CT584 Is Not a Protective Vaccine Antigen against Respiratory Chlamydial Challenge in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasmids and Sequences
2.2. Stocks of C. muridarum
2.3. Cell-Free Protein Synthesis of CT584 and Purification Strategies
2.4. Purification of C. muridarum recombinant MOMP (rMOMP)
2.5. HS-AFM Data Collection
2.6. HS-AFM Data Processing and Analysis
2.7. Vaccination of Female BALB/c Mice
2.8. Intranasal Challenge with Cm EBs and Evaluation of the Course of the Infection in Mice
2.9. Antibody Titer Determination
2.10. Tissue Harvest and Single-Cell Isolation
2.11. SDS-PAGE/WBs
2.12. Ex Vivo Restimulation
2.13. Flow Cytometric Analysis
2.14. Statistical Analyses
3. Results
3.1. High Yields of CT584 Can Be Produced Using Cell-Free Protein Synthesis
3.2. High-Speed Atomic Force Microscopy Reveals CFPS Produced CT584 Has a Native-like Conformation
3.3. CT584 Is Immunogenic in Mouse Models and Generates an IgG Antibody Response
3.4. CT584 Immunization Is Not Protective against an Intranasal C. muridarum Challenge
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newman, L.; Rowley, J.; Vander Hoorn, S.; Wijesooriya, N.S.; Unemo, M.; Low, N.; Stevens, G.; Gottlieb, S.; Kiarie, J.; Temmerman, M. Global Estimates of the Prevalence and Incidence of Four Curable Sexually Transmitted Infections in 2012 Based on Systematic Review and Global Reporting. PLoS ONE 2015, 10, e0143304. [Google Scholar] [CrossRef] [PubMed]
- den Heijer, C.D.J.; Hoebe, C.J.P.A.; Driessen, J.H.M.; Wolffs, P.; van den Broek, I.V.F.; Hoenderboom, B.M.; Williams, R.; de Vries, F.; Dukers-Muijrers, N.H.T.M. Chlamydia trachomatis and the Risk of Pelvic Inflammatory Disease, Ectopic Pregnancy, and Female Infertility: A Retrospective Cohort Study Among Primary Care Patients. Clin. Infect. Dis. 2019, 69, 1517–1525. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Mao, J.; Li, K.T.; Walker, J.S.; Chou, R.; Fu, R.; Chen, W.; Darville, T.; Klausner, J.D.; Tucker, J.D. Pregnancy and fertility-related adverse outcomes associated with Chlamydia trachomatis infection: A global systematic review and meta-analysis. Sex. Transm. Infect. 2020, 96, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Yan, W.; Jing, W.; Qin, C.; Liu, Q.; Liu, M.; Liu, J. Increasing incidence rates of sexually transmitted infections from 2010 to 2019: An analysis of temporal trends by geographical regions and age groups from the 2019 Global Burden of Disease Study. BMC Infect. Dis. 2022, 22, 574. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.N.; Niles, J.K.; Kaufman, H.W.; Marlowe, E.M.; Alagia, D.P.; Chi, G.; Van Der Pol, B. Impact of the COVID-19 Pandemic on Chlamydia and Gonorrhea Screening in the U.S. Am. J. Prev. Med. 2021, 61, 386–393. [Google Scholar] [CrossRef]
- Peterson, E.M.; You, J.Z.; Motin, V.; de la Maza, L.M. Intranasal immunization with Chlamydia trachomatis, serovar E, protects from a subsequent vaginal challenge with the homologous serovar. Vaccine 1999, 17, 2901–2907. [Google Scholar] [CrossRef]
- Sowa, S.; Sowa, J.; Collier, L.H.; Blyth, W.A. Trachoma vaccine field trials in The Gambia. J. Hyg. (Lond) 1969, 67, 699–717. [Google Scholar] [CrossRef]
- Woolridge, R.L.; Grayston, J.T.; Chang, I.H.; Cheng, K.H.; Yang, C.Y.; Neave, C. Field trial of a monovalent and of a bivalent mineral oil adjuvant trachoma vaccine in Taiwan school children. Am. J. Ophthalmol. 1967, 63, 1645–1650. [Google Scholar] [CrossRef]
- Caldwell, H.D.; Kromhout, J.; Schachter, J. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect. Immun. 1981, 31, 1161–1176. [Google Scholar] [CrossRef]
- de la Maza, L.M.; Darville, T.L.; Pal, S. Chlamydia trachomatis vaccines for genital infections: Where are we and how far is there to go? Expert. Rev. Vaccines 2021, 20, 421–435. [Google Scholar] [CrossRef]
- Nans, A.; Kudryashev, M.; Saibil, H.R.; Hayward, R.D. Structure of a bacterial type III secretion system in contact with a host membrane in situ. Nat. Commun. 2015, 6, 10114. [Google Scholar] [CrossRef] [PubMed]
- Shaw, E.I.; Dooley, C.A.; Fischer, E.R.; Scidmore, M.A.; Fields, K.A.; Hackstadt, T. Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Mol. Microbiol. 2000, 37, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Bailey, L.; Gylfe, A.; Sundin, C.; Muschiol, S.; Elofsson, M.; Nordstrom, P.; Henriques-Normark, B.; Lugert, R.; Waldenstrom, A.; Wolf-Watz, H.; et al. Small molecule inhibitors of type III secretion in Yersinia block the Chlamydia pneumoniae infection cycle. FEBS Lett. 2007, 581, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Muschiol, S.; Bailey, L.; Gylfe, A.; Sundin, C.; Hultenby, K.; Bergstrom, S.; Elofsson, M.; Wolf-Watz, H.; Normark, S.; Henriques-Normark, B. A small-molecule inhibitor of type III secretion inhibits different stages of the infectious cycle of Chlamydia trachomatis. Proc. Natl. Acad. Sci. USA 2006, 103, 14566–14571. [Google Scholar] [CrossRef] [PubMed]
- Muschiol, S.; Normark, S.; Henriques-Normark, B.; Subtil, A. Small molecule inhibitors of the Yersinia type III secretion system impair the development of Chlamydia after entry into host cells. BMC Microbiol. 2009, 9, 75. [Google Scholar] [CrossRef]
- Bulir, D.C.; Liang, S.; Lee, A.; Chong, S.; Simms, E.; Stone, C.; Kaushic, C.; Ashkar, A.; Mahony, J.B. Immunization with chlamydial type III secretion antigens reduces vaginal shedding and prevents fallopian tube pathology following live C. muridarum challenge. Vaccine 2016, 34, 3979–3985. [Google Scholar] [CrossRef]
- Liang, S.; Mahony, J.B. Intranasal vaccination with a Chimeric Chlamydial Antigen BD584 confers protection against Chlamydia trachomatis genital tract infection. J. Vaccines Immunol. 2020, 6, 010–017. [Google Scholar] [CrossRef]
- Bulir, D.C.; Waltho, D.A.; Stone, C.B.; Liang, S.; Chiang, C.K.; Mwawasi, K.A.; Nelson, J.C.; Zhang, S.W.; Mihalco, S.P.; Scinocca, Z.C.; et al. Chlamydia Outer Protein (Cop) B from Chlamydia pneumoniae possesses characteristic features of a type III secretion (T3S) translocator protein. BMC Microbiol. 2015, 15, 163. [Google Scholar] [CrossRef]
- Bulir, D.C.; Waltho, D.A.; Stone, C.B.; Mwawasi, K.A.; Nelson, J.C.; Mahony, J.B. Chlamydia pneumoniae CopD translocator protein plays a critical role in type III secretion (T3S) and infection. PLoS ONE 2014, 9, e99315. [Google Scholar] [CrossRef]
- Markham, A.P.; Jaafar, Z.A.; Kemege, K.E.; Middaugh, C.R.; Hefty, P.S. Biophysical characterization of Chlamydia trachomatis CT584 supports its potential role as a type III secretion needle tip protein. Biochemistry 2009, 48, 10353–10361. [Google Scholar] [CrossRef]
- Hufnagel, K.; Hoenderboom, B.; Harmel, C.; Rohland, J.K.; van Benthem, B.H.B.; Morre, S.A.; Waterboer, T. Chlamydia trachomatis Whole-Proteome Microarray Analysis of The Netherlands Chlamydia Cohort Study. Microorganisms 2019, 7, 703. [Google Scholar] [CrossRef] [PubMed]
- Cowan, C.; Philipovskiy, A.V.; Wulff-Strobel, C.R.; Ye, Z.; Straley, S.C. Anti-LcrV antibody inhibits delivery of Yops by Yersinia pestis KIM5 by directly promoting phagocytosis. Infect. Immun. 2005, 73, 6127–6137. [Google Scholar] [CrossRef] [PubMed]
- Philipovskiy, A.V.; Cowan, C.; Wulff-Strobel, C.R.; Burnett, S.H.; Kerschen, E.J.; Cohen, D.A.; Kaplan, A.M.; Straley, S.C. Antibody against V antigen prevents Yop-dependent growth of Yersinia pestis. Infect. Immun. 2005, 73, 1532–1542. [Google Scholar] [CrossRef] [PubMed]
- de la Maza, L.M.; Pal, S.; Khamesipour, A.; Peterson, E.M. Intravaginal Inoculation of Mice with the Chlamydia trachomatis Mouse Pneumonitis Biovar Results in Infertility. Infect. Immun. 1994, 62, 2094–2097. [Google Scholar] [CrossRef] [PubMed]
- Nigg, C. An unidentified virus which produces pneumonia and systemic infection in mice. Science 1942, 995, 49–50. [Google Scholar] [CrossRef]
- Garenne, D.; Haines, M.C.; Romantseva, E.F.; Freemont, P.; Strychalski, E.A.; Noireaux, V. Cell-free gene expression. Nat. Rev. Methods Primers 2021, 1, 49. [Google Scholar] [CrossRef]
- Batista, A.C.; Soudier, P.; Kushwaha, M.; Faulon, J.L. Optimising protein synthesis in cell-free systems, a review. Eng. Biol. 2021, 5, 10–19. [Google Scholar] [CrossRef]
- Li, X.; Abrahams, C.L.; Yu, A.; Embry, M.; Henningsen, R.; DeAlmeida, V.I.; Matheny, S.; Kline, T.; Yam, A.Y.; Stafford, R.L.; et al. Targeting CD74 in B-cell non-Hodgkin lymphoma with the antibody-drug conjugate STRO-001. Oncotarget 2023, 14, 1–13. [Google Scholar] [CrossRef]
- Li, X.; Zhou, S.; Abrahams, C.L.; Krimm, S.; Smith, J.; Bajjuri, K.; Stephenson, H.T.; Henningsen, R.; Hanson, J.; Heibeck, T.H.; et al. Discovery of STRO-002, a Novel Homogeneous ADC Targeting Folate Receptor Alpha, for the Treatment of Ovarian and Endometrial Cancers. Mol. Cancer Ther. 2023, 22, 155–167. [Google Scholar] [CrossRef]
- Fairman, J.; Agarwal, P.; Barbanel, S.; Behrens, C.; Berges, A.; Burky, J.; Davey, P.; Fernsten, P.; Grainger, C.; Guo, S.; et al. Non-clinical immunological comparison of a Next-Generation 24-valent pneumococcal conjugate vaccine (VAX-24) using site-specific carrier protein conjugation to the current standard of care (PCV13 and PPV23). Vaccine 2021, 39, 3197–3206. [Google Scholar] [CrossRef]
- Putman, T.; Hybiske, K.; Jow, D.; Afrasiabi, C.; Lelong, S.; Cano, M.A.; Wu, C.; Su, A.I. ChlamBase: A curated model organism database for the Chlamydia research community. Database 2019, 2019, baz041. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Peterson, E.M.; de la Maza, L.M. Vaccination with the Chlamydia trachomatis major outer membrane protein can elicit an immune response as protective as that resulting from inoculation with live bacteria. Infect. Immun. 2005, 73, 8153–8160. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Pal, S.; Weiland, J.; Peterson, E.M.; de la Maza, L.M. Protection against an intranasal challenge by vaccines formulated with native and recombinant preparations of the Chlamydia trachomatis major outer membrane protein. Vaccine 2009, 27, 5020–5025. [Google Scholar] [CrossRef] [PubMed]
- Kodera, N.; Sakashita, M.; Ando, T. Dynamic proportional-integral-differential controller for high-speed atomic force microscopy. Rev. Sci. Instrum. 2006, 77, 083704. [Google Scholar] [CrossRef]
- Uchihashi, T.; Kodera, N.; Ando, T. Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nat. Protoc. 2012, 7, 1193–1206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tunuguntla, R.H.; Choi, P.O.; Noy, A. Real-time dynamics of carbon nanotube porins in supported lipid membranes visualized by high-speed atomic force microscopy. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160226. [Google Scholar] [CrossRef]
- Niina, T.; Matsunaga, Y.; Takada, S. Rigid-body fitting to atomic force microscopy images for inferring probe shape and biomolecular structure. PLoS Comput. Biol. 2021, 17, e1009215. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Open Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Agger, E.M.; Rosenkrands, I.; Hansen, J.; Brahimi, K.; Vandahl, B.S.; Aagaard, C.; Werninghaus, K.; Kirschning, C.; Lang, R.; Christensen, D.; et al. Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): A versatile adjuvant for vaccines with different immunological requirements. PLoS ONE 2008, 3, e3116. [Google Scholar] [CrossRef]
- Pal, S.; Tifrea, D.F.; Follmann, F.; Andersen, P.; de la Maza, L.M. The cationic liposomal adjuvants CAF01 and CAF09 formulated with the major outer membrane protein elicit robust protection in mice against a Chlamydia muridarum respiratory challenge. Vaccine 2017, 35, 1705–1711. [Google Scholar] [CrossRef]
- Pal, S.; Fielder, T.J.; Peterson, E.M.; de la Maza, L.M. Protection against infertility in a BALB/c mouse salpingitis model by intranasal immunization with the mouse pneumonitis biovar of Chlamydia trachomatis. Infect. Immun. 1994, 62, 3354–3362. [Google Scholar] [CrossRef] [PubMed]
- Tifrea, D.F.; He, W.; Pal, S.; Evans, A.C.; Gilmore, S.F.; Fischer, N.O.; Rasley, A.; Coleman, M.A.; de la Maza, L.M. Induction of Protection in Mice against a Chlamydia muridarum Respiratory Challenge by a Vaccine Formulated with the Major Outer Membrane Protein in Nanolipoprotein Particles. Vaccines 2021, 9, 755. [Google Scholar] [CrossRef] [PubMed]
- Tuller, T.; Waldman, Y.Y.; Kupiec, M.; Ruppin, E. Translation efficiency is determined by both codon bias and folding energy. Proc. Natl. Acad. Sci. USA 2010, 107, 3645–3650. [Google Scholar] [CrossRef] [PubMed]
- Bolanos-Garcia, V.M.; Davies, O.R. Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography. Biochim. Biophys. Acta 2006, 1760, 1304–1313. [Google Scholar] [CrossRef]
- Barta, M.L.; Hickey, J.; Kemege, K.E.; Lovell, S.; Battaile, K.P.; Hefty, P.S. Structure of CT584 from Chlamydia trachomatis refined to 3.05 A resolution. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2013, 69, 1196–1201. [Google Scholar] [CrossRef]
- Pal, S.; Cruz-Fisher, M.I.; Cheng, C.; Carmichael, J.R.; Tifrea, D.F.; Tatarenkova, O.; de la Maza, L.M. Vaccination with the recombinant major outer membrane protein elicits long-term protection in mice against vaginal shedding and infertility following a Chlamydia muridarum genital challenge. NPJ Vaccines 2020, 5, 90. [Google Scholar] [CrossRef]
- Chu, R.S.; Targoni, O.S.; Krieg, A.M.; Lehmann, P.V.; Harding, C.V. CpG Oligodeoxynucleotides Act as Adjuvants that Switch on T Helper 1 (Th1) Immunity. J. Exp. Med. 1997, 186, 1623–1631. [Google Scholar] [CrossRef]
- Marques, R.F.; de Melo, F.M.; Novais, J.T.; Soares, I.S.; Bargieri, D.Y.; Gimenez, A.M. Immune System Modulation by the Adjuvants Poly (I:C) and Montanide ISA 720. Front. Immunol. 2022, 13, 910022. [Google Scholar] [CrossRef]
- Pal, S.; Slepenkin, A.; Felgner, J.; Huw Davies, D.; Felgner, P.; de la Maza, L.M. Evaluation of Four Adjuvant Combinations, IVAX-1, IVAX-2, CpG-1826+Montanide ISA 720 VG and CpG-1018+Montanide ISA 720 VG, for Safety and for Their Ability to Elicit Protective Immune Responses in Mice against a Respiratory Challenge with Chlamydia muridarum. Pathogens 2023, 12, 863. [Google Scholar] [CrossRef]
- Knudsen, N.P.; Olsen, A.; Buonsanti, C.; Follmann, F.; Zhang, Y.; Coler, R.N.; Fox, C.B.; Meinke, A.; D’Oro, U.; Casini, D.; et al. Different human vaccine adjuvants promote distinct antigen-independent immunological signatures tailored to different pathogens. Sci. Rep. 2016, 6, 19570. [Google Scholar] [CrossRef]
- Vasilakos, J.P.; Smith, R.M.; Gibson, S.J.; Lindh, J.M.; Pederson, L.K.; Reiter, M.J.; Smith, M.H.; Tomai, M.A. Adjuvant activities of immune response modifier R-848: Comparison with CpG ODN. Cell Immunol. 2000, 204, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Unemo, M.; Bradshaw, C.S.; Hocking, J.S.; de Vries, H.J.C.; Francis, S.C.; Mabey, D.; Marrazzo, J.M.; Sonder, G.J.B.; Schwebke, J.R.; Hoornenborg, E.; et al. Sexually transmitted infections: Challenges ahead. Lancet Infect. Dis. 2017, 17, e235–e279. [Google Scholar] [CrossRef] [PubMed]
- Warfel, K.F.; Williams, A.; Wong, D.A.; Sobol, S.E.; Desai, P.; Li, J.; Chang, Y.F.; DeLisa, M.P.; Karim, A.S.; Jewett, M.C. A Low-Cost, Thermostable, Cell-Free Protein Synthesis Platform for On-Demand Production of Conjugate Vaccines. ACS Synth. Biol. 2023, 12, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Wilding, K.M.; Zhao, E.L.; Earl, C.C.; Bundy, B.C. Thermostable lyoprotectant-enhanced cell-free protein synthesis for on-demand endotoxin-free therapeutic production. New Biotechnol. 2019, 53, 73–80. [Google Scholar] [CrossRef]
- Stark, J.C.; Jaroentomeechai, T.; Moeller, T.D.; Hershewe, J.M.; Warfel, K.F.; Moricz, B.S.; Martini, A.M.; Dubner, R.S.; Hsu, K.J.; Stevenson, T.C.; et al. On-demand biomanufacturing of protective conjugate vaccines. Sci. Adv. 2021, 7, eabe9444. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Felderman, M.; Evans, A.C.; Geng, J.; Homan, D.; Bourguet, F.; Fischer, N.O.; Li, Y.; Lam, K.S.; Noy, A.; et al. Cell-free production of a functional oligomeric form of a Chlamydia major outer-membrane protein (MOMP) for vaccine development. J. Biol. Chem. 2017, 292, 15121–15132. [Google Scholar] [CrossRef]
- Mueller, K.E.; Plano, G.V.; Fields, K.A. New frontiers in type III secretion biology: The Chlamydia perspective. Infect. Immun. 2014, 82, 2–9. [Google Scholar] [CrossRef]
- Fellows, P.; Price, J.; Martin, S.; Metcalfe, K.; Krile, R.; Barnewall, R.; Hart, M.K.; Lockman, H. Characterization of a Cynomolgus Macaque Model of Pneumonic Plague for Evaluation of Vaccine Efficacy. Clin. Vaccine Immunol. 2015, 22, 1070–1078. [Google Scholar] [CrossRef]
- Heath, D.G.; Anderson, G.W., Jr.; Mauro, J.M.; Welkos, S.L.; Andrews, G.P.; Adomovicz, J.; Friedlander, A.M. Protection against experimental bubonic and pneumonic plague by a recombinant capsular Fl-V antigen fusion protein vaccine. Vaccine 1998, 16, 1131–1137. [Google Scholar] [CrossRef]
- Jneid, B.; Moreau, K.; Plaisance, M.; Rouaix, A.; Dano, J.; Simon, S. Role of T3SS-1 SipD Protein in Protecting Mice against Non-typhoidal Salmonella typhimurium. PLoS Neglected Trop. Dis. 2016, 10, e0005207. [Google Scholar] [CrossRef]
- Martinez-Becerra, F.J.; Kumar, P.; Vishwakarma, V.; Kim, J.H.; Arizmendi, O.; Middaugh, C.R.; Picking, W.D.; Picking, W.L. Characterization and Protective Efficacy of Type III Secretion Proteins as a Broadly Protective Subunit Vaccine against Salmonella enterica Serotypes. Infect. Immun. 2018, 86, e00473-17. [Google Scholar] [CrossRef] [PubMed]
- Stary, G.; Olive, A.; Radovic-Moreno, A.F.; Gondek, D.; Alvarez, D.; Basto, P.A.; Perro, M.; Vrbanac, V.D.; Tager, A.M.; Shi, J.; et al. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 2015, 348, aaa8205. [Google Scholar] [CrossRef] [PubMed]
- Webster, E.; Seiger, K.W.; Core, S.B.; Collar, A.L.; Knapp-Broas, H.; Graham, J.; Shrestha, M.; Afzaal, S.; Geisler, W.M.; Wheeler, C.M.; et al. Immunogenicity and Protective Capacity of a Virus-like Particle Vaccine against Chlamydia trachomatis Type 3 Secretion System Tip Protein, CT584. Vaccines 2022, 10, 111. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Wang, J.; Zhong, G. Preclinical screen for protection efficacy of chlamydial antigens that are immunogenic in humans. Infect. Immun. 2023, 91, e0034923. [Google Scholar] [CrossRef]
- Ramsey, K.H.; Soderberg, L.S.; Rank, R.G. Resolution of chlamydial genital infection in B-cell-deficient mice and immunity to reinfection. Infect. Immun. 1988, 56, 1320–1325. [Google Scholar] [CrossRef]
- Williams, D.M.; Grubbs, B.; Schachter, J. Primary murine Chlamydia trachomatis pneumonia in B-cell-deficient mice. Infect. Immun. 1987, 55, 2387–2390. [Google Scholar] [CrossRef]
- Morrison, S.G.; Morrison, R.P. A predominant role for antibody in acquired immunity to chlamydial genital tract reinfection. J. Immunol. 2005, 175, 7536–7542. [Google Scholar] [CrossRef]
- Liu, C.; Hufnagel, K.; O’Connell, C.M.; Goonetilleke, N.; Mokashi, N.; Waterboer, T.; Tollison, T.S.; Peng, X.; Wiesenfeld, H.C.; Hillier, S.L.; et al. Reduced Endometrial Ascension and Enhanced Reinfection Associated With Immunoglobulin G Antibodies to Specific Chlamydia trachomatis Proteins in Women at Risk for Chlamydia. J. Infect. Dis. 2022, 225, 846–855. [Google Scholar] [CrossRef]
i.n./i.m. Immunization Group (n = 5 mice/group) | Pooled Anti-EB Serum Dilution Titer | Pooled Vaginal Wash Anti-EB Titer | |||
---|---|---|---|---|---|
IgG1 | IgG2a | IgG2a/IgG1 | IgG | IgA | |
CT584 | 800 | 3200 | 4 | 160 | <10 |
Cm rMOMP | 51,200 | 51,200 | 1 | 640 | 80 |
CT584 + Cm rMOMP | 25,600 | 51,200 | 2 | 160 | 80 |
Live Cm EB (i.n) | 1600 | 25,600 | 16 | 640 | 1280 |
PBS | <100 | <100 | - | <10 | <10 |
i.m./i.m. Immunization group (n = 5 mice/group) | Anti-EB Serum Dilution Geometric Mean Titer | Pooled Vaginal Wash Anti-EB Titer | |||
IgG1 (min–max) | IgG2a (min–max) | IgG2a/IgG1 | IgG | IgA | |
CT584 | 3676 (1600–6400) | 3200 (200–25,600) | 0.9 | 80 | <10 |
Cm rMOMP | 38,802 (6400–204,800) | 178,289 (102,400–409,600) | 4.6 | 1280 | 20 |
PBS | <100 | <100 | - | <10 | <10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang-Phou, S.; Pal, S.; Slepenkin, A.; Abisoye-Ogunniyun, A.; Zhang, Y.; Gilmore, S.F.; Shelby, M.L.; Bourguet, F.A.; Mohagheghi, M.V.; Noy, A.; et al. CT584 Is Not a Protective Vaccine Antigen against Respiratory Chlamydial Challenge in Mice. Vaccines 2024, 12, 1134. https://doi.org/10.3390/vaccines12101134
Hoang-Phou S, Pal S, Slepenkin A, Abisoye-Ogunniyun A, Zhang Y, Gilmore SF, Shelby ML, Bourguet FA, Mohagheghi MV, Noy A, et al. CT584 Is Not a Protective Vaccine Antigen against Respiratory Chlamydial Challenge in Mice. Vaccines. 2024; 12(10):1134. https://doi.org/10.3390/vaccines12101134
Chicago/Turabian StyleHoang-Phou, Steven, Sukumar Pal, Anatoli Slepenkin, Abisola Abisoye-Ogunniyun, Yuliang Zhang, Sean F. Gilmore, Megan L. Shelby, Feliza A. Bourguet, Mariam V. Mohagheghi, Aleksandr Noy, and et al. 2024. "CT584 Is Not a Protective Vaccine Antigen against Respiratory Chlamydial Challenge in Mice" Vaccines 12, no. 10: 1134. https://doi.org/10.3390/vaccines12101134
APA StyleHoang-Phou, S., Pal, S., Slepenkin, A., Abisoye-Ogunniyun, A., Zhang, Y., Gilmore, S. F., Shelby, M. L., Bourguet, F. A., Mohagheghi, M. V., Noy, A., Rasley, A., de la Maza, L. M., & Coleman, M. A. (2024). CT584 Is Not a Protective Vaccine Antigen against Respiratory Chlamydial Challenge in Mice. Vaccines, 12(10), 1134. https://doi.org/10.3390/vaccines12101134