Did We Overreact? Insights on COVID-19 Disease and Vaccination in a Large Cohort of Immune-Mediated Inflammatory Disease Patients during Sequential Phases of the Pandemic (The BELCOMID Study)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. SARS-CoV-2 Serologic Testing
2.3. Endpoints
2.4. Data Collection and Statistical Analyses
3. Results
3.1. Demographics Per Vaccination Group
3.2. PCR Positivity Rate and Serologic Analyses per Vaccination Group
3.3. Impact of IMID-Treatment Modality on SARS-CoV-2 and Vaccination Response
3.4. Other Influencing Factors
3.5. IMID Flare-Ups during the Pandemic
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finckh, A.; Ciurea, A.; Raptis, C.E.; Rubbert-Roth, A. Susceptibility to COVID-19 and Immunologic Response to Vaccination in Patients with Immune-Mediated Inflammatory Diseases. J. Infect. Dis. 2023, 228, S13–S23. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 IMID Collaborators Global, regional, and national incidence of six major immune-mediated inflammatory diseases: Findings from the global burden of disease study 2019. EClinicalMedicine 2023, 64, 102193. [CrossRef] [PubMed]
- Li, C.-J.; Wang, Y.-K.; Zhang, S.-M.; Ren, M.-D.; He, S.-X. Global burden of inflammatory bowel disease 1990-2019: A systematic examination of the disease burden and twenty-year forecast. World J. Gastroenterol. 2023, 29, 5751–5767. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, N.A.; Jones, G.-R.; Lamb, C.A.; Appleby, R.; Arnott, I.; Beattie, R.M.; Bloom, S.; Brooks, A.J.; Cooney, R.; Dart, R.J.; et al. British Society of Gastroenterology guidance for management of inflammatory bowel disease during the COVID-19 pandemic. Gut 2020, 69, 984–990. [Google Scholar] [CrossRef]
- Landewé, R.B.; Machado, P.M.; Kroon, F.; Bijlsma, H.W.; Burmester, G.R.; Carmona, L.; Combe, B.; Galli, M.; Gossec, L.; Iagnocco, A.; et al. EULAR provisional recommendations for the management of rheumatic and musculoskeletal diseases in the context of SARS-CoV-2. Ann. Rheum. Dis. 2020, 79, 851–858. [Google Scholar] [CrossRef]
- Verma, A.M.; Patel, A.; Subramanian, S.; Smith, P.J. From intravenous to subcutaneous infliximab in patients with inflammatory bowel disease: A pandemic-driven initiative. Lancet Gastroenterol. Hepatol. 2021, 6, 88–89. [Google Scholar] [CrossRef]
- Geldof, J.; Truyens, M.; Sabino, J.; Ferrante, M.; Lambert, J.; Lapeere, H.; Hillary, T.; Van Laethem, A.; de Vlam, K.; Verschueren, P.; et al. SARS-CoV-2 infection and COVID19 vaccination across eight immune-mediated inflammatory disorders: A prospective, real-life Belgian cohort study—The BELCOMID study. Front. Immunol. 2023, 14, 1126351. [Google Scholar] [CrossRef]
- FDA. Letter of Authorisation: SARS-CoV-2 IgG 2020. Online Resource. Available online: https://www.fda.gov/media/137383/download (accessed on 20 September 2024).
- Wadhwa, A.; Yin, S.; Freeman, B.; Hershow, R.B.; Killerby, M.; Yousaf, A.R.; Lester, S.; Mills, L.; Buono, S.A.; Pomeroy, M.; et al. Comparison of the SARS-CoV-2 spike protein ELISA and the Abbott Architect SARS-CoV-2 IgG nucleocapsid protein assays for detection of antibodies. PLoS ONE 2021, 16, e0255208. [Google Scholar] [CrossRef]
- WHO. Number of COVID-19 Deaths Reported to WHO (Cumulative Total). Online Resource. Available online: https://data.who.int/dashboards/covid19/deaths (accessed on 20 September 2024).
- Akiyama, S.; Hamdeh, S.; Micic, D.; Sakuraba, A. Prevalence and clinical outcomes of COVID-19 in patients with autoimmune diseases: A systematic review and meta-analysis. Ann. Rheum. Dis. 2021, 80, 384–391. [Google Scholar] [CrossRef]
- Eder, L.; Croxford, R.; Drucker, A.M.; Mendel, A.; Kuriya, B.; Touma, Z.; Johnson, S.R.; Cook, R.; Bernatsky, S.; Haroon, N.; et al. Understanding COVID-19 Risk in Patients With Immune-Mediated Inflammatory Diseases: A Population-Based Analysis of SARS–CoV-2 Testing. Arthritis Care Res. 2023, 75, 317–325. [Google Scholar] [CrossRef]
- Garcillán, B.; Salavert, M.; Regueiro, J.R.; Díaz-Castroverde, S. Response to Vaccines in Patients with Immune-Mediated Inflammatory Diseases: A Narrative Review. Vaccines 2022, 10, 297. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.; Tascilar, K.; Kleyer, A.; Fagni, F.; Krönke, G.; Meder, C.; Dietrich, P.; Orlemann, T.; Kliem, T.; Mößner, J.; et al. Impact of Cytokine Inhibitor Therapy on the Prevalence, Seroconversion Rate, and Longevity of the Humoral Immune Response Against SARS—CoV-2 in an Unvaccinated Cohort. Arthritis Rheumatol. 2022, 74, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Mease, P.J.; Chiorean, M.; Iles-Shih, L.; Matos, W.F.; Baumgartner, A.; Molani, S.; Hwang, Y.M.; Belhu, B.; Ralevski, A.; et al. Machine learning to understand risks for severe COVID-19 outcomes: A retrospective cohort study of immune-mediated inflammatory diseases, immunomodulatory medications, and comorbidities in a large US health-care system. Lancet Digit. Health 2024, 6, e309–e322. [Google Scholar] [CrossRef] [PubMed]
- Eder, L.; Croxford, R.; Drucker, A.M.; Mendel, A.; Kuriya, B.; Touma, Z.; Johnson, S.R.; Cook, R.; Bernatsky, S.; Haroon, N.; et al. COVID-19 Hospitalizations, Intensive Care Unit Stays, Ventilation, and Death Among Patients With Immune-mediated Inflammatory Diseases Compared to Controls. J. Rheumatol. 2022, 49, 523–530. [Google Scholar] [CrossRef] [PubMed]
- DiIorio, M.; Kennedy, K.; Liew, J.W.; Putman, M.S.; Sirotich, E.; Sattui, S.E.; Foster, G.; Harrison, C.; Larché, M.J.; Levine, M.; et al. Prolonged COVID-19 symptom duration in people with systemic autoimmune rheumatic diseases: Results from the COVID-19 Global Rheumatology Alliance Vaccine Survey. RMD Open 2022, 8, e002587. [Google Scholar] [CrossRef]
- Paik, J. Ozanimod: A Review in Ulcerative Colitis. Drugs 2022, 82, 1303–1313. [Google Scholar] [CrossRef]
- Simon, D.; Tascilar, K.; Fagni, F.; Krönke, G.; Kleyer, A.; Meder, C.; Atreya, R.; Leppkes, M.; Kremer, A.E.; Ramming, A.; et al. SARS-CoV-2 vaccination responses in untreated, conventionally treated and anticytokine-treated patients with immune-mediated inflammatory diseases. Ann. Rheum. Dis. 2021, 80, 1312–1316. [Google Scholar] [CrossRef]
- Sakuraba, A.; Luna, A.; Micic, D. Serologic Response to Coronavirus Disease 2019 (COVID-19) Vaccination in Patients With Immune-Mediated Inflammatory Diseases: A Systematic Review and Meta-analysis. Gastroenterology 2022, 162, 88–108.e9. [Google Scholar] [CrossRef]
- Vieira Rezende, R.P.; Braz, A.S.; Guimarães, M.F.B.; Ribeiro, S.L.E.; Abreu Vieira, R.M.R.; Bica, B.E.; Cruz, V.A.; Libardi Lira Machado, K.L.; Carvalho, J.S.; Monticielo, O.A.; et al. Characteristics associated with COVID-19 vaccine hesitancy: A nationwide survey of 1000 patients with immune-mediated inflammatory diseases. Vaccine 2021, 39, 6454–6459. [Google Scholar] [CrossRef]
- Pahalyants, V.; Murphy, W.S.; Klebanov, N.; Lu, C.; Theodosakis, N.; Klevens, R.M.; Estir, H.; Lilly, E.; Asgari, M.; Semenov, Y.R. Immunosuppressive biologics did not increase the risk of COVID-19 or subsequent mortality: A retrospective matched cohort study from Massachusetts. J. Am. Acad. Dermatol. 2022, 86, 252–255. [Google Scholar] [CrossRef]
- Brenner, E.J.; Ungaro, R.C.; Gearry, R.B.; Kaplan, G.G.; Kissous-Hunt, M.; Lewis, J.D.; Ng, S.C.; Rahier, J.-F.; Reinisch, W.; Ruemmele, F.M.; et al. Corticosteroids, But Not TNF Antagonists, Are Associated With Adverse COVID-19 Outcomes in Patients With Inflammatory Bowel Diseases: Results From an International Registry. Gastroenterology 2020, 159, 481–491.e3. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.D.L.; Kakehasi, A.M.; Pinheiro, M.M.; Mota, L.M.H.; Albuquerque, C.P.; Silva, C.R.; Santos, G.P.J.; Reis-Neto, E.T.; Matos, P.; Devide, G.; et al. High levels of immunosuppression are related to unfavourable outcomes in hospitalised patients with rheumatic diseases and COVID-19: First results of ReumaCoV Brasil registry. RMD Open 2021, 7, e001461. [Google Scholar] [CrossRef] [PubMed]
- van Dam, K.P.J.; Volkers, A.G.; Wieske, L.; Stalman, E.W.; Kummer, L.Y.L.; van Kempen, Z.L.E.; Killestein, J.; Tas, S.W.; Boekel, L.; Wolbink, G.J.; et al. Primary SARS-CoV-2 infection in patients with immune-mediated inflammatory diseases: Long-term humoral immune responses and effects on disease activity. BMC Infect. Dis. 2023, 23, 332. [Google Scholar] [CrossRef]
- Schulze-Koops, H.; Krueger, K.; Vallbracht, I.; Hasseli, R.; Skapenko, A. Increased risk for severe COVID-19 in patients with inflammatory rheumatic diseases treated with rituximab. Ann. Rheum. Dis. 2021, 80, e67. [Google Scholar] [CrossRef]
- Melong Pianta Taleng, C.M.; Lauper, K.; Gilbert, B.; Cunningham, T.; Guemara, R.; Brulhart, L.; Dan, D.; Courvoisier, D.; Finckh, A. Incidence of COVID-19 in patients treated with infliximab compared with patients treated with rituximab. RMD Open 2021, 7, e001711. [Google Scholar] [CrossRef]
- Langer-Gould, A.; Smith, J.B.; Li, B.H. Multiple sclerosis, rituximab, and COVID-19. Ann. Clin. Transl. Neurol. 2021, 8, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Gianfrancesco, M.; Hyrich, K.L.; Al-Adely, S.; Carmona, L.; Danila, M.I.; Gossec, L.; Izadi, Z.; Jacobsohn, L.; Katz, P.; Lawson-Tovey, S.; et al. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: Data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann. Rheum. Dis. 2020, 79, 859–866. [Google Scholar] [CrossRef]
- Giollo, A.; Bertoldo, E.; Adami, G.; Cybulski, A.J.; Fassio, A.; Orsolini, G.; Idolazzi, L.; Gatti, D.; Viapiana, O.; Rossini, M. Correspondence on ‘Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: Data from the COVID-19 Global Rheumatology Alliance physician-reported registry’ by Gianfrancesco et al. Disease activity, rather than gluco. Ann. Rheum. Dis. 2022, 81, e222. [Google Scholar] [CrossRef] [PubMed]
- Falsey, A.R.; Sobieszczyk, M.E.; Hirsch, I.; Sproule, S.; Robb, M.L.; Corey, L.; Neuzil, K.M.; Hahn, W.; Hunt, J.; Mulligan, M.J.; et al. Phase 3 Safety and Efficacy of AZD1222 (ChAdOx1 nCoV-19) Covid-19 Vaccine. N. Engl. J. Med. 2021, 385, 2348–2360. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Elmahdi, R.; Ward, D.; Ernst, M.T.; Poulsen, G.; Hallas, J.; Pottegård, A.; Jess, T. Impact of immunosuppressive therapy on SARS-CoV-2 mRNA vaccine effectiveness in patients with immune-mediated inflammatory diseases: A Danish nationwide cohort study. BMJ Open 2024, 14, e077408. [Google Scholar] [CrossRef] [PubMed]
- Jena, A.; James, D.; Singh, A.K.; Dutta, U.; Sebastian, S.; Sharma, V. Effectiveness and Durability of COVID-19 Vaccination in 9447 Patients with IBD: A Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2022, 20, 1456–1479.e18. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.L.; Kennedy, N.A.; Ibraheim, H.; Anandabaskaran, S.; Saifuddin, A.; Castro Seoane, R.; Liu, Z.; Nice, R.; Bewshea, C.; D’Mello, A.; et al. COVID-19 vaccine-induced antibody responses in immunosuppressed patients with inflammatory bowel disease (VIP): A multicentre, prospective, case-control study. Lancet Gastroenterol. Hepatol. 2022, 7, 342–352. [Google Scholar] [CrossRef]
- Kennedy, N.A.; Lin, S.; Goodhand, J.R.; Chanchlani, N.; Hamilton, B.; Bewshea, C.; Nice, R.; Chee, D.; Cummings, J.F.; Fraser, A.; et al. Infliximab is associated with attenuated immunogenicity to BNT162b2 and ChAdOx1 nCoV-19 SARS-CoV-2 vaccines in patients with IBD. Gut 2021, 70, 1884–1893. [Google Scholar] [CrossRef]
- Goldberg, Y.; Mandel, M.; Bar-On, Y.M.; Bodenheimer, O.; Freedman, L.S.; Ash, N.; Alroy-Preis, S.; Huppert, A.; Milo, R. Protection and Waning of Natural and Hybrid Immunity to SARS-CoV-2. N. Engl. J. Med. 2022, 386, 2201–2212. [Google Scholar] [CrossRef]
- Desmecht, S.; Tashkeev, A.; El Moussaoui, M.; Marechal, N.; Perée, H.; Tokunaga, Y.; Fombellida-Lopez, C.; Polese, B.; Legrand, C.; Wéry, M.; et al. Kinetics and Persistence of the Cellular and Humoral Immune Responses to BNT162b2 mRNA Vaccine in SARS-CoV-2-Naive and -Experienced Subjects: Impact of Booster Dose and Breakthrough Infections. Front. Immunol. 2022, 13, 863554. [Google Scholar] [CrossRef]
- Dayam, R.M.; Law, J.C.; Goetgebuer, R.L.; Chao, G.Y.C.; Abe, K.T.; Sutton, M.; Finkelstein, N.; Stempak, J.M.; Pereira, D.; Croitoru, D.; et al. Accelerated waning of immunity to SARS-CoV-2 mRNA vaccines in patients with immune-mediated inflammatory diseases. JCI Insight 2022, 7, e159721. [Google Scholar] [CrossRef]
- Bowdish, D.M.E.; Chandran, V.; Hitchon, C.A.; Kaplan, G.G.; Avina-Zubieta, J.A.; Fortin, P.R.; Larché, M.J.; Boire, G.; Gingras, A.-C.; Dayam, R.M.; et al. When Should I Get My Next COVID-19 Vaccine? Data From the Surveillance of Responses to COVID-19 Vaccines in Systemic Immune-Mediated Inflammatory Diseases (SUCCEED) Study. J. Rheumatol. 2024, 51, 721–727. [Google Scholar] [CrossRef]
- Christensen, I.E.; Jyssum, I.; Tveter, A.T.; Sexton, J.; Tran, T.T.; Mjaaland, S.; Kro, G.B.; Kvien, T.K.; Warren, D.J.; Jahnsen, J.; et al. The persistence of anti-Spike antibodies following two SARS-CoV-2 vaccine doses in patients on immunosuppressive therapy compared to healthy controls—A prospective cohort study. BMC Med. 2022, 20, 378. [Google Scholar] [CrossRef]
- Syversen, S.W.; Jyssum, I.; Tveter, A.T.; Sexton, J.; Christensen, I.E.; Tran, T.T.; Bjørlykke, K.H.; Mjaaland, S.; Warren, D.J.; Kvien, T.K.; et al. Immunogenicity and safety of a three-dose SARS-CoV-2 vaccination strategy in patients with immune-mediated inflammatory diseases on immunosuppressive therapy. RMD Open 2022, 8, e002417. [Google Scholar] [CrossRef]
- Kennedy, N.A.; Goodhand, J.R.; Bewshea, C.; Nice, R.; Chee, D.; Lin, S.; Chanchlani, N.; Butterworth, J.; Cooney, R.; Croft, N.M.; et al. Anti-SARS-CoV-2 antibody responses are attenuated in patients with IBD treated with infliximab. Gut 2021, 70, 865–875. [Google Scholar] [CrossRef]
- Jena, A.; Mishra, S.; Deepak, P.; Kumar-M, P.; Sharma, A.; Patel, Y.I.; Kennedy, N.A.; Kim, A.H.J.; Sharma, V.; Sebastian, S. Response to SARS-CoV-2 vaccination in immune mediated inflammatory diseases: Systematic review and meta-analysis. Autoimmun. Rev. 2022, 21, 102927. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.W.; Dayam, R.M.; Shapiro, J.R.; Law, J.C.; Chao, G.Y.C.; Pereira, D.; Goetgebuer, R.L.; Croitoru, D.; Stempak, J.M.; Acheampong, L.; et al. Third and Fourth Vaccine Doses Broaden and Prolong Immunity to SARS-CoV-2 in Adult Patients with Immune-Mediated Inflammatory Diseases. J. Immunol. 2023, 211, 351–364. [Google Scholar] [CrossRef]
- Garcia-Cirera, S.; Calvet, J.; Delgado de la Poza, J.F.; Berenguer-Llergo, A.; Orellana, C.; Rusiñol, M.; Llop, M.; Arévalo, M.; Garcia-Pinilla, A.; Costa, E.; et al. Biological and glucocorticoids treatment impair the medium-term immunogenicity to SARS-CoV-2 mRNA vaccines in autoimmune inflammatory rheumatic diseases. Eur. J. Med. Res. 2024, 29, 28. [Google Scholar] [CrossRef] [PubMed]
- Deepak, P.; Kim, W.; Paley, M.A.; Yang, M.; Carvidi, A.B.; Demissie, E.G.; El-Qunni, A.A.; Haile, A.; Huang, K.; Kinnett, B.; et al. Effect of Immunosuppression on the Immunogenicity of mRNA Vaccines to SARS-CoV-2. Ann. Intern. Med. 2021, 174, 1572–1585. [Google Scholar] [CrossRef]
- Bin Lee, A.R.Y.; Wong, S.Y.; Tay, S.H. Booster COVID-19 Vaccines for Immune-Mediated Inflammatory Disease Patients: A Systematic Review and Meta-Analysis of Efficacy and Safety. Vaccines 2022, 10, 668. [Google Scholar] [CrossRef]
- Kappelman, M.D.; Weaver, K.N.; Zhang, X.; Dai, X.; Watkins, R.; Adler, J.; Dubinsky, M.C.; Kastl, A.; Bousvaros, A.; Strople, J.A.; et al. Factors Affecting Initial Humoral Immune Response to SARS-CoV-2 Vaccines Among Patients With Inflammatory Bowel Diseases. Am. J. Gastroenterol. 2022, 117, 462–469. [Google Scholar] [CrossRef]
- Lin, S.; Kennedy, N.A.; Saifuddin, A.; Sandoval, D.M.; Reynolds, C.J.; Seoane, R.C.; Kottoor, S.H.; Pieper, F.P.; Lin, K.-M.; Butler, D.K.; et al. Antibody decay, T cell immunity and breakthrough infections following two SARS-CoV-2 vaccine doses in inflammatory bowel disease patients treated with infliximab and vedolizumab. Nat. Commun. 2022, 13, 1379. [Google Scholar] [CrossRef]
- Mrak, D.; Kartnig, F.; Sieghart, D.; Simader, E.; Radner, H.; Mandl, P.; Göschl, L.; Hofer, P.; Deimel, T.; Gessl, I.; et al. Accelerated waning of immune responses to a third COVID-19 vaccination in patients with immune-mediated inflammatory diseases. J. Autoimmun. 2023, 135, 102981. [Google Scholar] [CrossRef]
- Costanzo, G.A.M.L.; Sanna, G.; Pes, F.; Deiana, C.M.; Ledda, A.G.; Perra, A.; Palmas, V.; Manca, V.; Miglianti, M.; Coghe, F.; et al. The Effect of Exposure to SARS-CoV-2 Vaccination and Infection on Humoral and Cellular Immunity in a Cohort of Patients with Immune-Mediated Diseases: A Pilot Study. Pathogens 2024, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- Hadjadj, J.; Planas, D.; Ouedrani, A.; Buffier, S.; Delage, L.; Nguyen, Y.; Bruel, T.; Stolzenberg, M.-C.; Staropoli, I.; Ermak, N.; et al. Immunogenicity of BNT162b2 vaccine against the Alpha and Delta variants in immunocompromised patients with systemic inflammatory diseases. Ann. Rheum. Dis. 2022, 81, 720–728. [Google Scholar] [CrossRef]
- Tran, A.P.; Tassone, D.; Nossent, J.; Ding, N.S. Antibody response to the COVID-19 ChAdOx1nCov-19 and BNT162b vaccines after temporary suspension of DMARD therapy in immune-mediated inflammatory disease (RESCUE). RMD Open 2022, 8, e002301. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.Y.; Mao, T.; Klein, J.; Dai, Y.; Huck, J.D.; Jaycox, J.R.; Liu, F.; Zhou, T.; Israelow, B.; Wong, P.; et al. Diverse functional autoantibodies in patients with COVID-19. Nature 2021, 595, 283–288. [Google Scholar] [CrossRef]
- Syed, U.; Subramanian, A.; Wraith, D.C.; Lord, J.M.; McGee, K.; Ghokale, K.; Nirantharakumar, K.; Haroon, S. Incidence of immune-mediated inflammatory diseases following COVID-19: A matched cohort study in UK primary care. BMC Med. 2023, 21, 363. [Google Scholar] [CrossRef]
- Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N. Engl. J. Med. 2021, 384, 2092–2101. [Google Scholar] [CrossRef] [PubMed]
- Carubbi, F.; Alunno, A.; Santilli, J.; Natali, L.; Mancini, B.; Di Gregorio, N.; Del Pinto, R.; Viscido, A.; Grassi, D.; Ferri, C. Immune-mediated inflammatory diseases after anti-SARS-CoV-2 vaccines: New diagnoses and disease flares. RMD Open 2022, 8, e002460. [Google Scholar] [CrossRef]
- Syversen, S.W.; Jyssum, I.; Tveter, A.T.; Tran, T.T.; Sexton, J.; Provan, S.A.; Mjaaland, S.; Warren, D.J.; Kvien, T.K.; Grødeland, G.; et al. Immunogenicity and Safety of Standard and Third-Dose SARS—CoV-2 Vaccination in Patients Receiving Immunosuppressive Therapy. Arthritis Rheumatol. 2022, 74, 1321–1332. [Google Scholar] [CrossRef]
- Machado, P.M.; Schäfer, M.; Mahil, S.K.; Liew, J.; Gossec, L.; Dand, N.; Pfeil, A.; Strangfeld, A.; Regierer, A.C.; Fautrel, B.; et al. Characteristics associated with poor COVID-19 outcomes in people with psoriasis, psoriatic arthritis and axial spondyloarthritis: Data from the COVID-19 PsoProtect and Global Rheumatology Alliance physician-reported registries. Ann. Rheum. Dis. 2023, 82, 698–709. [Google Scholar] [CrossRef]
- Rider, L.G.; Parks, C.G.; Wilkerson, J.; Schiffenbauer, A.I.; Kwok, R.K.; Noroozi Farhadi, P.; Nazir, S.; Ritter, R.; Sirotich, E.; Kennedy, K.; et al. Baseline factors associated with self-reported disease flares following COVID-19 vaccination among adults with systemic rheumatic disease: Results from the COVID-19 global rheumatology alliance vaccine survey. Rheumatology 2022, 61, SI143–SI150. [Google Scholar] [CrossRef]
- Long, M.D.; Weaver, K.N.; Zhang, X.; Chun, K.; Kappelman, M.D.; PREVENT-COVID Study Group. Strong Response to SARS-CoV-2 Vaccine Additional Doses Among Patients With Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2022, 20, 1881–1883.e1. [Google Scholar] [CrossRef] [PubMed]
- Lumley, S.F.; Wei, J.; O’Donnell, D.; Stoesser, N.E.; Matthews, P.C.; Howarth, A.; Hatch, S.B.; Marsden, B.D.; Cox, S.; James, T.; et al. The Duration, Dynamics, and Determinants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antibody Responses in Individual Healthcare Workers. Clin. Infect. Dis. 2021, 73, e699–e709. [Google Scholar] [CrossRef]
- Sieiro Santos, C.; Calleja Antolin, S.; Moriano Morales, C.; Garcia Herrero, J.; Diez Alvarez, E.; Ramos Ortega, F.; Ruiz de Morales, J.G. Immune responses to mRNA vaccines against SARS-CoV-2 in patients with immune-mediated inflammatory rheumatic diseases. RMD Open 2022, 8, e001898. [Google Scholar] [CrossRef] [PubMed]
- Levin, E.G.; Lustig, Y.; Cohen, C.; Fluss, R.; Indenbaum, V.; Amit, S.; Doolman, R.; Asraf, K.; Mendelson, E.; Ziv, A.; et al. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. N. Engl. J. Med. 2021, 385, e84. [Google Scholar] [CrossRef]
- Dan, J.M.; Mateus, J.; Kato, Y.; Hastie, K.M.; Yu, E.D.; Faliti, C.E.; Grifoni, A.; Ramirez, S.I.; Haupt, S.; Frazier, A.; et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 2021, 371, eabf4063. [Google Scholar] [CrossRef]
- Ben-Tov, A.; Banon, T.; Chodick, G.; Kariv, R.; Assa, A.; Gazit, S. BNT162b2 Messenger RNA COVID-19 Vaccine Effectiveness in Patients with Inflammatory Bowel Disease: Preliminary Real-World Data During Mass Vaccination Campaign. Gastroenterology 2021, 161, 1715–1717.e1. [Google Scholar] [CrossRef]
- Khan, N.; Mahmud, N. Effectiveness of SARS-CoV-2 Vaccination in a Veterans Affairs Cohort of Patients With Inflammatory Bowel Disease With Diverse Exposure to Immunosuppressive Medications. Gastroenterology 2021, 161, 827–836. [Google Scholar] [CrossRef]
- Chirasuthat, S.; Ratanapokasatit, Y.; Thadanipon, K.; Chanprapaph, K. Immunogenicity, Effectiveness, and Safety of COVID-19 Vaccines among Patients with Immune-Mediated Dermatological Diseases: A Systematic Review and Meta-analysis. Acta Derm. Venereol. 2024, 104, adv40009. [Google Scholar] [CrossRef]
- Fuller, A.; Hancox, J.; Vedhara, K.; Card, T.; Mallen, C.; Van-Tam, J.S.N.; Abhishek, A. Barriers and facilitators to vaccination uptake against COVID-19, influenza, and pneumococcal pneumonia in immunosuppressed adults with immune-mediated inflammatory diseases: A qualitative interview study during the COVID-19 pandemic. PLoS ONE 2022, 17, e0267769. [Google Scholar] [CrossRef]
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | |
---|---|---|---|---|---|
Number of patients | 2144 | 1532 | 1283 | 147 | 40 |
Mean age yo (SD) | 44.6 (35.5) | 46.9 (30.8) | 46.6 (32.7) | 51.0 (15.7) | 39.4 (14.4) |
Age category | |||||
<60 yo | 1550 (72.3%) | 1084 (70.8%) | 930 (72.5%) | 98 (66.7%) | 35 (87.5%) |
>/=60 yo | 463 (21.6%) | 417 (27.2%) | 341 (26.6%) | 49 (33.3%) | 5 (12.5%) |
Male/female | 1088 (51.0%)/1047 (49.0%) | 794 (51.9%)/737 (48.1%) | 661 (51.6%)/621 (48.4%) | 80 (54.4%)/67 (45.6%) | 24 (60.0%)/16 (40%) |
BMI in kg/m2 (mean (SD)) | 26.1 (4.95) | 26.2 (5.06) | 26.4 (4.72) | 26.7 (5.14) | 23.8 (3.63) |
<18.5 kg/m2 | 54 (2.8%) | 30 (2.3%) | 20 (1.8%) | 5 (4.1%) | 1 (2.8%) |
18–25 kg/m2 | 807 (42.0%) | 553 (42.5%) | 424 (38.9%) | 41 (33.3%) | 21 (58.3%) |
25–30 kg/m2 | 691 (35.9%) | 465 (35.7%) | 429 (39.4%) | 49 (39.8%) | 11 (30.6%) |
>30 kg/m2 | 371 (19.3%) | 254 (19.5%) | 217 (19.9%) | 28 (22.8%) | 3 (8.3%) |
>25 kg/m2 | 1062 (49.5%) | 750 (49.0%) | 656 (51.1%) | 82 (55.8%) | 12 (32.5%) |
Comorbidities | |||||
Heart disease | 200 (9.33%) | 173 (11.3%) | 120 (9.35%) | 27 (18.4%) | 1 (2.5%) |
Chronic pulmonary disease (not asthma) | 63 (2.94%) | 57 (3.72%) | 38 (2.96%) | 7 (4.76%) | 2 (5%) |
Asthma | 73 (3.4%) | 51 (3.33%) | 53 (4.13%) | 8 (5.44%) | 3 (7.50%) |
CKD | 49 (2.29%) | 46 (3.00%) | 41 (3.20% | 4 (2.72%) | 2 (5.00%) |
Chronic liver disease | 75 (3.50%) | 90 (5.87%) | 69 (5.38%) | 7 (4.76%) | 3 (7.50%) |
Neurologic disease | 44 (2.05%) | 54 (3.52%) | 47 (3.66%) | 8 (5.44%) | 0 |
Malignancy (history or active) | 111 (5.18%) | 83 (5.42%) | 82 (6.39%) | 2 (1.36%) | 0 |
Hematologic disease | 45 (2.10%) | 45 (2.94%) | 28 (2.18%) | 5 (3.40%) | 2 (5.00%) |
HIV | 2 (0.09%) | 2 (0.13%) | 2 (0.16%) | 0 | 0 |
Diabetes mellitus | 97 (4.52%) | 78 (5.09%) | 69 (5.38%) | 7 (4.76%) | 1 (2.50%) |
No comorbidities | 565 (26.4%) | 388 (25.3%) | 277 (21.6%) | 42(28.6%) | 9 (22.5%) |
Active smoker | 369 (17.2%) | 261 (17.0%) | 201 (15.7%) | 24 (16.3%) | 12 (30.0%) |
Increased COVID-19 exposure risk * | 1019 (47.5%) | 621 (40.5%) | 69 (49.8%) | 80 (54.4%) | 23 (57.5%) |
IMID type | |||||
Dermatologic | 310 (14.5%) | 239 (15.6%) | 139 (10.8%) | 42 (28.6%) | 5 (12.5%) |
HS | 36 (12.2%) | 21 (8.8%) | 17 (12.4%) | 2 (4.8%) | 1 (20%) |
Pso | 226 (76.6%) | 195 (81.6%) | 100 (73.0%) | 37 (88.1%) | 4 (80.0%) |
Atopic derm | 33 (11.2%) | 20 (14.6%) | 20 (14.6%) | 3 (7.1%) | 0 |
Gastro/IBD | 1336 (62.3%) | 982 (64.1%) | 920 (71.7%) | 65 (44.2%) | 31 (77.5%) |
CD | 838 (64.9%) | 644 (66.3%) | 589 (64.3%) | 46 (71.9%) | 19 (61.3%) |
UC | 404 (31.3%) | 294 (30.2%) | 295 (32.2%) | 16 (25.0%) | 12 (38.7%) |
IPAA | 37 (2.9%) | 25 (2.6%) | 25 (2.7% | 1 (1.6%) | 0 |
Undifferentiated colitis | 13 (1.0%) | 9 (0.9%) | 7 (0.8%) | 1 (1.6%) | 0 |
Rheumatologic | 498 (23.2%) | 311 (20.3%) | 224 (17.5%) | 40 (27.2%) | 4 (10.0%) |
RA | 256 (56.0%) | 179 (60.1%) | 127 (58.0%) | 24 (61.5%) | 2 (50.0%) |
SpA | 126 (27.6%) | 61 (20.5%) | 43 (19.6%) | 5 (12.8%) | 2 (50.0%) |
PsoA | 75 (16.4%) | 58 (19.5%) | 49 (22.4%) | 10 (25.6%) | 0 |
IMID-treatment modality | |||||
TIMT | 1580 (73.7%) | 1232 (80.4%) | 1073 (83.6%) | 119 (81.0%) | 38 (95.0%) |
Infliximab | 503 (23.5%) | 394 (25.7%) | 376 (29.3%) | 23 (15.6%) | 17 (42.5%) |
Anti-TNF alpha | 783 (36.5%) | 594 (38.8%) | 523 (40.8%) | 60 (40.8%) | 21 (52.5%) |
Vedolizumab | 328 (15.3%) | 260 (17.0%) | 270 (21.1%) | 9 (6.1%) | 7 (17.5%) |
Rituximab | 36 (1.7%) | 23 (1.5%) | 20 (1.6%) | 1 (0.7%) | 0 |
Anti-IL12/23/17 (grouped) | 280 (13.1%) | 228 (14.9%) | 156 (12.2%) | 40 (27.2%) | 5 (12.5%) |
Anti-IL12/23 (grouped) | 199 (9.3%) | 162 (10.6%) | 119 (9.3%) | 25 (17.0%) | 3 (7.5%) |
Anti-IL17 | 83 (3.9%) | 66 (4.3%) | 38 (3.0%) | 15 (10.2%) | 2 (5.0%) |
Anti-IL23 | 69 (3.2%) | 60 (3.9%) | 29 (2.3%) | 14 (9.5%) | 1 (2.5%) |
JAK-inhibitor | 34 (1.6%) | 36 (2.3%) | 23 (1.8%) | 1 (0.7%) | 1 (0.7%) |
IMM | 456 (21.3%) | 311 (20.3%) | 225 (17.5%) | 39 (26.5%) | 8 (20.0%) |
Combined TIMT + IMM | 263 (12.3%) | 197 (12.9%) | 152 (11.8%) | 24 (16.3%) | 8 (20.0%) |
N-IM (= non-TIMT/non-IMM at baseline) | 113 (5.3%) | 64 (4.2%) | 44 (3.4%) | 4 (2.7%) | 1 (2.5%) |
Received systemic steroids | 229 (10.7%) | 91 (5.94%) | 59 (4.60%) | 6 (4.08%) | 4 (10.0%) |
No active IMID disease ** during time period 1 | 1309 (61.05%) | 1035 (67.56%) | 951 (74.12%) | 93 (63.27%) | 31 (77.5%) |
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | |
---|---|---|---|---|---|
Number of patients | 2144 | 1532 | 1283 | 147 | 40 |
Positive PCR over the past period | 102 (5.1%) | 87 (5.9%) | 263 (20.5%) | 42 (28.6%) | 18 (45%) |
N-antibody seroconversion | 65/2108 (3.1%) | 35/1481 (2.4%) | 189/1240 (15.2%) | 26/143 (18.2%) | 9/39 (23.1%) |
Ever had SARS-CoV-2 infection * | 121 (5.7%) | 131 (8.6%) | 371 (28.9%) | 57 (38.8%) | 20 (50%) |
S-antibody seroconversion | Not tested | 1303/1370 (95.1%) | 1216/1240 (98.1%) | 143/143 (100%) | 21/39 (53.8%) |
S (−)/N (−) | N.A | 66/1370 (4.8%) | 24/1240 (1.9%) | 0 | 16/39 (41.0%) |
S (−)/N (+) | N.A | 1/1370 (0.1%) | 0 | 0 | 2/39 (5.1%) |
S (+)/N (−) | N.A | 1273/1370 (92.9%) | 1027/1240 (82.8%) | 117/143 (81.8%) | 14/39 (35.9%) |
S (+)/N (+) | N.A | 30/1270 (2.2%) | 189/1240 (15.2%) | 26/143 (18.2%) | 7/39 (17.9%) |
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | |
---|---|---|---|---|---|
N | 2144 | 1532 | 1283 | 147 | 40 |
Associations with positive SARS-CoV-2 PCR | |||||
TIMT | OR 1.42 (95% CI 0.83–2.53, p = 0.22) | OR 0.97 (95% CI 0.49–2.06, p = 0.93) | OR 1.06 (95% CI 0.68–1.67, p = 0.81) | OR 0.625 (95% CI 0.14–2.66, p = 0.52) | Analysis not possible * |
Infliximab | OR 1.10 (95% CI 0.65–1.78, p = 0.72) | OR 0.61 (95% CI 0.30–1.16, p = 0.15) | OR 1.14 (95% CI 0.80–1.63, p = 0.46) | OR 0.897 (95% CI 0.17–4.54, p = 0.89) | RR 1.56 (95% CI 0.75–3.21, p = 0.4125) |
Anti-TNF | OR 1.17 (95% CI 0.75–1.81, p = 0.48) | OR 0.69 (95% CI 0.38–1.23, p = 0.22) | OR 1.11 (95% CI 0.80–1.55, p = 0.53) | OR 1.13 (95% CI 0.39–3.28, p = 0.81) | RR 1.83 (95% CI 0.78–4.33, p = 0.2571) |
Rituximab | RR 1.70 (95% CI 0.47–6.09, p = 0.7619) | RR 1.56 (95% CI 0.25–9.91, p = 1) | RR 0.68 (95% CI 0.20–2.31, p = 0.7547) | Numbers too low for analysis | No rituximab patients |
Anti-IL12/23/17 (combined) | OR 1.24 (95% CI 0.68–2.14, p = 0.47) | OR 2.02 (95% CI 0.999–3.86, p = 0.04) | OR 1.2 (95% CI 0.71–2.02, p = 0.48) | OR 1.10 (95% CI 0.32–3.74, p = 0.88) | RR 0.92 (95% CI 0.32–2.62, p = 1) |
Anti-IL12/23 | OR 1.55 (95% CI 0.83–2.73, p = 0.15) | OR 2.04 (95% CI 0.96–4.01, p = 0.049) | OR 1.22 (95% CI 0.68–2.16, p = 0.5) | RR 1.62 (95% CI 0.88–3.02, p = 0.3559) | RR 0.92 (95% CI 0.22–3.87, p = 1) |
Anti-IL23 | OR 2.51 (95% CI 0.95–5.95, p = 0.047) | OR 6.32 (95% CI 1.78–20.3, p < 0.01) | RR 1.98 (95% CI 1.25–3.13, p = 0.0592) | RR 1.92 (95% CI 1.01–3.63, p = 0.3708) | RR 1.92 (95% CI 1.32–2.80, p = 1) |
Anti-IL17 | RR 0.77 (95% CI 0.26–2.32, p = 0.84) | RR 1.65 (95% CI 0.56–4.88, p = 0.6166) | OR 1.11 (95% CI 0.32–3.47, p = 0.87) | RR 0.67 (95% CI 0.20–2.25, p = 0.7609) | RR 0.92 (95% CI 0.22–3.87, p = 1) |
JAKi | RR 1.01 (95% CI 0.27–3.81, p = 1) | RR 0.88 (95% CI 0.13–5.93, p = 1) | OR 2.31 (95% CI 0.77–6.87, p = 0.13) | RR 2.48 (95% CI 1.87–3.29, p = 0.8554) | Numbers too low for analysis |
Vedolizumab | OR 0.81 (95% CI 0.42–1.47, p = 0.51) | OR 0.90 (95% CI 0.41–1.78, p = 0.77) | OR 0.797 (95% CI 0.53–1.19, p = 0.28) | RR 0.59 (95% CI 0.11–3.32, p = 0.8805) | RR 1.28 (95% CI 0.52–3.11, p = 1) |
IMM | OR 0.96 (95% CI 0.54–1.65, p = 0.9) | OR 0.93 (95% CI 0.39–1.98, p = 0.86) | OR 1.4 (95% CI 0.89–2.17, p = 0.14) | OR 1.45 (95% CI 0.36–6.04, p = 0.6) | RR 0.56 (95% CI 0.17–1.82, p = 0.495) |
Combined IMM + TIMT | OR 1.29 (95% CI 0.68–2.31, p = 0.41) | RR 0.65 (95% CI 0.24–1.73, p = 0.5074) | OR 1.51 (95% CI 0.92–2.47, p = 0.1) | RR 0.97 (95% CI 0.43–2.19, p = 1) | RR 0.56 (95% CI 0.17–1.82, p = 0.495) |
N-IM | OR 1.18 (95% CI 0.44–2.69, p = 0.71) | RR 0.90 (95% CI 0.29–2.76, p = 1) | OR 0.81 (95% CI 0.30–1.92, p = 0.64) | Numbers too low for analysis | Numbers too low for analysis |
Systemic steroid use | OR 1.08 (95% CI 0.52–2.04, p = 0.83) | RR 0.59 (95% CI 0.15–2.33, p = 0.633) | OR 1.74 (95% CI 0.79–3.83, p = 0.16) | RR 0.80 (95% CI 0.16–4.08, p = 1) | RR 0.59 (95% CI 0.11–3.04, p = 0.887) |
IFX vs. vedo | OR 1.42 (95% CI 0.70–3.00, p = 0.35) | OR 0.726 (95% CI 0.29–1.81, p = 0.48) | OR 1.24 (95% CI 0.77–2.00, p = 0.37) | RR 2.00 (95% CI 0.33–12.18, p = 0.7978) | RR 1.00 (95% CI 0.41–2.45, p = 1) |
Anti-TNF vs. vedo | OR 1.34 (95% 0.70–2.73, p = 0.4) | OR 0.846 (95% CI 0.38–1.99, p = 0.69) | OR 1.24 (95% CI 0.79–1.96, p = 0.35) | RR 1.88 (95% CI 0.33–10.66, p = 0.7583) | RR 1.00 (95% CI 0.42–2.40, p = 1) |
Anti-IL12/23/17 vs. vedo | OR 1.23 (95% CI 0.54–2.81, p = 0.63) | OR 2.08 (95% CI 0.84–5.26, p = 0.11) | OR 1.27 (95% CI 0.66–2.41, p = 0.47) | RR 1.87 (95% CI 0.31–11.09, p = 0.8337) | RR 0.75 (95% CI 0.21–2.66, p = 1) |
Anti-TNF vs. anti-IL12/23/17 | OR 0.90 (95% CI 0.49–1.74, p = 0.75) | OR 0.445 (95% CI 0.21–0.98, p = 0.04) | OR 0.89 (95% CI 0.51–1.57, p = 0.68) | OR 1.08 (95% CI 0.29–4.04, p = 0.91) | RR 1.33 (95% CI 0.47–3.78, p = 0.9755) |
Anti-TNF vs. JAKi | RR 1.09 (95% CI 0.28–4.18, p = 1) | RR 0.97 (95% CI 0.14–6.73, p = 1) | OR 0.55 (95% CI 0.18–1.71, p = 0.29) | RR 0.47 (95% CI 0.33–067, p = 0.9769) | Numbers too low for analysis |
Anti-TNF vs. rituximab | RR 0.65 (95% CI 0.18–2.39, p = 0.8711) | RR 0.556 (95% CI 0.09–3.65, p = 1) | RR 1.55 (95% CI 0.45–5.32, p = 0.6842) | Numbers too low for analysis | RR 1.26 (95% CI 0.61–2.59, p = 0.9171) |
Associations with N-seroconversion | |||||
TIMT | OR 1.29 (95% CI 0.68–2.68, p = 0.46) | OR 1.17 (95% CI 0.50–3.21, p = 0.73) | OR 0.82 (95% CI 0.54–1.28, p = 0.36) | RR 1.70 (95% CI 0.55–5.25, p = 0.4903) | Analysis not possible * |
Infliximab | OR 0.69 (95% CI 0.33–1.32, p = 0.28) | OR 0.76 (95% CI 1.7–0.53, p = 0.53) | OR 1.05 (95% CI 0.73–1.50, p = 0.77) | OR 0.87 (95% CI 0.22–2.98, p = 0.83) | RR 1.62 (95% CI 0.51–5.12, p = 0.6584) |
Anti-TNF | OR 0.55 (95% CI 0.29–0.98, p = 0.051) | OR 0.72 (95% CI 0.33–1.48, p = 0.38) | OR 1.03 (95% CI 0.74–1.44, p = 0.84) | OR 0.95 (95% CI 0.36–2.50, p = 0.92) | RR 1.07 (95% CI 0.34–3.40, p = 1) |
Rituximab | RR 0.90 (95% CI 0.13–6.31, p = 1) | RR 2.15 (95% CI 0.31–14.94, p = 0.9677) | No rituximab patient had N-seroconversion | Numbers too low for analysis | No rituximab patients |
Anti-IL12/23/17 (combined) | OR 2.00 (95% CI 0.99–3.76, p = 0.04) | OR 1.64 (95% CI 0.64–3.71, p = 0.26) | OR 0.86 (95% CI 0.49–1.42, p = 0.57) | OR 1.5 (95% CI 0.50–4.29, p = 0.46) | RR 1.94 (95% CI 0.55–6.85, p = 0.6939) |
Anti-IL12/23 | OR 2.85 (95% CI 1.41–5.38, p < 0.01) | OR 1.54 (95% CI 0.51–3.76, p = 0.39) | OR 0.79 (95% CI 0.42–1.41, p = 0.45) | RR 0.62 (95% CI 0.20–1.89, p = 0.5507) | RR 1.50 (95% CI 0.27–8.32, p = 1) |
Anti-IL23 | OR 4.54 (95% CI 1.60–11.10, p < 0.01) | RR 3.11 (95% CI 1.13–8.52, p = 0.0655) | OR 0.94 (95% CI 0.26–2.67, p = 0.92) | RR 0.37 (95% CI 0.05–2.52, p = 0.4456) | RR 4.75 (95% CI 2.57–8.79, p = 0.5174) |
Anti-IL17 | RR 0.77 (95% CI 0.19–3.11, p = 0.9694) | RR 1.32 (95% CI 0.32–5.38, p = 1) | OR 0.88 (95% CI 0.28–2.29, p = 0.8) | OR 2.41 (95% CI 0.44–11.9, p = 0.29) | RR 2.31 (95% CI 0.51–10.53, p = 0.9472) |
JAKi | RR 0.98 (95% CI 0.14–6.87, p = 1) | RR 1.25 (95% CI 0.18–8.88, p = 1) | RR 1.20 (95% CI 0.49–2.93, p = 0.93) | No JAKi patient had N-seroconversion | RR 4.75 (95% CI 2.57–8.79, p = 0.5174) |
Vedolizumab | OR 1.87 (95% CI 0.95–3.49, p = 0.056) | OR 0.837 (95% CI 0.28–2.07, p = 0.72) | OR 0.84 (95% CI 0.55–1.26, p = 0.41) | RR 0.60 (95% CI 0.09–3.91, p = 0.9031) | RR 0.57 (95% 0.09–3.96, p = 0.909) |
IMM | OR 0.52 (95% CI 0.22–1.08, p = 0.1) | OR 1.64 (95% CI 0.72–3.57, p = 0.22) | OR 0.76 (95% CI 0.46–1.21, p = 0.26) | OR 1.11 (95% CI 0.31–3.73, p = 0.87) | RR 1.11 (95% CI 0.28–4.34, p = 1) |
Combined IMM + TIMT | OR 0.72 (95% CI 0.27–1.59, p = 0.45) | OR 2.52 (95% CI 1.09–5.47, p = 0.023) | OR 0.83 (95% CI 0.46–1.42, p = 0.52) | OR 1.66 (95% CI 0.42–5.97, p = 0.45) | RR 1.11 (95% CI 0.28–4.34, p = 1) |
N-IM | RR 1.16 (95% CI 0.43–3.13, p = 0.993) | RR 0.69 (95% CI 0.10–4.92, p = 1) | OR 1.39 (95% CI 0.54–3.13, p = 0.45) | RR 1.39 (95% CI 0.25–7.87, p = 1) | Numbers too low for analysis |
Systemic steroid use | OR 0.60 (95% CI 0.17–1.58, p = 0.35) | RR 1.56 (95% CI 0.49–4.99, p = 0.7034) | OR 1.12 (95% CI 0.43–2.54, p = 0.81) | No syst steroid patient had N-seroconversion | RR 1.50 (95% CI 0.27–8.32, p = 1) |
IFX vs. vedo | OR 0.48 (95% CI 0.20–1.08, p = 0.077) | OR 0.98 (95% CI 0.30–3.42, p = 0.97) | OR 1.2 (95% CI 0.75–1.94, p = 0.45) | RR 2.35 (95% CI 0.33–16.87, p = 0.6557) | RR 2.06 (95% CI 0.29–14.59, p = 0.7954) |
Anti-TNF vs. vedo | OR 0.40 (95% CI 0.18–0.86, p = 0.019) | OR 0.90 (95% CI 0.31–2.96, p = 0.84) | OR 1.15 (95% CI 0.73–1.83, p = 0.56) | RR 1.80 (95% CI 0.26–12.23, p = 0.8581) | RR 1.67 (95% CI 0.23–11.94, p = 1) |
Anti-IL12/23/17 vs. vedo | OR 1.09 (95% CI 0.46–2.54, p = 0.83) | OR 1.91 (95% CI 0.55–7.01, p = 0.31) | RR 1.04 (95% CI 0.64–1.70, p = 0.9804) | RR 1.80 (95% CI 0.26–12.64, p = 0.8841) | RR 2.80 (95% CI 0.34–23.06, p = 0.7353) |
Anti-TNF vs. anti-IL12/23/17 | OR 0.39 (95% 0.18–0.88, p = 0.02) | OR 0.55 (95% CI 0.20–1.6, p = 0.25) | OR 1.17 (95% CI 0.68–2.12, p = 0.59) | OR 0.64 (95% CI 0.19–2.12, p = 0.46) | RR 0.60 (95% CI 0.16–2.22, p = 0.863) |
Anti-TNF vs. JAKi | RR 0.80 (95% CI 0.11–5.83, p = 1) | RR 0.65 (95% CI 0.09–4.87, p = 1) | RR 0.85 (95% CI 0.34–2.11, p = 0.9632) | Analysis not possible | RR 0.24 (95% CI 0.11–0.51, p = 0.6014) |
Anti-TNF vs. rituximab | RR 0.88 (95% CI 0.12–6.38, p = 1) | RR 0.381 (95% CI 0.05–2.81, p = 0.8729) | Analysis not possible | Numbers too low for analysis | No rituximab patients |
Associations with S-seroconversion | |||||
TIMT | OR 0.28 (95% CI 0.10–0.65, p < 0.01) | RR 0.99 (95% CI 0.98–1.01, p = 0.8517) | S-antibody seroconversion in 100% of patients | Analysis not possible ** | |
Infliximab | OR 0.96 (95% CI 0.53–1.83, p = 0.9) | OR 0.68 (95% CI 0.27–1.84, p = 0.41) | RR 1.42 (95% CI 0.80–2.53, p = 0.382) | ||
Anti-TNF | OR 0.76 (95% CI 0.28–1.92, p = 0.57) | OR 1.03 (95% CI 0.43–2.65, p = 0.94) | OR 4.34 (0.80–30.8, p = 0.11) | ||
Rituximab | OR 0.035 (95% CI 0.01–0.10, p < 0.001) | OR 0.037 (95% CI 0.01–0.13, p < 0.001) | No rituximab patients | ||
Anti-IL12/23/17 (combined) | RR 1.04 (95% CI 1.01–1.06, p = 0.0408) | RR 1.02 (95% CI 1.01–1.03, p = 0.1268) | RR 0.34 (95% CI 0.06–2.01, p = 0.252) | ||
Anti-IL12/23 | RR 1.03 (95% CI 1.00–1.06, p = 0.2692) | RR 1.02 (95% CI 1.01–1.03, p = 0.2235) | RR 0.60 (95% CI 0.12–3.05, p = 0.8894) | ||
Anti-IL23 | RR 1.00 (95% CI 0.94–1.06, p = 1) | RR 1.02 (95% CI 1.01–1.03, p = 0.9334) | Analysis not possible (numbers too low) | ||
Anti-IL17 | RR 1.05 (95% CI 1.04–1.07, p = 0.1144) | RR 1.02 (95% CI 1.02–1.01, p = 0.7782) | Analysis not possible (numbers too low) | ||
JAKi | RR 0.99 (95% CI 0.90–1.08, p = 1) | RR 0.97 (95% CI 0.89–1.07, p = 0.9078) | RR 1.90 (95% CI 1.41–2.57, p = 1) | ||
Vedolizumab | OR 1.16 (95% CI 0.56–2.72, p = 0.71) | RR 1.02 (95% CI 1.01–1.03, p = 0.068) | RR 1.08 (95% CI 0.52–2.21, p = 1) | ||
IMM | OR 0.28 (95% CI 0.16–0.49, p < 0.001) | OR 0.22 (95% CI 0.09–0.56, p < 0.01) | RR 0.91 (95% CI 0.43–1.96, p = 1) | ||
Combined IMM + TIMT | OR 0.16 (95% CI 0.09–0.28, p < 0.001) | OR 0.15 (95% CI 0.06–0.38, p < 0.001) | RR 0.91 (95% CI 0.43–1.96, p = 1) | ||
N-IM | RR 1.02 (95% CI 0.97–1.07, p = 0.7903) | RR 1.02 (95% CI 1.01–1.03, p = 0.6952) | Analysis not possible (numbers too low) | ||
Systemic steroid use | OR 0.183 (95% CI 0.10–0.37, p < 0.001) | OR 0.06 (95% CI 0.02–0.19, p < 0.001) | RR 1.26 (95% CI 0.54–2.98, p = 1) | ||
IFX vs. vedo | OR 0.76 (95% CI 0.28–1.92, p = 0.57) | RR 0.98 (95% CI 0.97–1.00, p = 0.1222) | RR 1.13 (95% CI 0.54–2.35, p = 1) | ||
Anti-TNF vs. vedo | OR 0.64 (95% CI 0.25–1.48, p = 0.32) | RR 0.99 (95% CI 0.97–1.00, p = 0.1966) | RR 1.13 (95% CI 0.54–2.35, p = 1) | ||
Anti-IL12/23/17 vs. vedo | RR 1.02 (95% CI 0.99–1.05, p = 0.4616) | RR 1.00 (95% CI 1.00–1.01, p = 1) | RR 0.35 (95% CI 0.054–2.264, p = 0.4884) | ||
Anti-TNF vs. anti-IL12/23/17 | RR 0.97 (95% CI 0.94–1.00, p = 0.1034) | RR 0.98 (95% CI 0.97–0.99, p = 0.2133) | RR 3.33 (95% CI 0.56–19.75, p = 0.1631) | ||
Anti-TNF vs. JAKi | RR 1.02 (95% CI 0.93–1.11, p = 1) | RR 1.03 (95% CI 0.94–1.13, p = 0.8952) | RR 0.67 (95% CI 0.49–0.90, p = 1) | ||
Anti-TNF vs. rituximab | OR 26.3 (95% CI 7.36–105, p < 0.001) | OR 27.5 (95% CI 5.55–131, p < 0.001) | No rituximab patients | ||
Associations S-antibody concentration (log-transformed) | |||||
TIMT | Mean ratio 0.65 (95% CI 0.50–0.84, p < 0.01) | Mean ratio 0.53 (95% CI 0.40–0.69, p < 0.001) | Number of observations too low for analysis | ||
Infliximab | Mean ratio 0.62 (95% CI 0.49–0.78, p < 0.001) | Mean ratio 0.48 (95% CI 0.39–0.59, p < 0.001) | |||
Anti-TNF | Mean ratio 0.57 (95% CI 0.46–0.70, p < 0.001) | Mean ratio 0.44 (95% CI 0.36–0.53, p < 0.001) | |||
Rituximab | Mean ratio 0.07 (95% CI 0.03–0.16, p < 0.001) | Mean ratio 0.06 (95% CI 0.03–0.13, p < 0.001) | |||
Anti-IL12/23/17 (combined) | Mean ratio 1.29 (95% CI 0.95–1.75, p = 0.1) | Mean ratio 1.24 (95% CI 0.91–1.68, p = 0.18) | |||
Anti-IL12/23 | Mean ratio 1.32 (95% CI 0.93–1.86, p = 0.12) | Mean ratio 1.27 (95% CI 0.90–1.80, p = 0.17) | |||
Anti-IL23 | Mean ratio 2.17 (95% CI 1.19–3.96, p = 0.011) | Mean ratio 2.1 (95% CI 1.02–4.33, p = 0.045) | |||
Anti-IL17 | Mean ratio 1.23 (95% CI 0.70–2.19, p = 0.47) | Mean ratio 0.97 (95% CI 0.51–1.83, p = 0.92) | |||
JAKi | Mean ratio 0.65 (95% CI 0.33–1.27, p = 0.21) | Mean ratio 1.15 (95% CI 0.57–2.34, p = 0.7) | |||
Vedolizumab | Mean ratio 1.84 (95% CI 1.40–2.41, p < 0.001) | Mean ratio 2.05 (95% CI 1.62–2.59, p < 0.001) | |||
IMM | Mean ratio 0.59 (95% CI 0.45–0.78, p < 0.001) | Mean ratio 0.41 (95% CI 0.32–0.54, p < 0.001) | |||
Combined IMM + TIMT | Mean ratio 0.38 (95% CI 0.28–0.53, p < 0.001) | Mean ratio 0.31 (95% CI 0.23–0.43, p < 0.001) | |||
N-IM | Mean ratio 1.36 (95% CI 0.82–2.26, p = 0.23) | Mean ratio 2.2 (95% CI 1.25–3.85, p < 0.001) | |||
Systemic steroid use | Mean ratio 0.30 (95% CI 0.19–0.46, p < 0.001) | Mean ratio 0.32 (95% CI 0.19–0.53, p < 0.001) | |||
IFX vs. vedo | Mean ratio 0.43 (95% CI 0.31–0.59, p < 0.001) | Mean ratio 0.35 (95% CI 0.27–0.45, p < 0.001) | |||
Anti-TNF vs. vedo | Mean ratio 0.42 (95% CI 0.32–0.56, p < 0.001) | Mean ratio 0.34 (95% CI 0.26–0.43, p < 0.001) | |||
Anti-IL12/23/17 vs. vedo | Mean ratio 0.82 (95% CI 0.56–1.21, p = 0.32) | Mean ratio 0.66 (95% CI 0.49–0.90, p < 0.01) | |||
Anti-TNF vs. anti-IL12/23/17 | Mean ratio 0.56 (95% CI 0.41–0.78, p < 0.001) | Mean ratio 0.53 (95% CI 0.38–0.72, p < 0.001) | |||
Anti-TNF vs. JAKi | Mean ratio 1.12 (95% CI 0.58–2.16, p = 0.74) | Mean ratio 0.55 (95% CI 0.26–1.14, p = 0.11) | |||
Anti-TNF vs. rituximab | Mean ratio 11.1 (95% CI 4.18–29.4, p < 0.001) | Mean ratio 10.5 (95% CI 4.02–27.3, p < 0.001) | |||
Associations with lowest S-antibody concentration quartile (Q) within group | |||||
TIMT | OR 2.58 (95% CI 1.66–4.20, p < 0.001) | OR 2.54 (95% CI 1.57–4.32, p < 0.001) | RR 2.33 (95% CI 0.58–9.34, p = 0.3209) | Numbers too low for analysis (only 5 patients not in lowest S quartile) | |
Infliximab | OR 1.5 (95% CI 1.09–2.06, p = 0.012) | OR 2.8 (95% CI 2.07–3.79, p < 0.001) | OR 2.26 (95% CI 0.61–7.74, p = 0.2) | ||
Anti-TNF | OR 1.63 (95% CI 1.21–2.19, p < 0.01) | OR 3.52 (95% CI 2.61–4.79, p < 0.001) | OR 2.68 (95% CI 1.01–7.58, p = 0.052) | ||
Rituximab | OR 10.1 (95% CI 3.63–32.5, p < 0.001) | OR 7.89 (95% CI 2.83–25.40, p < 0.001) | Numbers too low for analysis | ||
Anti-IL12/23/17 (combined) | OR 0.80 (95% CI 0.50–1.25, p = 0.035) | OR 0.62 (95% CI 0.36–1.01, p = 0.068) | RR 0.25 (95% CI 0.06–1.00, p = 0.0461) | ||
Anti-IL12/23 | OR 0.89 (95% CI 0.52–1.46, p = 0.65) | OR 0.47 (95% CI 0.23–0.87, p = 0.023) | No anti-IL12/23 patients in lowest Q | ||
Anti-IL23 | OR 0.67 (95% CI 0.23–1.64, p = 0.43) | RR 0.31 (95% CI 0.08–1.19, p = 0.0824) | No anti-IL23 patients in lowest Q | ||
Anti-IL17 | OR 0.54 (95% CI 0.19–1.28, p = 0.2) | OR 1.2 (95% CI 0.48–2.77, p = 0.68) | RR 0.81 (95% CI 0.21–3.13, p = 1) | ||
JAKi | OR 2.48 (95% CI 1.12–5.24, p = 0.019) | RR 0.41 (95% CI 0.11–1.56, p = 0.2326) | Numbers too low for analysis | ||
Vedolizumab | OR 0.68 (95% CI 0.44–1.02, p = 0.072) | OR 0.206 (95% CI 0.12–0.34, p < 0.001) | RR 2.23 (95% CI 0.81–6.12, p = 0.3239) | ||
IMM | OR 1.55 (95% CI 1.09–2.21, p < 0.015) | OR 2.42 (95% CI 1.68–3.47, p < 0.001) | OR 1.64 (95% CI 0.44–5.64, p = 0.44) | ||
Combined IMM + TIMT | OR 2.73 (95% CI 1.86–3.98, p < 0.001) | OR 3.12 (95% CI 2.08–4.66, p < 0.001) | OR 3.5 (95% CI 0.88–13.50, p = 0.066) | ||
N-IM | OR 0.82 (95% CI 0.35–1.68, p = 0.61) | RR 0.20 (95% CI 0.05–0.79, p < 0.01) | Numbers too low for analysis | ||
Systemic steroid use | OR 3.27 (95% CI 1.95–5.43, p < 0.001) | OR 2.07 (95% CI 1.07–3.90, p = 0.026) | RR 2.63 (95% CI 0.84–8.25, p = 0.3886) | ||
IFX vs. vedo | OR 1.99 (95% CI 1.25–3.26, p < 0.01) | OR 7.86 (95% CI 4.60–14.30, p < 0.001) | RR 0.78 (95% CI 0.25–2.48, p = 1) | ||
Anti-TNF vs. vedo | OR 1.95 (95% CI 1.25–3.12, p < 0.01) | OR 7.84 (95% CI 4.64–14.10, p < 0.001) | RR 0.75 (95% CI 0.27–2.09, p = 0.9014) | ||
Anti-IL12/23/17 vs. vedo | OR 1.01 (95% CI 0.54–1.88, p = 0.97) | OR 2.3 (95% CI 1.08–4.90, p = 0.03) | RR 0.15 (95% CI 0.03–0.77, p = 0.0539) | ||
Anti-TNF vs. anti-IL12/23/17 | OR 1.75 (95% CI 1.08–2.93, p = 0.027) | OR 2.79 (95% CI 1.67–4.89, p < 0.001) | RR: 5.00 (95% CI 1.21–20.69, p = 0.0195) | ||
Anti-TNF vs. JAKi | OR 0.53 (95% CI 0.24–1.19, p = 0.11) | RR 3.75 (95% CI 0.99–14.12, p = 0.0274) | Numbers too low for analysis | ||
Anti-TNF vs. rituximab | OR 0.16 (95% CI 0.04–0.49, p < 0.01) | OR 0.24 (95% CI 0.07–0.76, p = 0.02) | Numbers too low for analysis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geldof, J.; Truyens, M.; Sabino, J.; Ferrante, M.; Lambert, J.; Lapeere, H.; Hillary, T.; Van Laethem, A.; de Vlam, K.; Verschueren, P.; et al. Did We Overreact? Insights on COVID-19 Disease and Vaccination in a Large Cohort of Immune-Mediated Inflammatory Disease Patients during Sequential Phases of the Pandemic (The BELCOMID Study). Vaccines 2024, 12, 1157. https://doi.org/10.3390/vaccines12101157
Geldof J, Truyens M, Sabino J, Ferrante M, Lambert J, Lapeere H, Hillary T, Van Laethem A, de Vlam K, Verschueren P, et al. Did We Overreact? Insights on COVID-19 Disease and Vaccination in a Large Cohort of Immune-Mediated Inflammatory Disease Patients during Sequential Phases of the Pandemic (The BELCOMID Study). Vaccines. 2024; 12(10):1157. https://doi.org/10.3390/vaccines12101157
Chicago/Turabian StyleGeldof, Jeroen, Marie Truyens, João Sabino, Marc Ferrante, Jo Lambert, Hilde Lapeere, Tom Hillary, An Van Laethem, Kurt de Vlam, Patrick Verschueren, and et al. 2024. "Did We Overreact? Insights on COVID-19 Disease and Vaccination in a Large Cohort of Immune-Mediated Inflammatory Disease Patients during Sequential Phases of the Pandemic (The BELCOMID Study)" Vaccines 12, no. 10: 1157. https://doi.org/10.3390/vaccines12101157
APA StyleGeldof, J., Truyens, M., Sabino, J., Ferrante, M., Lambert, J., Lapeere, H., Hillary, T., Van Laethem, A., de Vlam, K., Verschueren, P., Lobaton, T., Padalko, E., & Vermeire, S. (2024). Did We Overreact? Insights on COVID-19 Disease and Vaccination in a Large Cohort of Immune-Mediated Inflammatory Disease Patients during Sequential Phases of the Pandemic (The BELCOMID Study). Vaccines, 12(10), 1157. https://doi.org/10.3390/vaccines12101157