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Abstract: Introduction: End-stage renal disease (ESRD) results in immune dysfunction that is charac-
terized by both systemic inflammation and immune incompetence, leading to impaired responses to
vaccination. Methods: To unravel the complex regulatory immune interplay in ESRD, we performed
the network-based transcriptomic profiling of ESRD patients on maintenance hemodialysis (HD)
and matched healthy controls (HCs) who received the two-dose regimen of the COVID-19 mRNA
vaccine BNT162b2. Results: Co-expression networks based on blood transcription modules (BTMs) of
genes differentially expressed between the HD and HC groups revealed co-expression patterns that
were highly similar between the two groups but weaker in magnitude in the HD compared to HC
subjects. These networks also showed weakened coregulation between BTMs within the dendritic cell
(DC) family as well as with other BTM families involved with innate immunity. The gene regulatory
networks of the most enriched BTMs, likewise, highlighted weakened targeting by transcription
factors of key genes implicated in DC, natural killer (NK) cell, and T cell activation and function.
The computational deconvolution of immune cell populations further bolstered these findings with
discrepant proportions of conventional DC subtypes, NK T cells, and CD8+ T cells in HD subjects
relative to HCs. Conclusion: Altogether, our results indicate that constitutive inflammation in ESRD
compromises the activation of DCs and NK cells, and, ultimately, their mediation of downstream
lymphocytes, leading to a delayed but intact immune response to mRNA vaccination.

Keywords: gene regulatory network; transcriptomics; epigenetics; hemodialysis; end-stage renal disease

1. Introduction

End-stage renal disease (ESRD), the most advanced stage of chronic kidney disease
(CKD), is highly prevalent in the United States: the United States Renal Data System
reports over 2219 per million population and 135,972 new cases in 2021 alone. Of these,
83.8% underwent in-center hemodialysis (HD); nonetheless, ESRD patients on HD faced a
mortality rate of 191.5 per 1000 person-years, with infections and cardiovascular disease as
the most common causes [1]. ESRD manifests as a duality of immune incompetence driven
by uremic toxicity, which leads to increased risk of infection, co-existing with immune
activation driven by the accumulation of proinflammatory cytokines, which contributes to
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the progression of atherosclerotic lesions and vascular disease [1,2]. The uremic state in
ESRD is known to contribute to the chronic activation of natural killer (NK) cells, monocytes,
dendritic cells (DCs), T cells, and B cells and the production of proinflammatory cytokines
that predisposes these cells to anergy, apoptosis, and overall premature immunological
aging that could be traced to epigenetic remodeling [3]. As a result, this duality has
not only led to higher susceptibility to infection, but also lower response to vaccination:
higher vaccination failure rates have been reported for hepatitis B virus, influenza virus,
Clostridium tetani, and Corynebacterium diphtheriae [4,5].

More recently, studies of the COVID-19 BTN162b2 mRNA vaccine in HD patients pre-
sented a more optimistic outlook compared to responses to prior vaccines, demonstrating
seroconversion rates as high as 96%, though there was still some reduction in SARS-CoV-2
IgG antibodies in HD patients [6–10]. The improved immune protection has been attributed
to the novel design philosophy of mRNA vaccines, which engages both innate and adaptive
components of the immune response through local inflammation at the site of injection as
well as replicating key features of natural viral infection, including the production of anti-
genic proteins by host cells and the induction of type I interferon (IFN) and downstream Th1
polarization, without the same risks that live vaccines would pose to immunocompromised
populations [11]. At the same time, our group previously reported delayed transitioning
from the innate immune response to the adaptive immune response in HD patients com-
pared to healthy controls (HCs) over the course of the two-dose BTN162b2 vaccination
regimen, likely as a product of chronic immune activation/desensitization in this patient
population [10]. Work by other groups has also demonstrated a decreased innate immune
response to SARS-CoV-2 glycoprotein stimulation in HD patients compared to HCs at 4–5
and 8–9 weeks post-vaccination [12]. Further complicating these matters are conflicting
reports of both innate and adaptive immune mechanisms underlying ESRD [13–16].

While transcriptomic approaches have tackled this complexity by extracting key differ-
entially expressed genes associated with immune phenotypes, there is growing recognition
for examining the regulatory processes that govern gene expression as well. Biological
networks offer a holistic characterization of the complex dysregulated interactions among
genes and regulators in ESRD [17]. At the most fundamental level, these networks consist
of nodes, which typically represent genes or other biological targets of interest, connected to
other nodes by edges, which can represent co-expression or other types of relationships of
relevance [18]. When these relationships can be quantified, e.g., as correlation coefficients,
network analysis can aid in pinpointing the most significant relationships from background
noise. Therefore, we propose to investigate mechanisms of regulatory dysfunction under-
lying the delayed immune response to COVID-19 (BNT162b2) mRNA vaccination in HD
subjects as compared to healthy controls (HCs) at the (1) transcriptional, (2) epigenetic,
and (3) cellular levels by means of network analysis centered around (1) gene module
co-expression and (2) gene transcriptional regulation, and combined with (3) immune cell
populations computationally deconvoluted from expression data (Figure S1).

2. Results
2.1. Demographic and Clinical Characterization of Hemodialysis and Control Cohorts

We utilized previously published bulk RNA-seq data from our group, which recruited
20 ESRD patients (estimated glomerular filtration rate < 15 mL/min) on maintenance
hemodialysis (HD) and 20 matched healthy control (HC) cohorts who received the original
two-dose BNT162b2 mRNA vaccine series against SARS-CoV-2 in 2021 [10]. Peripheral
blood transcriptomes were profiled at four timepoints: baseline before (V1D0) and seven
days after the first dose (V1D7), and baseline before (V2D0) and seven days after the second
vaccine dose (V2D7). Only subjects with all four time points represented were included in
this study for network construction, resulting in a final total of 12 HD subjects and 19 HC
subjects. Demographics and clinical data for this subset is shown in Table 1. Aside from
mean age and race, for which Black/African American subjects were more dominantly
represented in the HD cohort, and White/Caucasians more dominantly represented in the
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HC cohort, the two cohorts shared similar demographics. Common ESRD comorbidities
including type 2 diabetes mellitus and hypertension were more highly represented in the
HD cohort. On average, HD patients had serum creatinine of 8.8 ± 2.7 (normal range:
0.50–1.50 mg/dL for men and 0.40–1.20 mg/dL for women) and underwent 44 ± 37 months
on dialysis before the dialysis session on their first round of vaccination.

Table 1. Demographic (gender, age, race/ethnicity) and clinical data (body mass index [BMI] and past
medical history of diabetes, hypertension, and positive COVID-19 infection) are shown for hemodialysis
and control groups, with p < 0.05 considered significantly different between the two groups.

Hemodialysis Control p-Value

Total Number of Subjects 12 19
Gender

Male 7 7 0.4233
Female 5 12 0.4233

Age 59 ± 12 46 ± 16 0.0224
Race/Ethnicity

Black/African American 7 2 0.01428
Asian/Pacific Islander 1 2 1.0

White/Caucasian 2 10 0.1044
Hispanic/Latinx 2 5 0.8533

BMI (kg/m2) 25 ± 8 29 ± 8 0.1856
Medical History

Diabetes 7 2 0.01428
Hypertension 8 3 0.01247

Positive COVID-19 6 4 0.1988

2.2. Differential Gene Expression Analysis Shows Delayed Onset of Vaccine-Induced Innate
Immunity in HD

As described in Chang et al., differential gene expression analysis between pre- and
post-vaccination time points (V1D0 vs. V1D7, V2D0 vs. V2D7), followed by gene set
enrichment analysis using blood transcription modules (BTMs), revealed temporal dif-
ferences in BTMs between the HC and HD cohorts [10]. In HC subjects, T cell activity
was increased and monocyte activity decreased at V1D7 relative to V1D0, while plasma
cell activity was increased at V2D7 relative to V2D0, illustrating an expected transition
from innate to cell-mediated immunity beginning with the first vaccine dose. In contrast,
HD subjects featured increased myeloid cell activity at V1D7 and increased PLK signaling
at V2D7. As we have previously shown comparable antibody responses by V2D7 in both
groups, the persistence of innate immune activity well past the first dose in HD patients
suggests that the immune response may be delayed compared to HCs, potentially through
aberrant transcriptional regulation.

2.3. BTM Co-Expression Networks Show Globally Weakened Coregulation of Vaccine-Induced
Immune Response in HD Subjects

First, co-expression networks were constructed based on the first principal component,
or eigengene, of the BTMs for each group. As described previously, BTMs represent
334 modules of co-expressed genes, established based on human blood transcriptomes
from over 30,000 human blood transcriptome samples across more than 500 studies [19].
The dimensional reduction from thousands of genes to several hundred BTMs enables
a high-level understanding of the regulatory patterns of the vaccine-induced immune
response in HD versus HC subjects. It further enables the downstream construction of
single-subject networks with a higher signal-to-noise ratio.

Co-expression could be characterized as positive or negative, where positive co-
expression indicates that the activation of one component corresponds with the activation
of the other, and negative co-expression when the activation of one component corresponds
with repression of the other. Both the HD and HC BTM co-expression networks demon-
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strated overall similar co-expression patterns, represented as network edges, with 91% of
the 3449 statistically significant edges in the across-group network (p < 0.05, FDR-adjusted)
sharing the same direction of coregulation for both groups (1653 positive; 1496 negative)
(Figure 1A). However, the HD participants generally exhibited weaker edge strength, or
coregulation, between BTMs compared to the HCs. Of the edges that were positively coreg-
ulated in both groups, 241 (15%) exhibited weaker regulation in the HD group compared to
HCs (p < 0.05, FDR-adjusted), while only 90 (5%) exhibited stronger regulation (Figure 1A).
Similarly, of the edges that were negatively coregulated in both groups, 236 (16%) edges
exhibited weaker negative regulation in HD participants (p < 0.05, FDR-adjusted), while
only 21 (1%) exhibited stronger negative regulation (Figure 1A). These group-level BTM co-
expression patterns were similarly observed in networks constructed at the single-subject
level for each group, indicating that weakened coregulation is a consistent feature across
individual HD subjects (Figure 1B).
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Figure 1. Blood transcription module (BTM) co-expression networks for hemodialysis (HD) group
demonstrate similar but weaker patterns of co-expression compared to healthy control (HC) networks.
(A) Group-level BTM co-expression networks are constructed from pairwise Pearson correlations
between pairs of BTM eigengenes across subjects and time points before each vaccination dose (V1D0,
V2D0) and one week after each vaccination dose (V1D7, V2D7), separately for HC (top diagonal) and
HD (bottom diagonal) groups. (B) Representative single-subject BTM co-expression networks for HC
(top diagonal) and HD (bottom diagonal) groups are likewise constructed across time points for each
subject. Color scale characterizes these correlations as positive (red), negative (blue), or no correlation
(white), with darker colors indicating stronger correlation.

When visualizing co-expression strength as edge weight distributions across the
entire network per subject, the HC subjects exhibited a bimodal distribution with peaks
at highly positive and negative edges that is largely lost in the HD subjects (Figure 2A).
This comparison is confirmed statistically with the median edge weight (Fisher Z-value)
across all positively coregulated edges being significantly less positive in the HD subjects
compared to HCs (p < 0.05) (Figure 2B). Similarly, the median edge weight across all
negatively coregulated edges was significantly less negative in the HD subjects compared
to HCs (p < 0.05) (Figure 2B). These comparisons maintained statistical significance when
incorporating SARS-CoV-2 as a covariate. Overall, the BTM co-expression networks at
both the group and single-subject levels demonstrate weakened positive and negative
coregulation of the immune response in HD subjects over the course of the two-dose
BNT162b2 mRNA vaccine regimen.
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2.4. BTMs Involved in Innate Immunity Demonstrate Less Positively Correlated Co-Expression in
HD Subjects

In order to identify the key immune processes with compromised coregulation in HD
subjects, the BTMs were further categorized into six broader families (B cells, cell cycle,
dendritic cell/antigen presentation [DC/APC], type I interferon [IFN type I], myeloid
activity/inflammation [Myeloid/Inflamm], and T/NK cells), and member edges from HD
or HC co-expression networks were then correlated within the same family (intrafamily
edges) as well as between different families (interfamily edges) [20]. Notably, the DC/APC
family showed the most altered intrafamily co-expression, with 30% of intrafamily edges
demonstrating weakened positive co-expression in HD subjects relative to HCs (Figure 3A).
Of these, the most weakened edge was between LI.M43.0 (Myeloid, dendritic cell activation
via NfkB (I)) and LI.S5 (DC surface signature). This indicates that many of the BTMs within
the DC/APC family are less strongly co-activated with one another in HD. There was
also substantial weakening of positive interfamily co-expression pairwise between the
DC/APC, IFN type I, and Myeloid/Inflamm families (Figure 3B).
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Figure 3. Comparison of group-level BTM family associations between HC and HD groups show
weaker positive co-expression in HD. Co-expression patterns for both HC and HD groups are shown
between each set of BTM families (cell cycle, DC/Ag pres, IFN type I, Myeloid/Inflamm, T/NK
cells) based on percentage of (A) intrafamily edges and (B) interfamily edges that were positively
co-expressed (both pos), negatively co-expressed (both neg), or co-expressed with opposite signs
(discordant). Edge co-expression was classified as concordantly stronger in HD (purple), concordantly
weaker in HD (yellow), or discordant with positive (brown) or negative (blue) edges in HD subjects.
Percentages of edges with FDR-corrected p < 0.05 were considered significantly different between HC
and HD groups.

When comparing the median edge weights between HD and HC subjects at the
single-subject level, the DC/APC and Myeloid/Inflamm families demonstrated signif-
icantly weaker positive intrafamily co-expression in HD subjects (p < 0.01, p < 0.0001),
while the T/NK family was the only family to demonstrate stronger negative intrafamily
co-expression in the HD group (p < 0.05) (Figure 4A). Additionally, the DC/APC fam-
ily demonstrated weaker positive interfamily co-expression in the HD compared to the
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HC group (p < 0.05), including the weakening of positive interfamily regulation pair-
wise between the DC/APC, IFN type I, and Myeloid/Inflamm families (Figure 4B). The
DC/APC family also showed weaker negative interfamily co-expression (p < 0.01) with the
B cell, Myeloid/Inflamm, and T/NK BTM families (Figure 4B). The weakened negative
co-expression with the T/NK family was the most significantly altered negative edge be-
tween all pairs of BTM families (p < 0.001), with the most weakened negative edge between
the DC/APC BTM LI.M43.0 (Myeloid, dendritic cell activation via NfkB (I)) and T/NK
BTM LI.M7.0 (enriched in T cells (I)). Both the weakened positive and negative edges were
also seen in the group-level BTM co-expression networks (Figure 3). Taken together, the
mRNA vaccine-induced immune response in HD subjects shows primary weakening of
positive coregulation among DC/APC BTMs that is associated with the weaker positive
coregulation of BTMs involved in innate immunity and the weaker negative coregulation of
BTMs involved in cellular immunity, implicating the disruption of immune programming
at the transcriptional level.
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Figure 4. Comparison of single-subject BTM family associations between HC and HD groups show
weakened positive and negative co-expression in HD subjects. (A) Box-and-whisker plots of median
edge strength of intrafamily edges are shown for HD (purple) and HC (yellow) groups, separately
for positive edges (top) and negative edges (bottom) for BTMs within each family (B cells, cell-cycle,
DC/Ag pres, Myeloid/Inflamm, T/NK cells). (B) Median edge strength of interfamily edges is
shown for HD and HC groups, separately for positive edges (left) and negative edges (right), pairwise
between each family. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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2.5. Gene Regulatory Networks Reveal Weakened Transcriptional Regulation of Innate Immune
Targets in HD Subjects

We investigated the precise transcriptional elements that may be driving the dysfunc-
tional coregulation in HD subjects by constructing gene regulatory networks for each BTM
using PANDA (Passing Messages between Networks for Data Assimilation) [21]. PANDA
is a gene regulatory network reconstruction method that predicts regulatory relationships
between gene expression and transcription factors using protein–protein interaction, gene
expression, and sequence motif data. Our PANDA analyses demonstrated significant
regulatory network differences for 35 BTMs (p < 0.05, FDR-adjusted). Of these BTMs,
25 exhibited weakened targeting in HD subjects and 10 exhibited stronger targeting. The
top three most differentially targeted BTMs were LI.M161.0 (enriched in NK cells (II)),
LI.M43.0 (myeloid, dendritic cell activation via NFkB), and LI.M7.2 (growth factor induced,
enriched in nuclear receptor subfamily), all of which exhibited weakened regulation in the
HD group.

In LI.M61.0 (enriched in NK cells (II)), the core enrichment genes consist of cell
surface receptors on T cells and NK cells. In order of significance, these were TGFBR3,
KIR2DS4, CD7, IL2RB, S1PR5, KIR2DL3, KIR3DL1, CD247, and KIR2DL1. The top 150 most
dysregulated edges involving these core enrichment genes are shown in Figure 5. TGFBR3
encodes Type III TGF-beta receptor, which is a central co-receptor for the TGF-beta family
required for high affinity binding, but can also undergo ectodomain shedding, ultimately
inhibiting downstream signaling [22,23]. In fact, blocking the receptor has been shown to
promote the TGFβ-dependent induction of Tregs [24]. The gene, therefore, plays a dual
role in immune activation and tolerance. While most dysregulated gene targets in this
BTM exhibit altered targeting primarily by transcription factors (TFs) that function both
as activators and repressors, TGFBR3 demonstrates weaker targeting, predominantly by
transcriptional repressors including MECP2 and MBD2, which bind methylated promoter
regions of DNA [25,26]. Similarly, IL2RB, which is vital for T-cell-mediated immunity and
immune tolerance via T regulatory cells (Tregs), [27] exhibited weakened regulation by
many repressive TFs including MBD2, DNMT1, REST, E2F4, and SMAD2. Meanwhile,
KIR2DS4, KIR2DL3, KIR3DL1, and KIR2DL1 encode NK cell receptors that interact with
human leukocyte antigen class I molecules (HLA-I). While KIR2DS4 triggers NK cell
degranulation upon binding to a conserved bacterial epitope of many human pathogens,
KIR2DL3, KIR3DL1, and KIR2DL1 are inhibitory receptors [28,29]. The weakened targeting
of LI.M61.0 can, thus, be broadly characterized as the dysregulation of both activating and
tolerogenic receptors on T and NK cells.

The dysregulation of LI.M43.0 (myeloid, dendritic cell activation via NFkB (I)) is driven
by the significantly altered targeting of core enrichment genes ICAM1, IL23A, NFKBID,
VCAM1, EBI3, CD83, BCL3, RELB, TNF, NFKB2, and MAP3K8 (Figure 6). These genes
represent various players in the NFkB pathway, including TNF, NFKB2, MAP3K8, BCL3,
RELB, and NFkB inhibitor NFKBID, as well as cytokines and receptors expressed by DCs,
including IL23A, EBI3, and CD83. Except for MAP3K8, which was more strongly regulated
in HD patients, all of the remaining core enrichment genes exhibit decreased regulation by
several transcriptional repressors, including the decreased targeting of ICAM by MBD2,
DNMT1, and E2Fs, as well as the decreased targeting of TNF by ZBTB4, MECP2, TGIF1,
ZNF350, and SMAD2.
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Figure 6. The LI.M43.0 (myeloid, dendritic cell activation via NFkB) BTM is the second most
significantly dysregulated BTM in HD subjects. The top 150 most dysregulated edges involving the
core enrichment genes, which contribute significantly to this enrichment of this BTM, are shown.
Green rectangles are TFs, light blue rectangles are core enriched genes, orange edges are more
weakly regulated in HD compared to HC subjects, and purple edges are more strongly regulated in
HD compared to HC subjects.



Vaccines 2024, 12, 1146 11 of 21

The dysregulation of LI.M94.0 (growth-factor-induced, enriched in nuclear receptor
subfamily 4) is driven by the decreased regulation of NR4A1, PPP1R15A, ID1, and CDKN1A
(Figure 7), of which the latter three are involved in apoptotic signaling [30–32]. The final
core enriched gene is Inhibitor of Differentiation 1 (Id1), which is responsible for a switch
from DC differentiation to myeloid-derived suppressor cell and Treg expansion, in response
to TGF-beta [33]. All of these core enriched genes demonstrate decreased targeting by
repressive transcription factors, including ZBTB33, MECEP2, MBD2, and DNMT1.
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Figure 7. The LI.M94.0 (growth-factor-induced, enriched in nuclear receptor subfamily 4) BTM is
the third most significantly dysregulated BTM in HD subjects. The top 150 most dysregulated edges
involving the core enrichment genes, which contribute significantly to enrichment of this BTM, are
shown. Green rectangles are TFs, light blue rectangles are core enriched genes, orange edges are more
weakly regulated in HD compared to HC subjects, and purple edges are more strongly regulated in
HD compared to HC subjects.

Notably, many of the enriched core genes in the BTMs with most weakened regulation
in HD subjects were differentially targeted by MECP2 and MBD2, including TGFBR3, IL2RB,
TNF, and all of the core enriched genes in LI.M94.0 (growth-factor-induced, enriched in
nuclear receptor subfamily 4). MECP2 and MBD2 are members of a family of nuclear
proteins with a methyl-CpG-binding domain (MBD), which typically binds to methylated
promoters to repress transcription [25,26]. Interestingly, MBD2 was also shown to activate
transcription by promoting demethylation in a Treg-specific demethylation region, resulting
in Foxp3 expression and Treg suppressive function [34]. These insights suggest a potential
role of altered DNA methylation of peripheral blood in the immune dysregulation of ESRD.
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2.6. Deconvolution of Immune Cell Populations Reveals Persistent Discrepancies in Innate and
Adaptive Immune Cell Types in HD Subjects

We next investigated how weakened coregulatory networks in HD subjects may be
reflected in the affected immune cell populations. Cell deconvolution analysis provides a
means to computationally identify cell populations from bulk RNA-seq expression data
when such information would otherwise be inaccessible, though its accuracy is largely
dependent on the reference signature markers used for distinguishing cell types [35]. Ac-
cordingly, the deconvolution of HC and HD cell populations across four time points (V1D0,
V1D7, V2D0, V2D7) was performed based on a single-cell RNA-seq dataset derived from
healthy PBMCs stimulated by the same SARS-CoV-2 mRNA vaccine (BNT162b2) and
resolved at 16 immune cell types (CD4+ T, CD14+ monocytes, Naive CD8+ T, CD8+ T,
CD16+ monocytes, NK, cDC2, B, pDC, HPCs, Platelets, NK T, Plasmablasts, Tregs, Naive B,
cDC1) [36]. Overall, the relative proportions of most immune cells did not differ signifi-
cantly between HD and HC samples across all time points, with half significantly differing
between groups at at least one time point (Figure 8).

Differences in some cell types were observed between the HC and HD groups at
baseline (V1D0), including higher proportions of CD8+ T, cDC2 cells, and plasmablasts
in HD (p < 0.01, p < 0.01, p < 0.05). After stimulation with the first vaccine dose, cDC2
cells converged to similar proportions between the HD and HC groups by V1D7, but
CD8+ T cells and plasmablasts remained significantly higher (p < 0.01, p < 0.01) while
CD4+ T cells, Tregs, and naïve B cells were observed to be lower in HD subjects (p < 0.05,
p < 0.05, p < 0.01). By V2D0, the difference in relative proportions of most of these immune
cell types between the HD and HC subjects became non-significant, with CD8+ T cells still
significantly increased in the HD group (p < 0.01) and platelets and NK T cells significantly
decreased (p < 0.01, p < 0.05). Nonetheless, after stimulation with the second vaccine dose at
V2D7, the relative proportion of platelets in the HD subjects became comparable to that in
HCs as well (p < 0.05). While cDC1 proportions did not significantly change in HD subjects,
weakened cDC1 function along with strong proinflammatory cDC2 activity had been
reported in chronic inflammatory conditions [37]. Moreover, while cDC1s are primarily
attributed to the activation of CD8+ T cells, [38] cDC2s have also been found to take
on a hybrid role that includes CD8+ T cell priming during inflammation, [39] indicating
that cDC2 may be driving the elevated baseline CD8+ T cells observed in the HD group.
After vaccine stimulation, this discrepancy disappears as the cDC proportions in the HCs
approach those of the inflammatory state in the HD subjects. More dynamic regulation
of cDC2, as well as Treg and plasmablast, populations in HCs was also evident when
comparing longitudinal changes pre- and post-vaccination with both doses (Figure S2).
In contrast, naive B cells display a temporal delay in trending towards their peak for HD
subjects, which explains the discrepancy observed at V1D7.

It is important to note that, while the relative proportions of most immune cells appear
similar between the HC and HD groups, we had previously reported that baseline WBC
counts in HD subjects skewed toward the low end of normal limits [10]. This means that cell
types with similar proportions between HCs and HD subjects at V1D0 may still translate
to lower absolute counts in HD subjects. Altogether, these cell deconvolution findings
illustrate a pre-existing difference in abundance of both innate and adaptive immune cell
types in the HD group that persisted even after immune stimulation by the two-dose
BNT162b2 mRNA vaccine.
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Figure 8. Cell deconvolution analysis of immune cell populations in HC and HD subjects show
persistent discrepancies in innate and adaptive immune types over the course of the two-dose
vaccination. Relative proportions of 8 significantly altered deconvoluted immune cell types are
shown for HC (yellow) and HD (purple) subjects at four time points before and after vaccination
with two doses (V1D0, V1D7, V2D0, V2D7). * p < 0.05, ** p < 0.01, ns = non-significant.



Vaccines 2024, 12, 1146 14 of 21

3. Discussion

Through BTM co-expression and gene regulatory network analyses, we illustrate
how the delayed immune response to COVID-19 mRNA vaccination in the immunocom-
promised HD population is complicated by the defective coregulation of innate immune
signaling. Our BTM co-expression network results demonstrate broadly weakened cou-
pling between different components of the immune system in HD subjects compared to
HCs, representing a global desensitization likely driven by chronic inflammation. In par-
ticular, BTMs in the DC/APC family exhibited the most weakened positive intrafamily
coregulation. These network findings are further contextualized by our cell deconvolution
analysis of conventional DC subtypes, in which a significantly higher proportion of cDC2s
was noted with a concomitantly lower, albeit non-significant, proportion of cDC1s prior to
vaccination in HD subjects compared to HCs. As a result, both the network and deconvolu-
tion results are consistent with evidence from the literature showing significantly decreased
numbers of DCs in ESRD, which decline further with HD treatment [40], as well as the
impaired maturation of monocytes and DCs and decreased antigen presentation [41–43].

The analysis of the BTM co-expression networks additionally showed weakened
positive and negative interfamily coregulation between the DC/APC, IFN type I, and
Myeloid/Inflamm families. DC dysfunction in ESRD has been proposed to stem from
alterations in pattern recognition receptors (PRRs), including both the increased and de-
creased expression of TLR4 [13,44], increased expression of the secreted PRR mannose-
binding lectin, and increased expression of major macrophage scavenger receptors SR-A
and CD36 [14]. Interestingly, LI.M146 (MHC-TLR7-TLR8) was another BTM found to
exhibit weakened targeting in HD subjects, and features the core enrichment genes TLR7
and TLR8, which have been shown to induce type 1 IFNs in DCs that synergize with the
NFkB pathway to activate DCs [45]. Furthermore, the most significantly weakened edge
in each of these interfamily relationships involving the DC/APC family was LI.M43.0
(Myeloid, dendritic cell activation via NFkB (I)), which is also the second most significantly
dysregulated BTM from our PANDA network analysis, with core enrichment genes includ-
ing NFkB pathway mediators such as TNF, NFkB2, and NFkBID. TNF, a proinflammatory
cytokine that is upregulated by TLR binding and required for NFkB activation and DC
maturation [46,47], is also required for both CD8+ T cell activation and apoptosis [48].
As effector CD8+ T cells possess the potential to differentiate into memory T cells, which
can persist for as long as 10 years post-activation, decreased apoptosis may also lead to
chronically elevated memory T cell populations [49]. As a result, its dysregulation of CD8+
T cell apoptosis may account for the chronically elevated CD8+ T cell populations seen in
HD, as noted in this study as well as others [50,51]. Taken together, these results reinforce
evidence of TLR dysfunction, with a mediating role of type 1 IFN and NFkB induction,
leading to the impaired maturation and activation of DCs.

In addition to BTMs related to myeloid cells, the most significantly dysregulated BTM
from our PANDA analysis was LI.M61.0 (enriched in NK cells (II)), with core enrichment
genes comprising activating and tolerogenic receptors on T cells and NK cells. Though
deconvoluted NK cell proportions did not significantly differ between HD and HC, there
were significant reductions in CD4+ T cells at V1D7 and in NK T cells, which possess
receptors characteristic of both NK and T cells [52] at V2D0 and V2D7 in HD relative to
HCs. TGFBR3 and IL2RB are two core enriched genes that play a critical role in the balance
of activation and tolerance via Tregs [24,27]. The weakened regulation of these genes may,
thus, contribute to the disturbed Treg function reported in ESRD [53,54] as well as the
significantly lower Treg proportions we observed in HD subjects at V1D7. In addition to
Tregs, the IL-2 receptor is also involved in the differentiation of anti-inflammatory Th2 cells,
which have been reported to be diminished in HD patients and may be reflected in the
significantly lower CD4+ proportions observed in our HD subjects at V1D7.

Our regulatory network results from PANDA further identified regulators of cell
survival and apoptosis in ESRD. The ESRD literature has demonstrated the accelerated
apoptosis of neutrophils [55] as well as mixed findings of increased B cell apoptosis in one
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study [15], in contrast to increased B cell survival factors in another study [16]. Our results
showed the weakened regulation of LI.M94.0 (growth-factor-induced, enriched in nuclear
receptor subfamily 4), with differential targeting of three core enriched genes involved in
apoptotic signaling (NR4A1, PPP1R15A, and CDKN1A). In conjunction, the deconvolution
analysis of B cell subtypes in HD subjects revealed a significant decrease in naïve B cells
relative to HCs’ proportions at V1D7, potentially as a result of increased apoptotic activity
following vaccine-induced immune stimulation. In contrast, plasmablasts exhibited signifi-
cantly higher proportions in HD than in HC subjects at V1D0 and V1D7. Immature B cells
were shown to be elevated in another study on ESRD patients with HD treatment [56] and
generally persist in this state in response to chronic stimulation [57]. Nonetheless, both
naïve B cells and plasmablasts normalized to HC levels during V2D0 and V2D7 while
mature B cell populations remained comparatively similar to HCs throughout the vaccine
regimen, suggesting that the earlier observed discrepancies in B cell populations may be a
product of delayed upstream signaling. This is consistent with the comparable antibody
production and neutralizing function observed in mRNA-vaccinated ESRD patients relative
to healthy controls, as previously demonstrated by our group and others [6–10]. The mixed
findings of B cell apoptosis in ESRD are also likely to be context-dependent: Fernández-
Fresnedo et al. cultured peripheral blood cells for four days prior to assessing apoptosis,
while Pahl et al. assessed apoptosis on freshly isolated cells.

There is a wealth of evidence demonstrating TLR-induced alterations of the epigenetic
landscape, leading to both increased and decreased expression of TLR-induced genes [58].
For example, in macrophages, LPS signaling through TLR4 alters chromatin accessibility
at TLR-responsive inflammatory genes including IL-6 [59]. In support of a mediating role
of type 1 IFN in the TLR dysfunction leading to the impaired maturation and activation
of DCs, type I IFN has also been shown to catalyze the methylation of promoters of
NF-kB-responsive genes [60]. Additionally, oxidative stress has been shown to alter DNA
methylation profiles, including in peripheral blood. In fact, oxidative damage to a methyl-
CpG site in a methyl-binding protein recognition sequence has been shown to substantially
reduce the binding affinity of MECP2 [61]. It is reasonable that, in addition to altering the
regulation between immune players, epigenetic mechanisms could independently increase
the susceptibility of immune subsets to apoptosis.

Our study is limited by its small sample size due to the selection of patients with
samples collected across all time points. However, this is partly mitigated by allowing
paired analysis across the time points [62]. Significant differences in mean age, racial/ethnic
background, and past medical history commonly associated with ESRD between the HD
and HC groups could additionally influence the differences observed between the two.
Specifically, others have demonstrated weaker antibody immune responses in patients over
50 years old versus patients younger than 50 years old to the BNT162b2 vaccine [63]. While
the insights made discernible through our bioinformatics approaches have basis in, and
additionally expand on, findings from previous studies, they could be further validated
through more direct measurements of the epigenetic and cellular changes in ESRD PBMCs
using approaches such as ATAC-seq, DNA methylation profiling, and flow cytometry.

Overall, we elucidated a complex regulatory interplay in ESRD with HD resulting in
the simultaneous dampening of immune activation and tolerogenic immune responses that
can be appreciated on both a group- and single-subject level. Moreover, by integrating our
findings at the epigenetic, transcriptional, and cellular biological levels, we gained a more
holistic view of which aspects of the immune system are perturbed and how dysregulation
at one level may affect downstream immune cell populations and activity. Our results
reinforce prior proposals that TLR dysfunction leads to the impaired maturation and
activation of DCs in the HD population. Constitutive stimulation of TLRs may lead to
low-grade baseline inflammation, simultaneously resulting in desensitization that impairs
the ability of the immune system to mount immunogenic responses. While this may have
stymied successful seroconversion by traditional vaccine modalities, mRNA vaccines may
still mount robust, if delayed, antibody responses in HD patients comparable to their
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immunocompetent counterparts by stimulating both the innate and adaptive branches of
the immune response. mRNA vaccines thus present a promising avenue to promote the
immune-responsive vaccination of ESRD and HD patients against COVID-19 and other
high-risk infections.

4. Materials and Methods
4.1. Cohort Recruitment and Sample Acquisition

The study was approved by the University of Illinois at Chicago IRB (#2018-1038)
Ethics Review Committee. All research was performed in accordance with relevant regula-
tions, and informed consent was obtained from all participants. Our recruited cohort and
sample protocols for this study are the same as those previously described [10].

4.2. RNA Extraction and Sequencing

Our RNA extraction and sequencing (RNA-seq) protocols for this study are the same
as those previously described [10].

4.3. Differential Gene Expression Analysis

Our bioinformatics approach to analyzing differential gene expression for this study
are the same as those previously described [10].

4.4. Blood Transcription Module Enrichment Analysis

Gene set enrichment analysis was performed using blood transcription module (BTM)
gene sets according to the same protocols as previously described [10]. To summarize
these analyses, BTMs were categorized into different families reflecting immune cell types
or immunologic processes (as characterized by Braun et al.): B cells, cell cycle, dendritic
cell/antigen presentation, type I interferon (IFN type I), myeloid activity/inflammation,
T/NK cells, and others [20]. The percentage of BTMs in each significantly enriched BTM
family was then quantified at each time point.

4.5. Group-Level and Single-Subject Blood Transcription Module Network Construction

For BTM network construction, BTMs that demonstrated a significant effect of time
point on eigengene expression were selected as candidate BTM nodes. The significance
of time point was assessed using an ANOVA with the main effects of group and time
point and the random effect of subject. The p-values for the main effect of time point were
FDR-corrected across BTMs. Candidate BTMs with significant membership gene overlap
were excluded by the following criterion: if candidate BTMs overlapped with a Jaccard
index greater than 0.2, then only the BTM with the larger number of membership genes
was retained. Using this final set of BTMs, pairwise Pearson correlations were performed
between all BTM eigengenes across subjects and V1D0, V1D7, V2D0, and V2D7 samples,
separately for each subject group to generate one group HC co-expression network and
one HD co-expression network.

Single-subject co-expression networks were constructed in a similar fashion to the group
networks, but with only four samples per network (V1D0, V1D7, V2D0, V2D7). Specifically, for
each subject, a co-expression network was constructed using the same set of BTMs utilized in the
HC and HD group co-expression networks. For a given subject, pairwise Pearson correlations
were performed between all BTM eigengenes across all four time points.

4.6. Group-Level Blood Transcription Module Co-Expression Network Comparison

To compare the HC network to the HD network, Fisher’s Z transformation was applied
to each network’s edges, and then the Z-transformed HC network was subtracted from the
Z-transformed HD network to obtain a Z-score difference network. p-values for the Z-score
difference network, calculated from a Z-score to p-value transformation, were FDR-adjusted
across edges. Edges that were not significantly different between HD and HC after FDR
correction were set to 0 in the Z-score difference network.
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In order to characterize the level of coregulation within each given BTM family (and
the difference between HC and HD subjects), intrafamily co-expression was investigated.
Intrafamily co-expression represents a subnetwork in which nodes comprise all BTMs from
a given family (e.g., B cells, cell cycle). For each BTM family subnetwork, we quantified the
number of differentially co-expressed edges from the Z-difference network that were (1) positively
co-expressed in both HD and HC subjects, but weaker (less positive) in HD, (2) positively co-
expressed in both HD and HC subjects, but stronger in HD, (3) negatively co-expressed in both
HD and HC subjects, but weaker (less negative) in HD, (4) negatively co-expressed in both HD
and HC subjects, but stronger in HD, (5) positively co-expressed in HD subjects, but negative in
HCs, (6) negatively co-expressed in HD subjects, but positive in HCs.

These numbers of dysregulated edges were then divided by the total number of
possible edges within the BTM family (n choose 2, where n is the number of nodes in the
BTM family), yielding the percentage of edges within each family demonstrating each class
of differential co-expression. A similar approach was used to characterize the differential
co-expression of BTMs between BTM families (interfamily co-expression). For each BTM
family, percentages of dysregulated edges between BTMs within a given a family (first
node) and BTMs outside of the family (second node) were quantified. Finally, percentages
of dysregulated edges were quantified pairwise between the BTM families.

4.7. Single Subject-Level BTM Co-Expression Network Comparison

Edge weight (Fisher Z) distributions for single-subject co-expression networks were
compared between HD and HC groups both globally and for each BTM family. A global
statistical comparison of edge weights was achieved by quantifying the median positive
edge weight per subject, and then comparing these between the HD and HC groups using a
Student’s t-test. Global median negative edge comparisons were performed in the same way.

To characterize the differential co-expression of intrafamily BTMs, the median positive
edge weight across all edges within a BTM family was calculated on a per-subject basis.
These median edge weights were then compared between the HD and HC groups using
a Student’s t-test. The median intrafamily negative edge weight within each BTM was
compared in the same fashion.

A similar approach was used to characterize the differential co-expression of interfam-
ily BTMs. For each BTM family, the median positive edge weight across all edges between
BTMs within a given family (first node) and BTMs outside of the family (second node) were
quantified and then compared between the HD and HC groups. The median interfamily
negative co-expression was compared in the same fashion.

4.8. Gene Regulatory Network Construction and Analysis

To more specifically characterize the regulatory interactions underlying altered co-
expression networks, gene regulatory networks were constructed separately for HD and
HC groups using PANDA (Passing Messages between Networks for Data Assimilation) [21].
For the inputs to the PANDA algorithm, we used (1) an initial TF–gene regulatory matrix
derived from the network on the Glass et al. website (https://sites.google.com/a/channing.
harvard.edu/kimberlyglass/tools/resources (accessed on 23 March 2022), which was based
on the TFs present in (2) our previously variance-stabilized gene expression matrix, and
(3) a protein–protein interaction matrix derived from the STRING database interaction
scores between all TFs used in the initial TF–gene regulatory matrix. The output regulatory
network for controls was then subtracted from the output HD regulatory network, yielding
a regulatory difference network. Gene set enrichment analysis was then performed using
the clusterProfiler package [64] with BTM gene sets and a list of gene targets ranked by
most significant edge differences from the regulatory difference network. BTMs with
FDR-adjusted p < 0.05 were considered significantly enriched. The core enrichment genes,
representing those genes that contribute most to the enrichment signal of the BTM, were
obtained for the most enriched BTMs.

https://sites.google.com/a/channing.harvard.edu/kimberlyglass/tools/resources
https://sites.google.com/a/channing.harvard.edu/kimberlyglass/tools/resources
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4.9. Cell Deconvolution Analysis

To determine whether the regulatory findings are driven more by changes in immune
cell populations than activity, we performed cell deconvolution analysis on our previ-
ously variance-stabilized gene expression matrix at four time points (V1D0, V1D7, V2D0,
V2D7) using CIBERSORTx [65]. For the deconvolution reference, we constructed a custom
signature matrix based on a published single-cell RNA-seq dataset of vaccinated control
PBMCs to yield relative proportions for 16 immune cell populations (“CD4 T”, “CD14+
monocytes”, “Naive CD8 T”, “CD8 T”, “CD16+ monocytes”, “NK”, “cDC2”, “B”, “pDC”,
“HPCs”, “Platelets”, “NK T”, “Plasmablasts”, “Tregs”, “Naive B”, “cDC1”), which should
be more representative of the cell markers and populations expected in our vaccinated
cohorts [36]. Wilcoxon rank sum tests were performed to assess significant differences in
relative proportions between the HD and HC groups for each cell type at each time point,
as well as between time points for each cell type.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/vaccines12101146/s1: Figure S1. Overview of study design
and analytical workflow. Peripheral blood mononuclear cells (PBMCs) were collected from healthy
controls (HCs) and ESRD patients on hemodialysis (HD) at four time points before and after receiving
two mRNA vaccine doses (V1D0, V1D7, V2D0, V2D7). After extraction, RNA was analyzed through
RNA-seq, differential gene expression analysis, and gene set enrichment to identify key immune
modules called blood transcription modules (BTMs) and their collective families. Co-expression
networks were constructed from BTMs at the group and single-subject levels, and the degree of
BTM co-expression was compared within each BTM family (intrafamily) and between families
(interfamily). Gene regulatory networks were constructed from gene expression, transcription
factor (TF)–gene regulatory interactions, and protein–protein interactions to illustrate predicted
TF regulatory dynamics of core genes within each BTM. Cell deconvolution of gene expression
data referenced vaccinated PMBC signatures to identify immune cell populations to support our
network findings. Figure S2. Cell deconvolution analysis of immune cell populations in HC and
HD subjects show alterations in innate and adaptive immune types over the course of two-dose
vaccination. Relative proportions of four deconvoluted immune cell types (cDC2, Tregs, naïve B, and
plasmablasts) were significantly altered over four time points before and after vaccination with two
doses (V1D0, V1D7, V2D0, V2D7) in HC (yellow) and HD (purple) subjects. * p < 0.05, ** p < 0.01,
*** p < 0.001, ns = non-significant.
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