Local Inflammatory and Systemic Antibody Responses Initiated by a First Intradermal Administration of Autogenous Salmonella-Killed Vaccines and Their Components in Pullets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Test Materials
2.3. Experimental Trials
2.3.1. Trial 1
2.3.2. Trials 2 and 3
2.4. Preparation and Immunofluorescent Staining of Pulp Cell Suspensions and Cell Population Analysis by Flow Cytometry
2.5. Enzyme-Linked Immunosorbent Assay (ELISA) Procedure
2.6. Statistical Analyses
3. Results
3.1. Leukocyte Population Profiles in the Pulp of Growing Feathers before and after Administration of Salmonella Vaccines (SV1 or SV2), SE-LPS, or Vehicle
3.2. S. Enteritidis (SE) Specific Antibody Levels in Plasma Following GF-Pulp Injection of SV1, SV2, SE-LPS, or Vehicle
3.2.1. SE-Specific IgM Antibodies in Plasma
3.2.2. SE-Specific IgG Antibodies in Plasma
3.2.3. SE-Specific IgA Antibodies in Plasma
4. Discussion
4.1. Local Inflammatory Response to Intradermal Injection of Autogenous Salmonella Killed Vaccines and Vaccine Components into GF-Pulps
4.2. Plasma SE-Specific IgM, IgG, and IgA Levels after Intradermal Injection of Autogenous Salmonella Killed Vaccines and Vaccine Components into GF-Pulps
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babu, U.; Dalloul, R.A.; Okamura, M.; Lillehoj, H.S.; Xie, H.; Raybourne, R.B.; Gaines, D.; Heckert, R.A. Salmonella enteritidis clearance and immune responses in chickens following Salmonella vaccination and challenge. Vet. Immunol. Immunopathol. 2004, 101, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Babu, U.; Scott, M.; Myers, M.J.; Okamura, M.; Gaines, D.; Yancy, H.F.; Lillehoj, H.; Heckert, R.; Raybourne, R.B. Effects of live attenuated and killed Salmonella vaccine on T-lymphocyte mediated immunity in laying hens. Vet. Immunol. Immunopathol. 2003, 91, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Okamura, M.; Lillehoj, H.S.; Raybourne, R.B.; Babu, U.S.; Heckert, R.A. Cell-mediated immune responses to a killed Salmonella enteritidis vaccine: Lymphocyte proliferation, T-cell changes and interleukin-6 (IL-6), IL-1, IL-2, and IFN-γ production. Comp. Immunol. Microbiol. Infect. Dis. 2004, 27, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; He, Y.; Mann, D.A.; Deng, X. Global spread of Salmonella Enteritidis via centralized sourcing and international trade of poultry breeding stocks. Nat. Commun. 2021, 12, 5109. [Google Scholar] [CrossRef] [PubMed]
- Ruvalcaba-Gómez, J.M.; Villagrán, Z.; Valdez-Alarcón, J.J.; Martínez-Núñez, M.; Gomez-Godínez, L.J.; Ruesga-Gutiérrez, E.; Anaya-Esparza, L.M.; Arteaga-Garibay, R.I.; Villarruel-López, A. Non-Antibiotics Strategies to Control Salmonella Infection in Poultry. Animals 2022, 12, 102. [Google Scholar] [CrossRef]
- Obe, T.; Boltz, T.; Kogut, M.; Ricke, S.C.; Brooks, L.A.; Macklin, K.; Peterson, A. Controlling Salmonella: Strategies for Feed, the Farm, and the Processing Plant. Poult. Sci. 2023, 102, 103086. [Google Scholar] [CrossRef]
- Jawale, C.V.; Lee, J.H. Characterization of adaptive immune responses induced by a new genetically inactivated Salmonella Enteritidis vaccine. Comp. Immunol. Microbiol. Infect. Dis. 2014, 37, 159–167. [Google Scholar] [CrossRef]
- Jesudhasan, P.R.; McReynolds, J.L.; Byrd, A.J.; He, H.; Genovese, K.J.; Droleskey, R.; Swaggerty, C.L.; Kogut, M.H.; Duke, S.; Nisbet, D.J.; et al. Electron-beam–inactivated vaccine against Salmonella enteritidis colonization in molting hens. Avian Dis. 2015, 59, 165–170. [Google Scholar] [CrossRef]
- Crouch, C.F.; Nell, T.; Reijnders, M.; Donkers, T.; Pugh, C.; Patel, A.; Davis, P.; van Hulten, M.C.; de Vries, S.P. Safety and efficacy of a novel inactivated trivalent Salmonella enterica vaccine in chickens. Vaccine 2020, 38, 6741–6750. [Google Scholar] [CrossRef]
- Acevedo-Villanueva, K.Y.; Akerele, G.O.; Al Hakeem, W.G.; Renu, S.; Shanmugasundaram, R.; Selvaraj, R.K. A Novel approach against Salmonella: A review of polymeric nanoparticle vaccines for broilers and layers. Vaccines 2021, 9, 1041. [Google Scholar] [CrossRef]
- Singh, B.R. Salmonella vaccines for animals and birds and their future perspective. Open Vaccine J. 2009, 2, 100–112. [Google Scholar] [CrossRef]
- Penha Filho, R.A.C.; Moura, B.S.; de Almeida, A.M.; Montassier, H.J.; Barrow, P.A.; Junior, A.B. Humoral and cellular immune response generated by different vaccine programs before and after Salmonella Enteritidis challenge in chickens. Vaccine 2012, 30, 7637–7643. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.J.; Jang, A.Y.; Song, J.Y.; Ahn, K.B.; Han, S.H.; Bang, S.J.; Jung, H.K.; Hur, J.; Seo, H.S. Development of Live Attenuated Salmonella Typhimurium Vaccine Strain Using Radiation Mutation Enhancement Technology (R-MET). Front. Immunol. 2022, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Berghaus, R.D.; Thayer, S.G.; Maurer, J.J.; Hofacre, C.L. Effect of vaccinating breeder chickens with a killed Salmonella vaccine on Salmonella prevalences and loads in breeder and broiler chicken flocks. J. Food Prot. 2011, 74, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Putnam, M.; Mills, J.; Markis, M.; El-Attrache, J. Advancement of Autogenous Vaccines in the Poultry Industry. Avian Dis. 2023, 67, 450–455. [Google Scholar] [CrossRef]
- Tran, T.Q.; Quessy, S.; Letellier, A.; Desrosiers, A.; Boulianne, M. Immune response following vaccination against Salmonella Enteritidis using 2 commercial bacterins in laying hens. Can. J. Vet. Res. 2010, 74, 185–192. [Google Scholar]
- Sato, Y.; Wigle, W.L.; Lin, T.L.; Gingerich, E.; Wakenell, P.S. Necrotizing and haemorrhagic hepatitis and enteritis in commercial layer pullets. Avian Pathol. 2017, 46, 84–89. [Google Scholar] [CrossRef]
- Toyota-Hanatani, Y.; Inoue, M.; Ekawa, T.; Ohta, H.; Igimi, S.; Baba, E. Importance of the major Fli C antigenic site of Salmonella enteritidis as a subunit vaccine antigen. Vaccine 2008, 26, 4135–4137. [Google Scholar] [CrossRef]
- Erf, G.F. In Vivo System to Monitor Tissue Responses in Birds. Univ. Arkansas. Assignee. U.S. Patent No. 8,216,551, 2012. Available online: https://patents.google.com/patent/US8216551B2/en (accessed on 17 October 2020).
- Erf, G.F.; Ramachandran, I.R. The growing feather as a dermal test-site: Comparison of leukocyte profiles during the response to Mycobacterium butyricum in growing feathers, wattles, and wing webs. Poult. Sci. 2016, 95, 2011–2022. [Google Scholar] [CrossRef]
- French, C.E.; Sales, M.A.; Rochell, S.J.; Rodriguez, A.; Erf, G.F. Local and systemic inflammatory responses to lipopolysaccharide in broilers: New insights using a two-window approach. Poult. Sci. 2020, 99, 6593–6605. [Google Scholar] [CrossRef]
- Rocchi, A.J.; Santamaria, J.M.; Beck, C.N.; Sales, M.A.; Hargis, B.M.; Tellez-Isaias, G.; Erf, G.F. The Immuno-Suppressive Effects of Cyclic, Environmental Heat Stress in Broiler Chickens: Local and Systemic Inflammatory Responses to an Intradermal Injection of Lipopolysaccharide. Vet. Sci. 2023, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Seliger, C.; Schaerer, B.; Kohn, M.; Pendl, H.; Weigend, S.; Kaspers, B.; Härtle, S. A rapid high-precision flow cytometry based technique for total white blood cell counting in chickens. Vet. Immunol. Immunopathol. 2012, 145, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Berthelot-Hérault, F.; Mompart, F.; Zygmunt, M.S.; Dubray, G.; Duchet-Suchaux, M. Antibody responses in the serum and gut of chicken lines differing in cecal carriage of Salmonella enteritidis. Vet. Immunol. Immunopathol. 2003, 96, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Wessels, K.; Rip, D.; Gouws, P. Salmonella in chicken meat: Consumption, outbreaks, characteristics, current control methods and the potential of bacteriophage use. Foods 2021, 10, 1742. [Google Scholar] [CrossRef] [PubMed]
- Shaji, S.; Selvaraj, R.K.; Shanmugasundaram, R. Salmonella Infection in Poultry: A Review on the Pathogen and Control Strategies. Microorganisms 2023, 11, 2814. [Google Scholar] [CrossRef]
- Wang, W.; Wideman, R.F., Jr.; Chapman, M.E.; Bersi, T.K.; Erf, G.F. Effect of intravenous endotoxin on blood cell profiles of broilers housed in cages and floor litter environments. Poult. Sci. 2003, 82, 1886–1897. [Google Scholar] [CrossRef]
- Genovese, K.J.; He, H.; Swaggerty, C.L.; Kogut, M.H. The avian heterophil. Dev. Comp. Immunol. 2013, 41, 334–340. [Google Scholar] [CrossRef]
- Kogut, M.H.; Rothwell, L.; Kaiser, P. Differential regulation of cytokine gene expression by avian heterophils during receptor-mediated phagocytosis of opsonized and nonopsonized Salmonella enteritidis. J. Interferon Cytokine Res. 2003, 23, 319–327. [Google Scholar] [CrossRef]
- Stabler, J.G.; McCormick, T.W.; Powell, K.C.; Kogut, M.H. Avian heterophils and monocytes: Phagocytic and bactericidal activities against Salmonella enteritidis. Vet. Microbiol. 1994, 38, 293–305. [Google Scholar] [CrossRef]
- Kogut, M.H.; Iqbal, M.; He, H.; Philbin, V.; Kaiser, P.; Smith, A. Expression and function of Toll-like receptors in chicken heterophils. Dev. Comp. Immunol. 2005, 29, 791–807. [Google Scholar] [CrossRef]
- Kogut, M.H.; McReynolds, J.L.; He, H.; Genovese, K.J.; Jesudhasan, P.R.; Davidson, M.A.; Cepeda, M.A.; Pillai, S.D. Electron-beam irradiation inactivation of Salmonella: Effects on innate immunity and induction of protection against Salmonella enterica serovar Typhimurium challenge of chickens. Procedia Vaccinol. 2012, 6, 47–63. [Google Scholar] [CrossRef]
- Culshaw, S.; Millington, O.R.; Brewer, J.M.; McInnes, I.B. Murine neutrophils present Class II-restricted antigens. Immunol. Lett. 2008, 118, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Nerren, J.R.; Kogut, M.H. The selective Dectin-1 agonist, curdlan, induces an oxidative burst response in chicken heterophils and peripheral blood mononuclear cells. Vet. Immunol. Immunopathol. 2009, 127, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, K.; Honda, T.; Matsuo, K.; Fujikawa, H.; Iwamoto, T.; Sakanoue, Y. Influence of inoculation site of the combined oil-adjuvanted vaccine on the antibody response in chickens. J. Vet. Med. Sci. 1998, 60, 831–835. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Zhang, Y.; Zhang, W.; Chen, X.; Yang, T.; Wang, Z.; Ma, G. Uniform-sized water-in-oil vaccine formulations enhance immune response against Newcastle disease and avian influenza in chickens. Int. Immunopharmacol. 2014, 23, 603–608. [Google Scholar] [CrossRef]
- O’Hagan, D.T.; van der Most, R.; Lodaya, R.N.; Coccia, M.; Lofano, G. “World in motion”–emulsion adjuvants rising to meet the pandemic challenges. NPJ Vaccines 2021, 6, 158. [Google Scholar] [CrossRef]
- Tahara, Y.; Mizuno, R.; Nishimura, T.; Mukai, S.A.; Wakabayashi, R.; Kamiya, N.; Akiyoshi, K.; Goto, M. A solid-in-oil-in-water emulsion: An adjuvant-based immune-carrier enhances vaccine effect. Biomaterials 2022, 282, 121385. [Google Scholar] [CrossRef]
- Byrne, K.A. Innate Immunity in Chickens: In Vivo Responses to Different Pathogen-Associated Molecular Patterns. Ph.D. Thesis, University of Arkansas, Fayetteville, AR, USA, 2016. Available online: http://scholarworks.uark.edu/etd/1638 (accessed on 22 July 2020).
- Meijerink, N.; Van den Biggelaar, R.H.; Van Haarlem, D.A.; Stegeman, J.A.; Rutten, V.P.; Jansen, C.A. A detailed analysis of innate and adaptive immune responsiveness upon infection with Salmonella enterica serotype Enteritidis in young broiler chickens. Vet. Res. 2021, 52, 109. [Google Scholar] [CrossRef]
- Abbas, A.K.; Lichtman, A.H.; Pillai, S. Cellular and Molecular Immunology; Elsevier Health Sciences: Philadelphia, PA, USA, 2021. [Google Scholar]
- Hassan, J.O.; Barrow, P.A.; Mockett, A.P.; McLeod, S. Antibody response to experimental Salmonella typhimurium infection in chickens measured by ELISA. Vet. Rec. 1990, 126, 519–522. [Google Scholar]
- Barrow, P.A. ELISAs and the serological analysis of Salmonella infections in poultry: A review. Epidemiol. Infect. 1992, 109, 361–369. [Google Scholar] [CrossRef]
- Sheela, R.R.; Babu, U.; Mu, J.; Elankumaran, S.; Bautista, D.A.; Raybourne, R.B.; Heckert, R.A.; Song, W. Immune responses against Salmonella enterica serovar enteritidis infection in virally immunosuppressed chickens. Clin. Vaccine Immunol. 2003, 10, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Kaspers, B.; Schat, K.A.; Göbel, T.; Vervelde, L. (Eds.) Avian Immunology; Academic Press: London, UK, 2021; pp. 311–313. [Google Scholar]
- Rose, M.E.; Orlans, E.; Payne, A.W.; Hesketh, P. The origin of IgA in chicken bile: Its rapid active transport from blood. Eur. J. Immunol. 1981, 11, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Brito, J.R.F.; Hinton, M.; Stokes, C.R.; Pearson, C.R. The humoral and cell-mediated immune response of young chicks to Salmonella typhimurium and S. Kedougou. Br. Vet. J. 1993, 149, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Beal, R.K.; Powers, C.; Wigley, P.; Barrow, P.A.; Smith, A.L. Temporal dynamics of the cellular, humoral, and cytokine responses in chickens during primary and secondary infection with Salmonella enterica serovar Typhimurium. Avian Pathol. 2004, 33, 25–33. [Google Scholar] [CrossRef]
Time (h) 2 | Leukocytes 1 | Heterophils 1 | Macrophages 1 |
---|---|---|---|
0 | 5.4 ± 2.24 d | 1.3 ± 1.49 d | 0.6 ± 0.49 c |
6 | 38.7 ± 1.64 a | 20.1 ± 1.09 a | 4.4 ± 0.36 a |
24 | 29.6 ± 1.64 b | 13.7 ± 1.09 b | 3.9 ± 0.36 a |
48 | 18.2 ± 1.64 c | 7.0 ± 1.09 c | 3.7 ± 0.36 a |
72 | 15.0 ± 1.64 c | 5.4 ± 1.09 c | 2.5 ± 0.36 b |
Treatment 3 | |||
SV1 | 22.1 ± 1.31 | 11.0 ± 0.87 a | 3.2 ± 0.29 |
SV2 | 20.4 ± 1.31 | 9.7 ± 0.87 a | 3.1 ± 0.29 |
SE-LPS | 21.2 ± 1.31 | 11.4 ± 0.87 a | 2.8 ± 0.29 |
Vehicle | 21.8 ± 2.22 | 5.9 ± 0.87 b | 3.0 ± 0.49 |
Trial 4 | |||
2-PHL | 20.7 ± 1.12 | 8.3 ± 0.75 b | 3.8 ± 0.25 a |
3-Farm | 22.1 ± 1.12 | 10.7 ± 0.75 a | 2.2 ± 0.25 b |
Effects (p-value) 5 | |||
Treatment | 0.813 | 0.012 | 0.710 |
Time | <0.001 | <0.001 | <0.001 |
Trial | 0.380 | 0.022 | <0.001 |
Treatment x Time | 0.999 | 0.187 | 0.875 |
Treatment x Trial | 0.783 | 0.897 | 0.807 |
Time x Trial | 0.409 | 0.852 | 0.102 |
Treatment x Time x Trial | 0.687 | 0.598 | 0.782 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santamaria, J.M.; Beck, C.N.; Erf, G.F. Local Inflammatory and Systemic Antibody Responses Initiated by a First Intradermal Administration of Autogenous Salmonella-Killed Vaccines and Their Components in Pullets. Vaccines 2024, 12, 1159. https://doi.org/10.3390/vaccines12101159
Santamaria JM, Beck CN, Erf GF. Local Inflammatory and Systemic Antibody Responses Initiated by a First Intradermal Administration of Autogenous Salmonella-Killed Vaccines and Their Components in Pullets. Vaccines. 2024; 12(10):1159. https://doi.org/10.3390/vaccines12101159
Chicago/Turabian StyleSantamaria, Jossie M., Chrysta N. Beck, and Gisela F. Erf. 2024. "Local Inflammatory and Systemic Antibody Responses Initiated by a First Intradermal Administration of Autogenous Salmonella-Killed Vaccines and Their Components in Pullets" Vaccines 12, no. 10: 1159. https://doi.org/10.3390/vaccines12101159
APA StyleSantamaria, J. M., Beck, C. N., & Erf, G. F. (2024). Local Inflammatory and Systemic Antibody Responses Initiated by a First Intradermal Administration of Autogenous Salmonella-Killed Vaccines and Their Components in Pullets. Vaccines, 12(10), 1159. https://doi.org/10.3390/vaccines12101159