified 1434 nonredundant epitopes recognized by T cells, 399 of which have
been defined as immunodominant (110 CD4+ and 289 CD8+ T-cell epitopes) [74]. These data
are constantly updated by the scientific community and, as of September 2024, the Immune
Epitope Database [75] has cataloged over 3700 records. The most immunodominant CD4+

T-cell epitopes show a high HLA-II binding promiscuity, defined as the capacity to bind
multiple HLA allelic variants [76]. Immunodominant epitopes mainly derive from the Spike
(S), Nucleoprotein (N), and Membrane (M) structural proteins but also from nonstructural
proteins such as nsp3, nsp12, and ORF3a [74,76]. CD4+ and CD8+ T-cell responses to S,
N, M, and nsp3 proteins are highly coordinated, meaning that CD4+ and CD8+ T cells
specific to these proteins are simultaneously generated in most individuals [76]. It has been
conservatively estimated that each person recognizes on average 19 different CD4+ and
17 CD8+ T-cell epitopes [76], but none of the identified epitopes elicit T-cell responses in
100% of the donors tested.

Looking at the distribution of the immunodominant epitopes from S and N proteins, it
emerged that the epitopes recognized by CD4+ and CD8+ T cells have peculiar traits. CD4+

T-cell epitopes preferentially concentrate in specific regions, while CD8+ T-cell epitopes dis-
tribute throughout the antigens’ sequence. Immunodominant CD4+ T-cell epitopes in the S
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protein mainly originate from the N-terminal domain of the S1 subunit, the C-terminus
(aa 686–816) and the fusion protein region in the S2 subunit, and a small conserved region
(aa 346–365) of the receptor binding domain (RBD) [74,77]. Similarly, CD4+ T-cell epitopes
in the N protein are localized in the N-terminal and the C-terminal domains, with little
contribution from the linker region and protein tails. On the contrary, CD4+ T-cell immuno-
genic regions are distributed along the entire M protein [74]. Interestingly, CD4+ T-cell
immunodominant regions identified in S and N proteins show a limited overlap with the
immunodominant linear regions targeted by antibody responses [74], indicating comple-
mentarity between the humoral and cellular immunity and corroborating the correlation
between a coordinated adaptive immune response and a favorable clinical outcome.

Several studies have identified SARS-CoV-2-reactive T cells in about 50% of unex-
posed individuals [78–81]. These T cells cross-react with conserved epitopes from en-
demic coronaviruses (NL63, OC43, HKU1, and 229E) and have low-avidity T-cell receptors
(TCRs) [82,83]. M-specific CD4+ T cells and S-specific CD8+ T cells can also originate from
cross-reactive cytomegalovirus-specific T cells [84], extending the cross-reactivity to other
virus types. Despite a possible association between the presence of cross-reactive T cells,
prompter immune responses, and better clinical outcomes [85–87], their protective role is
still debated [88]. Although the activation of preexisting cross-reactive memory T cells has
been observed in patients with COVID-19, most SARS-CoV-2-reactive T cells recognize
new epitopes [76,77] through a diversified repertoire of high-avidity TCRs [82,89,90].

These data indicate that T-cell responses to SARS-CoV-2 are broad, multiantigenic,
and complementary to humoral responses.

5. Kinetics of T-Cell Responses to SARS-CoV-2 Infection and Phenotype of
SARS-CoV-2-Specific T Cells

As mentioned before, the prompt activation of SARS-CoV-2-specific T cells posi-
tively correlates with a favorable clinical outcome for COVID-19 patients [26]. Studies in
macaques support the protective role of T cells against SARS-CoV-2 infection [54]. The
identification and quantification of antigen-specific T cells are more complex than the
measurement of specific antibodies. They can be performed by different immune assays
based either on the ex vivo identification through tetramers and multimers staining or on
the in vitro stimulation with peptide pools, representing the whole SARS-CoV-2 peptidome
or just selected epitopes, followed by monitoring of cytokine production, cell proliferation,
or the expression of activation-induced markers (AIMs) on the cell surface. Both methods
have advantages and limitations. Detection by tetramers and multimers binding does
not require any T-cell stimulation, and the identification of antigen-specific T cells is inde-
pendent of the upregulation of specific markers or the production of effector molecules.
This technique is precise but does not provide information on T-cell functionality (unless
cells are somehow stimulated) and usually allows the detection of a limited repertoire of
antigen-specific T cells. Also, it requires knowledge of patients’ HLA haplotypes, although
this issue may be partially overcome by using complex libraries [91,92]. On the contrary,
the in vitro stimulation with peptide pools, or other sources of specific antigens, enables
the monitoring of antigen-specific T-cell effector function and is usually more sensitive.
However, the high sensitivity may be paralleled by a lower specificity due to the activation
of low-affinity T cells that are not relevant for the in vivo response to the virus, and to the
detection of bystander-activated T cells if the antigenic stimulation is too long (e.g., >24 h).
Moreover, it is possible that recently in vivo-activated T cells, such as effector cells during
acute infection, may not properly respond to the in vitro stimulation or that the in vitro
stimulation may alter the original phenotype of T cells.

Despite the mentioned limitations, the results produced by many studies describe
defined patterns of induction, expansion, and contraction of the cellular immune response
during and after SARS-CoV-2 infection (Figure 3). The timescale of the described immune
responses may carry some unavoidable variability since the timing of infection cannot
be precisely determined in humans and results are commonly reported as “time after
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symptoms onset” or “time after positive test”. However, such variability should be limited
to a few days and affect the punctual definition only of the very early events of the immune
response, since the median incubation period of SARS-CoV-2 infection has been estimated
to be 5 days and the great majority (>97%) of individuals develop symptoms within
11 days from viral infection [93]. Notably, these epidemiologic data agree with a study
performing a controlled SARS-CoV-2 challenge in healthy volunteers [94]. SARS-CoV-2-
specific T cells can be detected already 3–5 days after symptoms onset and expand in the
following 10–20 days [25,26,95,96]. Delayed and weaker induction of SARS-CoV-2-specific
T cells is observed in patients with severe COVID-19 [25,97], associated with a misfiring
of the immune response, characterized by exaggerated and persistent activation of some
components of the innate immunity and the lack of type 1 adaptive immune response [63].
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Figure 3. Kinetics of CD4+ and CD8+ T-cell responses to SARS-CoV-2 infection and vaccination.
SARS-CoV-2-specific T cells are detected as early as 3–5 days after symptoms onset and expand in
the following 2–3 weeks. Then, their frequencies start to decline with kinetics that, in the first two
months, are slightly faster for CD8+ T cells than CD4+ T cells. SARS-CoV-2-specific memory CD4+

and CD8+ T cells are detectable up to 12–15 months after infection or vaccination and predicted to
be long-lived.

SARS-CoV-2-specific CD4+ T cells are detected in nearly 100% of infected people
and mainly produce TH1-associated cytokines, such as IFN-γ and TNF-α, although TH17-
associated cytokines have also been detected [25,95,98,99]. CD4+ T cells from asymptomatic
patients or patients with mild disease produce higher amounts of IFN-γ and IL-2 than those
from patients with severe COVID-19, indicating a higher functionality and proliferative
capacity [98,100]. Clonally expanded CD4+-CTL cells have been identified in hospitalized
patients [101], but a clear correlation between this T-cell subset and immune protection
or disease severity is still missing. Circulating SARS-CoV-2-reactive TFH (cTFH) cells,
specific for the S, N, and M proteins, are also found upon infection and correlate with nAbs
production [102–104]. Notably, post mortem examination of thoracic lymph nodes and
spleen highlighted a strong reduction in BCL-6+ germinal center B cells that was associated
with an early block of BCL-6+ TFH differentiation [105], demonstrating the relevance of TFH
cells in supporting the humoral immune response to SARS-CoV-2 infection. Interestingly,
the S-specific cTFH cells have been reported to be more abundant than S-specific TH1 cells,
while the cTFH/TH1 ratio was inverted for the N-specific CD4+ T cells [98], suggesting a
specialization of effector responses to different viral antigens.

SARS-CoV-2-specific CD8+ T cells are identified in about 70% of infected individuals,
and their induction strongly and significantly correlates with a better clinical outcome in
patients with COVID-19 [25]. During an acute infection, SARS-CoV-2-specific CD8+ T cells
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mainly display an effector memory phenotype, characterized by the lack of CD45RA and
CCR7 expression and producing high amounts of effector molecules, such as granzyme B,
perforin, and IFN-γ [98,106,107]. Some studies suggested a possible association between
the frequency of exhausted CD8+ T cells and COVID-19 severity, but they are not supported
by consistent data in the literature [108]. Indeed, T-cell exhaustion normally results from
the chronic stimulation of T cells and would not fit well in the context of an acute viral
infection. Much confusion derives from the fact that in many papers, researchers tend to
refer to T cells expressing inhibitory receptors and other exhaustion-associated molecules
as exhausted T cells. However, inhibitory receptors are usually upregulated in recently
activated T cells to restrain their effector function on time and avoid excessive immune
responses. Instead, T-cell exhaustion is a permanent (unless treated) dysfunctional state
requiring epigenetic changes and metabolic reprogramming and marked by an elevated and
persistent expression of inhibitory receptors. Nonetheless, patients with mild COVID-19
tend to have a higher frequency of total and SARS-CoV-2-specific CD8+ memory precursor
effector T cells than those with severe disease [57,106], suggesting an impaired or delayed
generation of memory CD8+ T cells in patients with severe COVID-19.

Two–three weeks after symptoms onset, the frequency of circulating SARS-CoV-2-
specific T cells starts declining [109] (Figure 3). The kinetics of the contraction phase
differs, at least in part, between CD4+ and CD8+ T cells: CD8+ T cells are progressively
reduced starting about 1 month after infection, while the frequency of CD4+ T cells is more
stable at least until 2 months [25,110]. The reasons underlying the different kinetics of
contraction are still debated. They might result from the higher tendency of CD8+ T cells to
reside in peripheral tissues than in the circulation and from persisting antigenic depots in
dendritic cells within lymph nodes that sustain CD4+ T-cell activation and proliferation.
Nevertheless, more recent studies analyzing the presence of memory T cells within 8 months
from the infection calculated a comparable half-life for CD4+ (t1/2 94–207 days) and CD8+

(t1/2 125–196 days) T cells [111,112], indicating that the different kinetics are limited to the
first part of the contraction phase. Interestingly, a longitudinal study investigating the
presence of SARS-CoV-2-specific CD4+ T cells at 6 to 15 months after infection calculated
a t1/2 of 377 days, indicating a flattening of the contraction phase and suggesting the
establishment of virus-specific long-term memory T cells.

Data collected in the first months after resolution of SARS-CoV-2 infection indicate that
SARS-CoV-2-specific CD4+ T cells are mainly central memory (TCM) and effector memory
(TEM) T cells, with a trend of TCM increasing and TEM decreasing over time [111,112]. On
the contrary, SARS-CoV-2-specific CD8+ T cells are mainly effector memory (TEM) and
effector memory CD45RA+ (TEMRA) T cells, with an increasing accumulation of TEMRA
over time [107,111,112]. Nonetheless, it has been reported that the majority of SARS-CoV-2-
specific CD8+ T cells one year after infection express the transcription factor cell factor 1
(TCF-1) but not the thymocyte selection-associated high-mobility group box (TOX) [107],
suggesting they are endowed with self-renewal capacity and not terminally differentiated or
exhausted. Moreover, a small population of SARS-CoV-2-specific CD4+ and CD8+ stem-cell
memory T cells (TSCM) have been detected postinfection up to 10 months after symptoms
onset, hinting at the formation of long-lasting virus-specific memory cells [113]. These data
are consistent with the observation made in the context of SARS-CoV-1 infection where
virus-specific memory T cells are detected over 10 years postinfection [99,114].

Most studies investigated the phenotype and function of circulating SARS-CoV-2-
specific T cells from peripheral blood. However, T cells expressing activation markers
or showing clonal expansion have been found in the lungs of patients with COVID-
19 [62,115,116], suggesting the establishment of T cell-mediated responses in the infected
tissues. Although studies investigating the antigen specificity of tissue-infiltrating T cells
during the acute infection are still scarce, SARS-CoV-2-specific CD4+ and CD8+ T cells have
been found in the bone marrow, spleen, lymph nodes, lung, and nasal mucosa of COVID-19
patients up to 6 months after infection [117–119]. The generation of SARS-CoV-2-specific
and cross-reactive resident memory T (TRM) cells in the upper and lower airways [117,120]
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may contribute to the protection against the disease upon reinfection by rapidly recognizing
the virus and providing an alarm function also in case of failure or delay of the innate
immune response [121,122]. Indeed, a longitudinal study of BAL fluid from 273 patients
with severe pneumonia showed an association between the presence of alveolar T cells
targeting structural SARS-CoV-2 proteins and a better clinical outcome in unvaccinated
patients [123].

These data demonstrate that virus-specific CD4+ and CD8+ effector T cells are induced
in response to SARS-CoV-2 infection and contribute to the resolution of the infection.
Infected individuals develop memory T cells that can be detected up to 15 months after
infection and are predicted to last for years. SARS-CoV-2-specific memory T cells include
circulating and tissue-resident T cells (Figure 4) that can provide multiple layers of enhanced
protection against a severe disease upon reinfection.
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Figure 4. Protective immunological memory induced by SARS-CoV-2 infection and vaccination.
SARS-CoV-2 infection and COVID-19 vaccines elicit the production of circulating neutralizing and
non-neutralizing Abs and induce the differentiation of memory B cells, CD4+ T cells, and CD8+ T
cells that can significantly protect against severe COVID-19, hospitalization, and death. The natural
infection also stimulates the differentiation of mucosal neutralizing Abs and CD4+ and CD8+ TRM

cells that provide local protection at the site of viral entry and avoid virus spread. Neutralizing Abs
are the only component of the adaptive immune system that can prevent infection and generate
sterilizing immunity.

6. SARS-CoV-2-Specific T-Cell Responses to COVID-19 Vaccines

The development of vaccines against SARS-CoV-2 has been the breakthrough for
mitigating the severe illness and hospitalization associated with COVID-19. The objective
of vaccines is to stimulate an immune response against a pathogen without causing the
pathogen-associated disease to train the immune system to face the same pathogen in
the context of a natural infection. Four different types of COVID-19 vaccines have been
developed and approved. They use as antigen source the inactivated whole virus (e.g.,
CoronaVac by Sinovac, BBIBP-CorV by Sinopharm, and BBV125 COVAXIN by Bharat
Biotech) or just the S protein, which can be delivered in the form of messenger RNA
(e.g., BNT162b2 by Pfizer-BioNTech and mRNA-1273 by Moderna), adenoviral vector (e.g.,
ChAdOx1-S by Oxford/AstraZeneca, Ad26.COV2.S by Janssen, and Gam-COVID-Vac
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by Gamaleya), or recombinant protein (e.g., NVX-CoV2373 by Novavax). According to
the results from phase III clinical trials, the protection against the wild-type SARS-CoV-2-
induced disease ranges from 94 to 95% of two doses of mRNA-based vaccines [124,125] to
67–74% of one or two doses of adenoviral vector-based vaccines [126,127]. The efficacy of
the other vaccines lies in between: it was about 89% for the protein-based vaccine [128] and
78–83% for those using inactivated viral particles [129,130].

The primary output of vaccine effectiveness is the production of nAbs that can poten-
tially prevent the infection, providing a sterilizing immunity. Therefore, the presence and
abundance of S-specific nAbs provide the strongest correlate of protection from subsequent
infection with the same viral strain and disease development [131,132]. However, studies
performed in relevant animal models demonstrate that antigen-specific T cells induced by
vaccination contribute to the efficacy of vaccines [133,134]. They can extend the duration of
vaccine-induced protective immunity after circulating antibodies start waning and broaden
the protection against antibody-escaping virus variants.

S-specific CD4+ T cells are found in nearly all human subjects receiving two doses
of mRNA COVID-19 vaccines, and memory CD4+ T cells are maintained up to 6 months
after the second dose [135–138]. The frequencies of S-specific CD4+ memory T cells elicited
by the two doses of mRNA COVID-19 vaccines and their distribution among the TCM,
TEM, and TEMRA subsets are comparable with those induced by natural infection, and the
patterns of contraction and estimated half-lives are also similar [137–140]. Interestingly,
vaccine-induced CD4+ memory T cells include a fraction of TSCM cells that may support
establishing long-term memory [139]. Looking at the effector function of S-specific CD4+ T
cells, they are mainly cTFH cells and TH1 cells producing IFN-γ, TNF-α, and IL-2 [141]. As
for the natural infection, the frequency of vaccine-induced cTFH cells positively correlates
with nAb titers [135,142]. Notably, the frequency of vaccine-induced cTFH and TH1 cells
after the first immunization correlate with the abundance of nAbs and frequency of S-
specific CD8+ T cells following the second dose of the vaccine, highlighting the role of
rapidly stimulated CD4+ T cells in coordinating the immune response to the second vaccine
dose, especially in individuals who did not experience previous SARS-CoV-2 infection [140].
Moreover, although the frequency of S-specific cTFH cells peaks one week after the second
immunization, S-specific TFH cells in lymph nodes persist at least for 6 months [143],
and their impairment is strictly associated with compromised germinal center reactions
and nAbs production, as shown in immunocompromised individuals undergoing kidney
transplantation [144]. S-specific polyfunctional TH1 cells and cTFH cells are comparably
induced by adenoviral vector-based and recombinant protein-based vaccines [138,145],
although it is difficult to assess a quantitative side-by-side comparison, also due to different
immunization schedules [138].

S-specific CD8+ T cells are detected in about 70–90% of subjects who received two
doses of mRNA vaccines. However, memory CD8+ T cells are maintained only in 40–65% of
people six months after the second dose [135–138]. Moreover, the magnitude of CD8+ T-cell
memory is lower than CD4+ memory T cells [146,147]. Nonetheless, vaccine-induced CD8+

T cells are polyfunctional; they are able to produce different effector molecules, such as
IFN-γ, TNF-α, and granzyme B; and, like S-specific CD4+ T cells, their distribution among
T-cell subsets mirrored the one observed in a natural infection, with a prevalence of TEM
and TEMRA cells [138,139,141,147]. Notably, a vaccine based on adjuvanted recombinant
S protein elicits a very low frequency of S-specific CD8+ memory T cells compared with
mRNA vaccines [138], with minimal effects on the protection from the disease measured
during clinical trials, indicating a superior role for CD4+ T cells in establishing the vaccine-
induced protective immunity.

The knowledge about generating S-specific TRM cells upon vaccination is still inade-
quate. However, one study reported the absence of vaccine-induced S-specific T cells in the
BAL fluid of vaccinated subjects despite their detection in peripheral blood [148]. Similarly,
a second study showed a very limited induction of S-specific TRM cells in lung biopsies
following mRNA vaccination compared to infection [149].
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These data demonstrate that COVID-19 vaccines trigger the development of S-specific
CD4+ memory T cells and, often, CD8+ memory T cells. In particular, S-specific CD4+ T
cells have a pivotal role in orchestrating the humoral and cellular responses to the vaccine.
Moreover, vaccine-induced S-specific CD4+ and CD8+ memory T cells have a functional
phenotype similar to that observed in response to natural infection and are predicted to be
long-lived. On the contrary, COVID-19 vaccines seem unable to elicit the differentiation of
S-specific TRM cells (Figure 4).

7. T-Cell Responses to SARS-CoV-2 Variants and Hybrid Immunity

Despite having evolved an RNA proofreading mechanism acting during replica-
tion [150], SARS-CoV-2 has accumulated many mutations over time. Most of these mu-
tations do not modify the amino acid sequence of viral proteins or do not provide any
evolutionary benefit. However, some mutations that provide survival advantages and
improved viral “fitness” have spread worldwide and are defined as variants of concern
(VoCs). The major VoCs include Alpha (B.1.17 lineage), Beta (B.1.351), Delta (B.1.617), and
Omicron (B.1.1.529). In particular, Delta and Omicron VoCs are characterized by signifi-
cantly higher transmissibility and infectivity. The presence of multiple mutations in the
S protein, especially in the RBD domain, allows these VoCs to escape, at least in part, the
immune protection mediated by nAbs generated in response to previous infection and
vaccination [151,152]. Moreover, Omicron can escape the neutralizing activity of most, but
not all, of the therapeutic monoclonal antibodies currently available for clinical use [153].

The ability of VoCs to escape the control of vaccine-induced nAbs has raised concerns.
However, several pieces of evidence show that vaccine-induced T cells can recognize all
the SARS-CoV-2 variants of concern, including Omicron, largely preserving the protection
against severe COVID-19 [136,137,141,154,155]. This is possible because S-specific CD4+

and CD8+ T cells recognize a median of 10–11 Spike epitopes in each person, and the great
majority of these epitopes are conserved across VoCs [136].

The emergence of antibody-escaping VoCs and the drop in nAb titers 6–8 months after
vaccination induced many countries to implement the third dose of vaccine (booster) at
about 6 months from the second dose, especially to protect fragile subjects. The booster
dose of mRNA vaccine promptly restores S-specific antibody titers and elicits potent
neutralization across different VoCs, including Omicron, at least for three months after
vaccination [156–158]. The enhanced functionality of the induced nAbs derives from the
reexpansion of preexisting memory B-cell clones and the stimulation of new B-cell responses
with increased potency and breadth [159]. Evidence from other vaccines with a three-dose
schedule indicates that durable Ab responses are triggered after the third dose [146], but
evaluating the durability of the protective immunity induced by the COVID-19 vaccination
booster will require more time and additional studies. S-specific T cells are also rapidly
restimulated after the booster vaccine [160], even in a good proportion (>50%) of patients
with compromised immune responses secondary to different diseases or therapies [161,162].
However, data about T cells are largely limited to the measurement of IFN-γ production,
and additional information on their functional phenotype is still missing.

The vaccination of people who had been previously infected by SARS-CoV-2 and the
infection of vaccinated people by SARS-CoV-2 VoCs have provided additional insights
on T-cell responses to SARS-CoV-2 following repeated exposures as well as on hybrid
immunity, intended as a combined immune response to natural infection and a vaccine.
S- and RBD-specific memory B-cell frequencies substantially increase and have higher
somatic hypermutation and affinity maturation in hybrid immunity than after vaccina-
tion [137,163,164]. Consequently, nAbs titers and breadth of neutralization of VoCs are
significantly improved in hybrid immune responses compared with the vaccination or the
infection alone [146]. On the contrary, there are only modest differences in the frequency of
circulating S-specific CD4+ and CD8+ T cells and their IFN-γ production capacity between
hybrid immunity and vaccination [140,165–167]. However, data on the quality of T-cell
responses elicited by hybrid immunity are still scattered. A study reported that although
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the order in the type of exposure (infection or vaccination first) affects the distribution
between S- and non-S-specific T-cell responses, there is no evidence of major alterations
in the TCR repertoire of epitope-specific CD8+ T cells upon repeated exposure [168]. The
same study showed that repeated stimulations lead to a shift in SARS-CoV-2-specific CD8+

memory T cells toward TEMRA cells, but these cells are not exhausted [168]. Another report
showed, instead, that vaccination can induce a repertoire of S-specific CD4+ T-cell clones
that substantially diverges from the one previously activated by the infection [169], thus
further broadening the antigen-specific T-cell response against the virus. Similarly, SARS-
CoV-2 breakthrough infections have been reported to enhance the magnitude, breadth,
and repertoire of T-cell responses [170]. Another possible advantage of hybrid immunity
compared to vaccination alone is the generation of TRM cells [171] observed after SARS-
CoV-2 infection but not upon vaccination (Figure 4). However, further investigation of
vaccine-induced T-cell tissue immunity is required to clarify this topic.

Together, these data indicate that memory T cells induced by infection and vaccination
can protect against SARS-CoV-2 antibody-escaping variants thanks to a polyclonal response
that can recognize multiple conserved epitopes.

8. Conclusions and Future Perspectives

The optimal protection against SARS-CoV-2 infection requires all the components of
the innate and adaptive immune systems to function coordinately. When this happens,
SARS-CoV-2 infection is resolved in a few days without or with mild symptoms. On the
contrary, an impairment or delay in activating one of these components, due to virus-
dependent or host-dependent factors, results in an uncoordinated response that can lead to
severe disease. Upon infection, the adaptive immune system develops a memory of SARS-
CoV-2 that generates enhanced immune responses and protection in case of reexposure
to the same virus. COVID-19 vaccines are designed to mimic the SARS-CoV-2 infection
without disease to train the adaptive immune system to develop an immune memory that
protects us when we are naturally exposed to the virus.

The immunological memory is mediated by four different arms of the adaptive im-
mune system: antibodies, memory B cells, and memory CD4+ and CD8+ T cells. Antibodies
are the only component that can prevent infection. Their continuous production is sustained
by long-lived plasma cells, but it is clear that circulating SARS-CoV-2 nAbs levels decline
some months after infection or vaccination. Moreover, the emergence of viral variants has
made it evident that reaching herd immunity and completely blocking the circulation of
the virus are targets currently not achievable. Nonetheless, memory T cells can efficiently
protect us from severe disease and, in part, from symptomatic infection. SARS-CoV-2-
specific memory T cells can recognize several conserved viral epitopes and protect against
SARS-CoV-2 variants that breach the antibody barrier. Therefore, the efficacy of vaccines
in establishing protective immunity should be routinely evaluated not only based on the
capacity to elicit the production of nAbs, as currently performed, but also on the ability to
generate antigen-specific memory T cells. However, T cells can recognize antigens only in
the context of MHC presentation, making the ex vivo identification and characterization of
antigen-specific T cells difficult and hindering the development of high-throughput screen-
ing platforms. This aspect will require technical and technological improvements, which
will be critical not only for clinical applications but also for the fundamental investigation
aimed at increasing our knowledge of the mechanisms guiding the development of human
memory T cells.

Approved COVID-19 vaccines have been developed extremely quickly thanks to the
knowledge acquired in the last decades and have proven to be highly effective in protecting
against severe COVID-19 but not from reinfection, also due to the emergence of viral
variants. Currently, pharmaceutical companies are updating COVID-19 vaccines with the
Spike sequence of the emerging SARS-CoV-2 variants, but they are evolving too fast to
keep pace [172]. The development of a pan-coronavirus vaccine would overcome this issue
and have a great epidemiologic and economic value [173]: about fifteen of these vaccine
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candidates are in development [174–176]. They have different degrees of target breadth,
ranging from SARS-CoV-2 variants to the whole coronavirus genus, but they are still far
from reaching clinical use [175,176].

In the meantime, there is room for improving approved vaccines. First, the observation
that circulating nAbs titers decline a few months after vaccination suggests that current vac-
cines cannot efficiently trigger the differentiation of long-lived plasma cells [177]. Second,
approved vaccines, different from natural infection, fail to generate resident memory T and
B cells and mucosal Abs. TRM cells can provide a rapid reaction of the immune system when
the virus infects peripheral tissues, such as the nasopharyngeal mucosa and the lungs, thus
preventing viral spreading from the site of entry and symptomatic disease. The differentia-
tion of vaccine-induced TRM cells may depend on the route of immunization [134,178,179],
the kind of antigen [180], or the use of specific adjuvants [181,182]. The “prime-and-pull”
vaccination strategy has proven to generate both systemic and local memory T cells [183]
and was effective in reducing Herpes simplex virus type-2 recurrent infections in pre-
clinical studies [184]. In this setting, a conventional parenteral vaccination that elicits a
systemic T-cell response (prime) is followed by the local application of the antigen or a
chemoattractant (pull) to establish a pool of TRM cells [183,185]. Interestingly, multiple
parenteral immunizations can also induce the differentiation of TRM cells [186], although
with lower efficiency compared with the local antigen administration [187], suggesting
that the third or the fourth dose of current vaccines may generate S-specific TRM cells to a
certain extent. A “prime-and-pull” strategy could be recapitulated for COVID-19 vaccines
by combining the current schedules of intramuscular vaccination with a boost of a locally
administered vaccine, such as through the nasal route. Intranasal COVID-19 vaccines are
under development [188] and have shown promising results in animal models [189–191].
Upon completion of clinical trials, they may represent an additional weapon in the fight
against COVID-19.

Another element that may be improved to ameliorate vaccine efficacy is the adjuvant.
Adjuvants are vaccine components that stimulate the immune system to enhance the
magnitude, breadth, and durability of the vaccine-induced immune response when these
signals are not provided by the antigen, namely, in all vaccines except for those made
of live attenuated pathogens [192]. At the moment there are very few vaccine adjuvants
approved for clinical use, and while they have been extensively tested for their capacity to
enhance Abs production, the knowledge of their effect on memory T-cell differentiation is
surprisingly scarce [192]. Developing vaccine adjuvants that can induce the generation of
long-lived memory T cells with the proper polarization and homing capacity will certainly
improve the efficacy of vaccines.

To conclude, the COVID-19 pandemic has greatly challenged humanity with huge
social and economic costs and the loss of millions of lives. At the same time, it has boosted
unprecedented cooperation in the scientific community and has led to the rapid devel-
opment of therapeutic and preventive strategies to tackle the emergency. Extraordinary
progress has been quickly made in disentangling and understanding the immune response
to SARS-CoV-2 infection and vaccination, and this knowledge will be precious in guiding
the development of improved vaccines against SARS-CoV-2 and other diseases.
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of Biorender.com.
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