Overview of Recombinant Tick Vaccines and Perspectives on the Use of Plant-Made Vaccines to Control Ticks of Veterinary Importance
Abstract
:1. Introduction
2. Recombinant Vaccines Against Ticks
2.1. Recombinant Vaccines Against Ixodes spp.
Arthropod Specie | Antigen Vaccine Prototype/ Expressión Platform | Pathogen | Animal Model and Immunization Schedule | Main Findings | Reference |
---|---|---|---|---|---|
Ixodes ricinus Rhipicephalus appendiculatus | Tick saliva protein (64TRPs) from Rhipicephalus appendiculatus expressed in Escherichia coli | Tick-borne encephalitis virus (TBEV) | Mice: One subcutaneous dose of 10 μg of 64TRP (alone or in cocktail with soluble, denatured protein or with C-terminal truncation), using Titermaxgold as adjuvant. | -Elicited a specific humoral response. -Protection against a lethal challenge with infected ticks. -Induced inflammatory immune responses in the tick feeding area. | [29] |
Ixodes scapularis | Tick salivary protein—Salp15; expressed in Escherichia coli | Borrelia burgdorferi | Mice: A 10 μg subcutaneous dose of purified recombinant Salp15 emulsified in complete Freund’s adjuvant, boosted with 5 μg in incomplete Freund’s adjuvant, 2 weeks apart. | -Elicited a specific IgG humoral response. -Significant reduction in infection from tick-borne Borrelia. | [36] |
Ixodes scapularis | 25 kDa salivary gland protein (Salp25D) expressed in Escherichia coli | Borrelia burgdorferi | Mice: 10 μg of rSalp25D in complete Freund’s adjuvant and boosted twice at 2-week intervals with 10 μg of rSalp25D in incomplete Freund’s adjuvant. | -Reduced spirochete acquisition by ticks to threefold in comparison to the nonimmunized controls | [35] |
Ixodes scapularis | Tick Saliva protein histamine release factor (tHRF) expressed in Drosophila melanogaster | Borrelia burgdorferi | Mice: One subcutaneous dose of 10 μg of purified recombinant tHRF suspended in complete Freund’s adjuvant, boosted with 5 μg of antigen suspended in incomplete Freund’s adjuvant every two weeks. | -Elicited a specific IgG humoral response. -Tick weights decreased, spirochete load reduced, and 20–33% of immunized mice were PCR-negative. | [37] |
Ixodes scapularis I. ricinus | Gut protein TROSPA expressed in Escherichia coli and Nicotiana benthamiana | Borrelia burgdorferi | Rats: three oral immunizations with 200 μg of the purified TROSPA in PBS buffer with or without 1 unit of GEM particles as adjuvant (Gram-positive enhancer matrix, from Lactococcus lactis), at 14-day intervals | -Elicited a specific IgG humoral response. -TROSPA protein was not detected in the plant leaves. | [38] |
Ixodes persulcatus | The Cyclin-dependent kinases IpCDK10 expressed in Escherichia coli | Syrian hamsters: three subcutaneous doses of 100 μg of recombinant IpCDK10, using Freund’s complete adjuvant for priming, and Freund’s incomplete adjuvant for the two boosts, at 14-day intervals. | Ticks fed the IpCDK10 vaccine group were significantly smaller in size and weighed less, as well as a 50% decrease in egg weight, and tick egg hatching was 80% lower. | [34] | |
Ixodes ricinus | MAPs SIFa and MIP neuropeptides fused to the PADRE peptide | Anaplasma phagocytophilum | Mice: three subcutaneous doses with 10 µg of MAPs, with 14-day intervals. Sheep: three intramuscular doses 50 µg of MAPs, with 15-day intervals, using Montanide™ ISA 201 VG as adjuvant. | -Elicited a specific IgG humoral response. -There were no changes in nymphs fed by mice or sheep, or in bacterial transmission. | [30] |
Ixodes ricinus | The salivary proteins serine protease inhibitor (IrSPI) and lipocalin 1 (IrLip1), expressed in Drosophila S2 cells | Anaplasma phagocytophilum | Mice: three subcutaneous doses with 10 µg of MAPs, with 14-day intervals. Sheep: three intramuscular doses 50 µg of MAPs, with 15-day intervals. Both using Montanide™ ISA 201 VG as adjuvant. | -Elicited a specific IgG humoral response. -No protection against infestation by I. ricinus nymphs and larva in mice and sheep was observed, enhancing tick engorgement and molting and decreasing tick mortality. | [31] |
Ixodes scapularis | The salivary protein 14 (Salp14) using mRNA lipid nanoparticles (LNPs), plasmid DNA, or recombinant protein (expressed in Drosophila). | N/A | Guinea pigs: Three intradermal doses of 20 μg of Salp14 mRNA-LNPs, 80 μg of plasmid DNA encoding Salp14 or empty plasmid constructions VR2010, 20 μg of recombinant Salp14 or Ovalbumin (OVA control), and sustained immunization with 20 μg of recombinant Salp14 over the course of one week. | -Elicited a specific IgG humoral response. -mRNA-LNP vaccination elicited erythema at the tick bite site, more pronounced than DNA or protein immunizations. | [33] |
Ixodes ricinus | The salivary proteins V5H126, B7PDE7, A0A0K8R6W3, expressed in Escherichia coli | N/A | Cows: two doses with 100 µg of each antigen separately (V5H126, B7PDE7, A0A0K8R6W3) or, in a second experiment, with the three antigens combined, at interval of six weeks, using saponin in 1 mL Montanide ISA V50 as adjuvants. Rabbits: three doses 50 µg of V5H126, B7PDE7 and A0A0K8R6W3, at three weeks intervals, using incomplete Freund’s for priming and incomplete Freund’s adjuvant for boosters. | -Elicited a specific IgG humoral response. -No signifcant reduction in tick parameters was observed afer single-antigen immunization, but vaccination with all three antigens resulted in a signifcant reduction in the number of engorged adult ticks as well as their engorgement weights. | [32] |
2.2. Recombinant Vaccines Against Rhipicephalus spp.
Arthropod Specie | Antigen Vaccine Prototype/ Expressión Platform | Pathogen | Animal Model and Immunization Schedule | Main Findings | Reference |
---|---|---|---|---|---|
Rhipicephalus microplus and Haemaphysalis longicornis | Saliva protein Calreticulin; expressed in Escherichia coli | N/A | Mice: three intraperitoneal doses of 100 μg of protein emulsified in Freund’s incomplete adjuvant, at 14-day intervals. Bovines: three subcutaneous doses of 100 μg plus 1 mL of oil adjuvant (Montanide 888 and Marcol 52), at 14-day intervals. Doses were administered 14 days apart. | -Elicited a specific humoral response. | [52] |
Rhipicephalus sanguineus | Peptide of an immunogenic region of the ribosomal protein P0 | N/A | Rabbits: four subcutaneous doses of pP0- KLH conjugate at doses of 500 μg/animal (equivalent to 250 μg pP0/animal) emulsified with VG Montanide 888 adjuvant (60/40 proportion of immunogen/adjuvant), on days 0, 21, 36 and 60. | -Elicited a specific IgG humoral response. -Decrease in the viability of recently molted nymphs of larvae fed with vaccinated rabbits, and a significant reduction in the number of adults and eggs that hatched, showing an overall efficacy of 90%. | [60] |
Rhipicephalus sanguineus. | The midgut protein Bm86, expressed in Pichia pastoris | N/A | Dogs: two intramuscular doses of 50 μg of recombinant Bm86, with 21-day interval. | -Elicited a specific IgG humoral response. -Collection rates of larvae, nymphs and adult females fed with vaccinated dogs were significantly reduced (p < 0.05) by 38%, 29% and 31%, respectively, as well as in the weight of engorged females and in mass of eggs, in the conversion efficiency rate to eggs, but not in the hatching rate of ticks fed with immunized dogs. | [62] |
Rhipicephalus microplus | The egg-associated proteins VTDCE and BYC from R. microplus, and GST-Hl from Haemaphysalis longicornis, expressed in Escherichia coli. | N/A. | Cattle: Four subcutaneous doses of 200 μg each antigen, emulsified with 0.5 mL of the adjuvant Montanide 888 and Marcol 52, with 21-day intervals. | -Elicited a specific IgG humoral response. -Vaccinated cattle show greater weight gain, as well as a significant reduction in the number of semi-engorged ticks. | [53] |
Rhipicephalus microplus | TROSPA, salivary protein SILK, SUB and Q38 chimera from R. microplus, expressed in Escherichia coli | Babesia bigemina | Cattle: 3 doses (days 0, 28 and 49) containing 100 ug of purified recombinant proteins with the Montanide ISA 50 V as adjuvant. | -Elicited a specific IgG humoral response. -Reduction in tick infestations and oviposition with vaccine efficacies of 75% (Q38), 62% (SILK) and 60% (SUB), Q38, TROSPA and SUB reduced B. bigemina DNA levels in ticks, while vaccination with SILK and SUB resulted in lower levels of A. marginale DNA. | [44] |
Rhipicephalus microplus | The aquaporin protein RmAQP1, expressed in Pichia pastoris | Cattle: three intramuscular doses of 100 μg of the recombinant protein using with Montanide ISA 61 VG as adjuvant, with two-week intervals. | -Elicited a specific IgG humoral response. -Vaccine demonstrated 75% and 68% of efficacy in reducing the numbers of adult female ticks. | [58] | |
Rhipicephalus microplus | The Metalloprotease BrRm-MP4 expressed in Escherichia coli | Calves: Two subcutaneous doses of 100 μg of purified rBrRm-MP4, and two more doses with 200 μg of rBrRm-MP4, using Montanide 888 as adjuvants, at 15-day intervals. | -Elicited a specific IgG humoral response. -Vaccination significantly decreased the number of engorged females and their reproductive potential, representing 60% overall protection. | [46] | |
Rhipicephalus microplus | The salivary proteins Rm39, Rm180, Rm239, and Rm76 expressed in Escherichia coli | Calves: Antigens Rm39, Rm180, and Rm239 were prepared separately in a mixture containing 100 μg of recombinant protein, while Rm76 was prepared as a 25 µg dose. Three intramuscular doses to the neck with the four recombinant proteins (in separate injections) at 3-week intervals (days 0, 21 and 42 of the trial), using aluminium hydroxide as adjuvant. | -Elicited a specific IgG humoral response. -Significant reduction in the number of female ticks (52.5%) and tick engorgement weight (55.2%) in vaccinated calves, demonstrating an overall protection of 73.2%. | [47] | |
Rhipicephalus appendiculatus | The cystatin Racys2a, expressed in Escherichia coli | N/A | Rabbits: three subcutaneous doses of 200 μg of recombinant protein at two-week intervals, using Marcol/Montanide as adjuvant. | -Elicited a specific IgG humoral response. -Vaccination caused damage to the gut, salivary gland and ovary tissues in ticks, reducing the number of fully engorged adult females in 11.5%. | [63] |
Rhipicephalus microplus | Cys-loop receptors: N-terminal domains of a glutamate receptor and of a glycine-like receptor, expressed in Escherichia coli | N/A | Mice: Four doses of 20 μg of recombinant N-terminal ECD of the glutamate-activated receptor (rGluCl, 4 mice) or recombinant N-terminal ECD of the glycine-like receptor (rGlyR, 3 mice), the first dose with complete Freund’s adjuvant, and the subsequent doses with incomplete Freund’s adjuvant, at two-week intervals. Cattle: Three intramuscular doses (days 1, 30, and 50) of 100 µg/dose of rGluCl or rGlyR proteins, using Montanide ISA 50 V2 as adjuvant. | -Elicited a moderate humoral IgG response on vaccinated cattle. -Vaccine efficacies of 33% and 25% were obtained for the glutamate receptor and the glycine-like receptor, respectively. | [50] |
Rhipicephalus microplus | The salivary protein Serpin RmS-17, expressed in Escherichia coli | N/A | Rabbits: Three subcutaneous doses of RmS-17 peptide, R. microplus recombinant antigen Bm86. | -Elicited a specific humoral IgG response. -Vaccine efficacy of 79% by the reductions in adult tick number, oviposition, and egg fertility. | [51] |
Rhipicephalus microplus and Hyalomma anatolicum | BM86, Subolesin and tropomyosin, expressed in Kluyveromyces lactis | N/A | Calves: Three intramuscular doses of 100 µg each protein using Montanide ISA 50V2 as adjuvant, at thirty-day intervals. | -Elicited a specific humoral IgG response. -Vaccine efficacy was 87.2% and 86.2% against H. anatolicum larvae and adults, respectively, and 86.7% against R. microplus. | [54] |
Rhipicephalus microplus | Mitochondrial protein VDAC expressed in Escherichia coli | Babesia bigemina | Cattle: 3 subcutaneous doses of rBmVDAC 100 µg/dose, with 21-day intervals, using Montanide ISA 71VG as an adjuvant. | -Elicited a specific humoral IgG response. −82% efficacy against R. microplus. | [49] |
Rhipicephalus microplus and Rhipicephalus sanguineus s.l. | A synthetic 20 amino of the acid peptide acidic ribosomal protein P0 of Rhipicephalus spp., conjugated to Bm86 expressed in P. pastoris | N/A | Dogs: Three subcutaneous immunizations (on days 0, 21 and 36) with 500 μg of pP0–Bm86 conjugate, using Montanide ISA 50 as an adjuvant. | -Elicited a specific humoral IgG response. -Efficacies of around 90% against Rhipicephalus microplus and Rhipicephalus sanguineus s.l. | [61] |
Rhipicephalus microplus | Polypeptide Bm86 expressed in Escherichia coli | N/A | Cattle: Three subcutaneous doses with 100 μg (on days 0, 30 and 49), using Montanide ISA 50 V as an adjuvant. | -Elicited a specific humoral IgG response. -Vaccine efficacy of 58%. | [40] |
2.3. Recombinant Vaccines Against Haemaphysalis spp.
2.4. Recombinant Vaccines Against Amblyomma spp.
2.5. Recombinant Vaccines Against Hyalomma spp.
3. Plant as Recombinant Vaccine Production Host and Delivery
Examples of Plant-Made Vaccines Against Arthropods
4. Opportunities and Limitations in the Field for Plant-Made Vaccines Against Ticks
4.1. Vaccines Against Tick-Borne Diseases and Plant-Made Vaccine Perspectives
4.2. Experience with Plant-Made Vaccines Against Parasites and Prospects Against Ticks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sonenshine, D.E.; Roe, R.M. Ticks, people, and animals. In Biology of Ticks; Oxford University Press: Oxford, UK, 2013; Volume 1, p. 1. [Google Scholar]
- de la Fuente, J.; Estrada-Peña, A.; Venzal, J.M.; Kocan, K.M.; Sonenshine, D.E. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 2008, 13, 6938–6946. [Google Scholar] [CrossRef] [PubMed]
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria [SENASICA], Secretaría de Agricultura y Desarrollo Rural [SAGARPA]. Situación Actual: Campaña Nacional para el Control de la Garrapata Boophilus spp. Available online: https://www.gob.mx/senasica (accessed on 10 August 2024).
- FAO. Management and Integrated Parasite Control in Ruminants Guidelines, Module 1: Ticks: Acaricide Resistance: Diagnosis, Management and Prevention; Animal Production and Health Division, Food and Agriculture Organization: Rome, Italy, 2004. [Google Scholar]
- Almazán, C.; Tipacamu, G.A.; Rodríguez, S.; Mosqueda, J.; Pérez de León, A. Immunological control of ticks and tick-borne diseases that impact cattle health and production. Front. Biosci. 2018, 23, 1535–1551. [Google Scholar] [CrossRef] [PubMed]
- de Castro, J.J. Sustainable tick and tickborne disease control in livestock improvement in developing countries. Vet. Parasitol. 1997, 71, 77–97. [Google Scholar] [CrossRef] [PubMed]
- Eisen, R.J.; Eisen, L. The blacklegged tick, Ixodes scapularis: An increasing public health concern. Trends Parasitol. 2018, 34, 295–309. [Google Scholar] [CrossRef] [PubMed]
- Almazán, C.; Fourniol, L.; Rouxel, C.; Alberdi, P.; Gandoin, C.; Lagrée, A.C.; Bonnet, S.I. Experimental Ixodes ricinus-sheep cycle of Anaplasma phagocytophilum NV2Os propagated in tick cell cultures. Front. Vet. Sci. 2020, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.C.; Yang, Z.N.; Lu, B.; Ma, X.F.; Zhang, C.X.; Xu, H.J. The composition and transmission of microbiome in hard tick, Ixodes persulcatus, during blood meal. Ticks Tick-Borne Dis. 2014, 5, 864–870. [Google Scholar] [CrossRef]
- Zhao, L.; Li, J.; Cui, X.; Jia, N.; Wei, J.; Xia, L.; Cao, W. Distribution of Haemaphysalis longicornis and associated pathogens: Analysis of pooled data from a China field survey and global published data. Lancet Planet. Health 2020, 4, e320–e329. [Google Scholar] [CrossRef]
- Rosario-Cruz, R.; Domínguez-García, D.I.; Almazán, C.; Rosario Dominguez, F. A one health epidemiological approach for understanding ticks and tick-borne pathogens. In Vector-Borne and Zoonotic Diseases; Mary Ann Liebert, Inc.: New Rochelle, NY, USA, 2024. [Google Scholar]
- Rodriguez-Vivas, R.I.; España, E.R.; Blanco, I.L.; Ojeda-Chi, M.M.; Trinidad-Martinez, I.; Islas, J.A.T.; Bhushan, C. Monitoring the resistance of Rhipicephalus microplus to amitraz, flumethrin, coumaphos, and ivermectin on cattle farms in Mexico. Vet. Parasitol. Reg. Stud. Rep. 2021, 26, 100644. [Google Scholar] [CrossRef]
- Allen, J.R.; Humphreys, S.J. Immunisation of guinea pigs and cattle against ticks. Nature 1979, 280, 491–493. [Google Scholar] [CrossRef]
- Rand, K.N.; Moore, T.; Sriskantha, A.; Spring, K.; Tellam, R.; Willadsen, P.; Cobon, G.S. Cloning and expression of a protective antigen from the cattle tick Boophilus microplus. Proc. Natl. Acad. Sci. USA 1989, 86, 9657–9661. [Google Scholar] [CrossRef]
- Willadsen, P.; Bird, P.; Cobon, G.S.; Hungerford, J. Commercialisation of a recombinant vaccine against Boophilus microplus. Parasitology 1995, 110, S43–S50. [Google Scholar] [CrossRef] [PubMed]
- García-García, J.C.; Montero, C.; Redondo, M.; Vargas, M.; Canales, M.; Boue, O.; Rodríguez, M.; Joglar, M.; Machado, H.; González, I.L.; et al. Control of ticks resistant to immunization with Bm86 in cattle vaccinated with the recombinant antigen Bm95 isolated from the cattle tick, Boophilus microplus. Vaccine 2000, 18, 2275–2287. [Google Scholar] [CrossRef] [PubMed]
- Almazán, C.; Kocan, K.M.; Bergman, D.K.; Garcia-Garcia, J.C.; Blouin, E.F.; de la Fuente, J. Identification of protective antigens for the control of Ixodes scapularis infestations using cDNA expression library immunization. Vaccine 2003, 21, 1492–1501. [Google Scholar] [CrossRef] [PubMed]
- Artigas-Jerónimo, S.; Villar, M.; Cabezas-Cruz, A.; Valdés, J.J.; Estrada-Peña, A.; Alberdi, P.; De la Fuente, J. Functional evolution of subolesin/akirin. Front. Physiol. 2018, 9, 1612. [Google Scholar] [CrossRef] [PubMed]
- Almazán, C.; Kocan, K.M.; Blouin, E.F.; de la Fuente, J. Vaccination with recombinant tick antigens for the control of Ixodes scapularis adult infestations. Vaccine 2005, 23, 5294–5298. [Google Scholar] [CrossRef]
- Almazán, C.; Lagunes, R.; Villar, M.; Canales, M.; Rosario-Cruz, R.; Jongejan, F.; de la Fuente, J. Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations. Parasitol. Res. 2010, 106, 471–479. [Google Scholar] [CrossRef]
- Mendoza-Martínez, N.; Alonso-Díaz, M.A.; Merino, O.; Fernández-Salas, A.; Lagunes-Quintanilla, R. Protective efficacy of the peptide Subolesin antigen against the cattle tick Rhipicephalus microplus under natural infestation. Vet. Parasitol. 2021, 299, 109577. [Google Scholar] [CrossRef]
- Kabi, F.; Contreras, M.; Semakula, J.; Sánchez-Sánchez, M.; Muñoz-Hernández, C.; Mugerwa, S.; de la Fuente, J. Evaluation of effectiveness and safety of Subolesin anti-tick vaccine in Ugandan multi-site field trial. Npj Vaccines 2024, 9, 174. [Google Scholar] [CrossRef]
- Almazán, C. Impact of the paper by Allen and Humphreys (1979) on anti-tick vaccine research. Pathogens 2022, 11, 1253. [Google Scholar] [CrossRef]
- Loza-Rubio, E.; Rojas-Anaya, E.; López, J.; Olivera-Flores, M.T.; Gómez-Lim, M.; Tapia-Pérez, G. Induction of a protective immune response to rabies virus in sheep after oral immunization with transgenic maize expressing the rabies virus glycoprotein. Vaccine 2012, 30, 5551–5556. [Google Scholar] [CrossRef]
- Phan, H.T.; Pham, V.T.; Ho, T.T.; Pham, N.B.; Chu, H.H.; Vu, T.H.; Abdelwhab, E.M.; Scheibner, D.; Mettenleiter, T.C.; Hanh, T.X.; et al. Immunization with plant-derived multimeric H5 hemagglutinins protect chicken against highly pathogenic avian influenza virus H5N1. Vaccines 2020, 8, 593. [Google Scholar] [CrossRef] [PubMed]
- Shahid, N.; Samiullah, T.R.; Shakoor, S.; Latif, A.; Yasmeen, A.; Azam, S.; Shahid, A.A.; Husnain, T.; Rao, A.Q. Early stage development of a Newcastle disease vaccine candidate in corn. Front. Vet. Sci. 2020, 7, 499. [Google Scholar] [CrossRef] [PubMed]
- Habibi, M.; Malekzadeh, S.; Marashi, H.; Mohkami, A. Expression of an epitope-based recombinant vaccine against Foot and Mouth Disease (FMDV) in tobacco plant (Nicotiana tabacum). J. Plant Mol. Breed. 2019, 7, 1–9. [Google Scholar]
- Joensuu, J.J.; Verdonck, F.; Ehrström, A.; Peltola, M.; Siljander-Rasi, H.; Nuutila, A.M.; Oksman-Caldentey, K.M.; Teeri, T.H.; Cox, E.; Goddeeris, B.M.; et al. F4 (K88) fimbrial adhesin FaeG expressed in alfalfa reduces F4+ enterotoxigenic Escherichia coli excretion in weaned piglets. Vaccine 2006, 24, 2387–2394. [Google Scholar] [CrossRef] [PubMed]
- Labuda, M.; Trimnell, A.R.; Ličková, M.; Kazimírová, M.; Davies, G.M.; Lissina, O.; Hails, R.S.; Nuttall, P.A. An antivector vaccine protects against a lethal vector-borne pathogen. PLoS Pathog. 2006, 2, e27. [Google Scholar] [CrossRef] [PubMed]
- Almazán, C.; Šimo, L.; Fourniol, L.; Rakotobe, S.; Borneres, J.; Cote, M.; Bonnet, S.I. Multiple antigenic peptide-based vaccines targeting Ixodes ricinus neuropeptides induce a specific antibody response but do not impact tick infestation. Pathogens 2020, 9, 900. [Google Scholar] [CrossRef]
- Almazán, C.; Fourniol, L.; Rakotobe, S.; Šimo, L.; Bornères, J.; Cote, M.; Bonnet, S.I. Failed disruption of tick feeding, viability, and molting after immunization of mice and sheep with recombinant Ixodes ricinus salivary proteins IrSPI and IrLip1. Vaccines 2020, 8, 475. [Google Scholar] [CrossRef]
- Trentelman, J.J.; Tomás-Cortázar, J.; Knorr, S.; Barriales, D.; Hajdusek, O.; Sima, R.; Hovius, J.W. Probing an Ixodes ricinus salivary gland yeast surface display with tick-exposed human sera to identify novel candidates for an anti-tick vaccine. Sci. Rep. 2021, 11, 15745. [Google Scholar] [CrossRef]
- Matias, J.; Kurokawa, C.; Sajid, A.; Narasimhan, S.; Arora, G.; Diktas, H.; Fikrig, E. Tick immunity using mRNA, DNA and protein-based Salp14 delivery strategies. Vaccine 2021, 39, 7661–7668. [Google Scholar] [CrossRef]
- Gomes, H.; Moraes, J.; Githaka, N.; Martins, R.; Isezaki, M.; da Silva Vaz, I., Jr.; Ohashi, K. Vaccination with cyclin-dependent kinase tick antigen confers protection against Ixodes infestation. Vet. Parasitol. 2015, 211, 266–273. [Google Scholar] [CrossRef]
- Narasimhan, S.; Sukumaran, B.; Bozdogan, U.; Thomas, V.; Liang, X.; DePonte, K.; Marcantonio, N.; Koski, R.A.; Anderson, J.F.; Kantor, F.; et al. A tick antioxidant facilitates the Lyme disease agent’s successful migration from the mammalian host to the arthropod vector. Cell Host Microbe 2007, 2, 7–18. [Google Scholar] [CrossRef]
- Dai, J.; Wang, P.; Adusumilli, S.; Booth, C.J.; Narasimhan, S.; Anguita, J.; Fikrig, E. Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent. Cell Host Microbe 2009, 6, 482–492. [Google Scholar] [CrossRef]
- Dai, J.; Narasimhan, S.; Zhang, L.; Liu, L.; Wang, P.; Fikrig, E. Tick histamine release factor is critical for Ixodes scapularis engorgement and transmission of the Lyme disease agent. PLoS Pathog. 2010, 6, e1001205. [Google Scholar] [CrossRef] [PubMed]
- Figlerowicz, M.; Urbanowicz, A.; Lewandowski, D.; Jodynis-Liebert, J.; Sadowski, C. Functional insights into recombinant TROSPA protein from Ixodes ricinus. PLoS ONE 2013, 8, e76848. [Google Scholar] [CrossRef]
- Johnston, L.A.Y.; Kemp, D.H.; Pearson, R.D. Immunization of cattle against Boophilus microplus using extracts derived from adult female ticks: Effects of induced immunity on tick populations. Int. J. Parasitol. 1986, 16, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Coate, R.; Alonso-Díaz, M.Á.; Martínez-Velázquez, M.; Castro-Saines, E.; Hernández-Ortiz, R.; Lagunes-Quintanilla, R. Testing efficacy of a conserved polypeptide from the Bm86 protein against Rhipicephalus microplus in the Mexican tropics. Vaccines 2023, 11, 1267. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.; Rubiera, R.; Penichet, M.; Montesinos, R.; Cremata, J.; Falcón, V.; Sánchez, G.; Bringas, R.; Cordovés, C.; Valdés, M.; et al. High-level expression of the Boophilus microplus Bm86 antigen in the yeast Pichia pastoris forming highly immunogenic particles for cattle. J. Biotechnol. 1994, 33, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Canales, M.; de la Lastra, J.M.P.; Naranjo, V.; Nijhof, A.M.; Hope, M.; Jongejan, F.; de la Fuente, J. Expression of recombinant Rhipicephalus (Boophilus) microplus, R. annulatus and R. decoloratus Bm86 orthologs as secreted proteins in Pichia pastoris. BMC Biotechnol. 2008, 8, 14. [Google Scholar] [CrossRef]
- Canales, M.; Almazán, C.; Naranjo, V.; Jongejan, F.; de la Fuente, J. Vaccination with recombinant Boophilus annulatus Bm86 ortholog protein, Ba86, protects cattle against B. annulatus and B. microplus infestations. BMC Biotechnol. 2009, 9, 29. [Google Scholar] [CrossRef]
- Merino, O.; Antunes, S.; Mosqueda, J.; Moreno-Cid, J.A.; de la Lastra, J.M.P.; Rosario-Cruz, R.; de la Fuente, J. Vaccination with proteins involved in tick–pathogen interactions reduces vector infestations and pathogen infection. Vaccine 2013, 31, 5889–5896. [Google Scholar] [CrossRef]
- Galindo, R.C.; Doncel-Perez, E.; Zivkovic, Z.; Naranjo, V.; Gortazar, C.; Mangold, A.J.; de la Fuente, J. Tick subolesin is an ortholog of the akirins described in insects and vertebrates. Dev. Comp. Immunol. 2009, 33, 612–617. [Google Scholar] [CrossRef]
- Ali, A.; Parizi, L.F.; Guizzo, M.G.; Tirloni, L.; Seixas, A.; da Silva Vaz, I., Jr.; Termignoni, C. Immunoprotective potential of a Rhipicephalus (Boophilus) microplus metalloprotease. Vet. Parasitol. 2015, 207, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, S.R.; Garcia, G.R.; Teixeira, F.R.; Brandão, L.G.; Anderson, J.M.; Ribeiro, J.M.; de Miranda-Santos, I.K. Mining a differential sialotranscriptome of Rhipicephalus microplus guides antigen discovery to formulate a vaccine that reduces tick infestations. Parasites Vectors 2017, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Shoshan-Barmatz, V.; De Pinto, V.; Zweckstetter, M.; Raviv, Z.; Keinan, N.; Arbel, N. VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol. Asp. Med. 2010, 31, 227–285. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Sánchez, R.; Camacho-Nuez, M.; Castañeda-Ortiz, E.J.; Martínez-Benítez, M.B.; Hernández-Silva, D.J.; Aguilar-Tipacamú, G.; Mosqueda, J. Vaccine efficacy of recombinant BmVDAC on Rhipicephalus microplus fed on Babesia bigemina-infected and uninfected cattle. Vaccine 2020, 38, 3618–3625. [Google Scholar] [CrossRef] [PubMed]
- Velázquez, M.M.; Álvarez, C.P.B.; Fernández, J.M.F.; Quintanilla, R.E.L.; Saines, E.C.; Rodríguez, P.B.R.; Álvarez, Á.H. Immunoprotection evaluation of the recombinant N-terminal domain of Cys-loop receptors against Rhipicephalus (Boophilus) microplus tick infestation. Parasite 2021, 28, 65. [Google Scholar] [CrossRef] [PubMed]
- Lagunes-Quintanilla, R.; Valdez-Espinoza, U.M.; Hernández-Ortiz, R.; Castro-Saines, E.; Merino, O.; Mendoza-Martínez, N. Experimental vaccination in rabbits using the peptide RmS-17 antigen reduces the performance of a Mexican Rhipicephalus microplus tick strain. Ticks Tick Borne Dis. 2022, 13, 102044. [Google Scholar] [CrossRef]
- Parizi, L.F.; Rech, H.; Ferreira, C.A.; Imamura, S.; Ohashi, K.; Onuma, M.; Masuda, A.; Vaz, I.S. Comparative immunogenicity of Haemaphysalis longicornis and Rhipicephalus (Boophilus) microplus calreticulins. Vet. Parasitol. 2009, 164, 282–290. [Google Scholar] [CrossRef]
- Parizi, L.F.; Reck, J.; Oldiges, D.P.; Guizzo, M.G.; Seixas, A.; Logullo, C.; da Silva Vaz, I., Jr. Multi-antigenic vaccine against the cattle tick Rhipicephalus (Boophilus) microplus: A field evaluation. Vaccine 2012, 30, 6912–6917. [Google Scholar] [CrossRef]
- Parthasarathi, B.C.; Kumar, B.; Bhure, S.K.; Sharma, A.K.; Manisha Nagar, G.; Ghosh, S. Co-Immunization efficacy of recombinant antigens against Rhipicephalus microplus and Hyalomma anatolicum tick infestations. Pathogens 2023, 12, 433. [Google Scholar] [CrossRef]
- Almazán, C.; Moreno-Cantú, O.; Moreno-Cid, J.A.; Galindo, R.C.; Canales, M.; Villar, M.; De la Fuente, J. Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens. Vaccine 2012, 30, 265–272. [Google Scholar] [CrossRef]
- Hajdusek, O.; Sojka, D.; Kopacek, P.; Buresova, V.; Franta, Z.; Sauman, I.; Winzerling, J.; Grubhoffer, L. Knockdown of proteins involved in iron metabolism limits tick reproduction and development. Proc. Natl. Acad. Sci. USA 2009, 106, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Hajdusek, O.; Almazán, C.; Loosova, G.; Villar, M.; Canales, M.; Grubhoffer, L.; Kopacek, P.; De la Fuente, J. Characterization of ferritin 2 for the control of tick infestations. Vaccine 2010, 28, 2993–2998. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, F.D.; Andreotti, R.; Bendele, K.G.; Cunha, R.C.; Miller, R.J.; Yeater, K.; Pérez de León, A.A. Rhipicephalus (Boophilus) microplus aquaporin as an effective vaccine antigen to protect against cattle tick infestations. Parasites Vectors 2014, 7, 475–487. [Google Scholar] [PubMed]
- Pérez-Soria, M.M.E.; López-Díaz, D.G.; Jiménez-Ocampo, R.; Aguilar-Tipacamú, G.; Ueti, M.W.; Mosqueda, J. Immunization of cattle with a Rhipicephalus microplus chitinase peptide containing predicted B-cell epitopes reduces tick biological fitness. Parasitology 2024, 151, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Mallon, A.; Fernández, E.; Encinosa, P.E.; Bello, Y.; Méndez-Pérez, L.; Ruiz, L.C.; Estrada, M.P. A novel tick antigen shows high vaccine efficacy against the dog tick Rhipicephalus sanguineus. Vaccine 2012, 30, 1782–1789. [Google Scholar] [CrossRef]
- Rodríguez Mallón, A.; Javier González, L.; Encinosa Guzmán, P.E.; Bechara, G.H.; Sanches, G.S.; Pousa, S.; Estrada, M.P. Functional and mass spectrometric evaluation of an anti-tick antigen based on the P0 peptide conjugated to Bm86 protein. Pathogens 2020, 9, 513. [Google Scholar] [CrossRef]
- Perez-Perez, D.; Bechara, G.H.; Machado, R.Z.; Andrade, G.M.; Del Vecchio, R.E.M.; Pedroso, M.S.; Farnós, O. Efficacy of the Bm86 antigen against immature instars and adults of the dog tick Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae). Vet. Parasitol. 2010, 167, 321–326. [Google Scholar] [CrossRef]
- Parizi, L.F.; Rangel, C.K.; Sabadin, G.A.; Saggin, B.F.; Kiio, I.; Xavier, M.A.; Da Silva Vaz, I., Jr. Rhipicephalus microplus cystatin as a potential cross-protective tick vaccine against Rhipicephalus appendiculatus. Ticks Tick Borne Dis. 2020, 11, 101378. [Google Scholar] [CrossRef]
- Zhang, P.; Tian, Z.; Liu, G.; Xie, J.; Luo, J.; Zhang, L.; Shen, H. Characterization of acid phosphatase from the tick Haemaphysalis longicornis. Vet. Parasitol. 2011, 182, 287–296. [Google Scholar] [CrossRef]
- Islam, M.K.; Alim, M.A.; Miyoshi, T.; Hatta, T.; Yamaji, K.; Matsumoto, Y.; Tsuji, N. Longistatin is an unconventional serine protease and induces protective immunity against tick infestation. Mol. Biochem. Parasitol. 2012, 182, 45–53. [Google Scholar]
- Wu, P.X.; Cui, X.J.; Cao, M.X.; Lv, L.H.; Dong, H.M.; Xiao, S.W.; Hu, Y.H. Evaluation on two types of paramyosin vaccines for the control of Haemaphysalis longicornis infestations in rabbits. Parasites Vectors 2021, 14, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xu, X.; Lv, L.; Wu, P.; Dong, H.; Xiao, S.; Hu, Y. Gene cloning, analysis and effect of a new lipocalin homologue from Haemaphysalis longicornis as a protective antigen for an anti-tick vaccine. Vet. Parasitol. 2021, 290, 109358. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Dong, H.M.; Fan, X.Y.; Wu, Y.X.; Yang, F.; Liu, X.Y.; Hu, Y.H. Characterization and evaluation of a new triosephosphate isomerase homologue from Haemaphysalis longicornis as a candidate vaccine against tick infection. Ticks Tick Borne Dis. 2022, 13, 101968. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, J.; Manzano-Roman, R.; Naranjo, V.; Kocan, K.M.; Zivkovic, Z.; Blouin, E.F.; Villar, M. Identification of protective antigens by RNA interference for control of the lone star tick, Amblyomma americanum. Vaccine 2010, 28, 1786–1795. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.C.A.; Ribeiro, I.C.T.; Melo-Junior, O.; Gontijo, N.F.; Sant’Anna, M.R.; Pereira, M.H.; Araujo, R.N. Amblyomma sculptum salivary protease inhibitors as potential anti-tick vaccines. Front. Immunol. 2021, 11, 611104. [Google Scholar] [CrossRef]
- Song, R.; Zhai, X.; Fan, X.; Li, Y.; Huercha Ge, T.; Chahan, B. Prediction and validation of cross-protective candidate antigen of Hyalomma asiaticum cathepsin L between H. asiaticum and H. anatolicum. Exp. Appl. Acarol. 2022, 86, 283–298. [Google Scholar] [CrossRef]
- Korban, S.S. Targeting and expression of antigenic proteins in transgenic plants for production of edible oral vaccines. Vitr. Cell. Dev. Biol. Plant 2002, 38, 231–236. [Google Scholar] [CrossRef]
- Rosales-Mendoza, S.; Salazar-González, J.A. Immunological aspects of using plant cells as delivery vehicles for oral vaccines. Expert Rev. Vaccines 2014, 13, 737–749. [Google Scholar] [CrossRef]
- Rosales-Mendoza, S.; Angulo, C.; Meza, B. Food-grade organisms as vaccine biofactories and oral delivery vehicles. Trends Biotechnol. 2016, 34, 124–136. [Google Scholar] [CrossRef]
- Chan, H.T.; Daniell, H. Plant-made oral vaccines against human infectious diseases—Are we there yet? Plant Biotechnol. J. 2015, 13, 1056–1070. [Google Scholar] [CrossRef]
- Molina, A.; Hervás-Stubbs, S.; Daniell, H.; Mingo-Castel, A.M.; Veramendi, J. High-yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts. Plant Biotechnol. J. 2004, 2, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Fernández-San Millán, A.; Ortigosa, S.M.; Hervás-Stubbs, S.; Corral-Martínez, P.; Seguí-Simarro, J.M.; Gaétan, J.; Veramendi, J. Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. Plant Biotechnol. J. 2008, 6, 427–441. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-López, E.F.; Corigliano, M.G.; Oliferuk, S.; Ramos-Duarte, V.A.; Rivera, M.; Mendoza-Morales, L.F.; Clemente, M. Oral immunization with a plant HSP90-SAG1 fusion protein produced in tobacco elicits strong immune responses and reduces cyst number and clinical signs of toxoplasmosis in mice. Front. Plant Sci. 2021, 12, 726910. [Google Scholar] [CrossRef]
- Schillberg, S.; Raven, N.; Spiegel, H.; Rasche, S.; Buntru, M. Critical analysis of the commercial potential of plants for the production of recombinant proteins. Front. Plant Sci. 2019, 10, 720. [Google Scholar] [CrossRef] [PubMed]
- Tacket, C.O. Plant-based oral vaccines: Results of human trials. Curr. Top. Microbiol. Immunol. 2009, 332, 103–117. [Google Scholar]
- Tatsuhiko, A.; Yoshikazu, Y.; Hiroshi, K. Challenges in mucosal vaccines for the control of infectious diseases. Int. Immunol. 2014, 26, 517. [Google Scholar]
- Vela Ramirez, J.E.; Sharpe, L.A.; Peppas, N.A. Current state and challenges in developing oral vaccines. Adv. Drug Deliv. Rev. 2017, 114, 116–131. [Google Scholar] [CrossRef]
- Jain, I.R.; Ansari, N.M.; Shingi, R.S.; Walode, S.G.; Chatur, V.M. Plant based edible vaccines: A review. World J. Pharm. Res. 2021, 10, 378–392. [Google Scholar]
- Gaobotse, G.; Venkataraman, S.; Mmereke, K.M.; Moustafa, K.; Hefferon, K.; Makhzoum, A. Recent progress on vaccines produced in transgenic plants. Vaccines 2022, 10, 1861. [Google Scholar] [CrossRef]
- Parvathy, S.T.; Udayasuriyan, V.; Bhadana, V. Codon usage bias. Mol. Biol. Rep. 2022, 49, 539–565. [Google Scholar] [CrossRef] [PubMed]
- Sethi, L.; Kumari, K.; Dey, N. Engineering of plants for efficient production of therapeutics. Mol. Biotechnol. 2021, 63, 1125–1137. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, D.K.; Esposito, D. Enhanced soluble protein expression using two new fusion tags. Protein Expr. Purif. 2006, 46, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Farrance, C.E.; Chichester, J.A.; Musiychuk, K.; Shamloul, M.; Rhee, A.; Manceva, S.D.; Yusibov, V. Antibodies to plant-produced Plasmodium falciparum sexual stage protein Pfs25 exhibit transmission blocking activity. Hum. Vaccin. 2011, 7 (Suppl. 1), 191–198. [Google Scholar] [CrossRef]
- Farrance, C.E.; Rhee, A.; Jones, R.M.; Musiychuk, K.; Shamloul, M.; Sharma, S.; Yusibov, V. A plant-produced Pfs230 vaccine candidate blocks transmission of Plasmodium falciparum. Clin. Vaccine Immunol. 2011, 18, 1351–1357. [Google Scholar] [CrossRef]
- Clemente, M.; Corigliano, M.G. Overview of plant-made vaccine antigens against malaria. Biomed Res. Int. 2012, 2012, 206918. [Google Scholar] [CrossRef]
- Chichester, J.A.; Green, B.J.; Jones, R.M.; Shoji, Y.; Miura, K.; Long, C.A.; Yusibov, V. Safety and immunogenicity of a plant-produced Pfs25 virus-like particle as a transmission blocking vaccine against malaria: A Phase 1 dose-escalation study in healthy adults. Vaccine 2018, 36, 5865–5871. [Google Scholar] [CrossRef]
- Menzel, S.; Holland, T.; Boes, A.; Spiegel, H.; Fischer, R.; Buyel, J.F. Downstream processing of a plant-derived malaria transmission-blocking vaccine candidate. Protein Expr. Purif. 2018, 152, 122–130. [Google Scholar] [CrossRef]
- Milán-Noris, E.M.; Monreal-Escalante, E.; Rosales-Mendoza, S.; Soria-Guerra, R.E.; Radwan, O.; Juvik, J.A.; Korban, S.S. An AMA1/MSP1 19 adjuvanted malaria transplastomic plant-based vaccine induces immune responses in test animals. Mol. Biotechnol. 2020, 62, 534–545. [Google Scholar] [CrossRef]
- Lacombe, S.; Bangratz, M.; Brizard, J.P.; Petitdidier, E.; Pagniez, J.; Sérémé, D.; Brugidou, C. Optimized transitory ectopic expression of promastigote surface antigen protein in Nicotiana benthamiana, a potential anti-leishmaniasis vaccine candidate. J. Biosci. Bioeng. 2018, 125, 116–123. [Google Scholar] [CrossRef]
- Bamogo, P.K.; Tiendrebeogo, F.; Brugidou, C.; Sereme, D.; Djigma, F.W.; Simpore, J.; Lacombe, S. Rice yellow mottle virus is a suitable amplicon vector for an efficient production of an anti-leishmaniasis vaccine in Nicotiana benthamiana leaves. BMC Biotechnol. 2024, 24, 21. [Google Scholar] [CrossRef] [PubMed]
- Han, S.C.; Huy, N.X.; Kim, M.Y. Enhanced expression of dengue virus EDIII-based tetravalent antigen protein using transgenic rice callus. Plant Biotechnol. Rep. 2018, 12, 207–215. [Google Scholar] [CrossRef]
- Kim, B.Y.; Kim, M.Y. Evaluation of the oral immunogenicity of M cell-targeted tetravalent EDIII antigen for development of plant-based edible vaccine against dengue infection. Plant Cell Tissue Organ Cult. 2019, 137, 1–10. [Google Scholar] [CrossRef]
- van Eerde, A.; Gottschamel, J.; Bock, R.; Hansen, K.E.A.; Munang’andu, H.M.; Daniell, H.; Liu Clarke, J. Production of tetravalent dengue virus envelope protein domain III-based antigens in lettuce chloroplasts and immunologic analysis for future oral vaccine development. Plant Biotechnol. J. 2019, 17, 1408–1417. [Google Scholar] [CrossRef] [PubMed]
- Ponndorf, D.; Meshcheriakova, Y.; Thuenemann, E.C.; Dobon Alonso, A.; Overman, R.; Holton, N.; Peyret, H. Plant-made dengue virus-like particles produced by co-expression of structural and non-structural proteins induce a humoral immune response in mice. Plant Biotechnol. J. 2021, 19, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Sun, H.; Lai, H.; Hurtado, J.; Chen, Q. Plant-produced Zika virus envelope protein elicits neutralizing immune responses that correlate with protective immunity against Zika virus in mice. Plant Biotechnol. J. 2018, 16, 572–580. [Google Scholar] [CrossRef]
- Diamos, A.G.; Pardhe, M.D.; Sun, H.; Hunter, J.G.; Kilbourne, J.; Chen, Q.; Mason, H.S. A highly expressing, soluble, and stable plant-made IgG fusion vaccine strategy enhances antigen immunogenicity in mice without adjuvant. Front. Immunol. 2020, 11, 576012. [Google Scholar] [CrossRef]
- Shin, M.; Kang, H.; Shin, K.R.; Lee, R.; Kim, K.; Min, K.; Hahn, T.W. Plant-expressed Zika virus envelope protein elicited protective immunity against the Zika virus in immunocompetent mice. Sci. Rep. 2023, 13, 22955. [Google Scholar] [CrossRef]
- Tottey, S.; Shoji, Y.; Jones, R.M.; Chichester, J.A.; Green, B.J.; Musiychuk, K.; Yusibov, V. Plant-produced subunit vaccine candidates against yellow fever induce virus neutralizing antibodies and confer protection against viral challenge in animal models. Am. J. Trop. Med. Hyg. 2018, 98, 420. [Google Scholar] [CrossRef]
- Lai, H.; Paul, A.M.; Sun, H.; He, J.; Yang, M.; Bai, F.; Chen, Q. A plant-produced vaccine protects mice against lethal West Nile virus infection without enhancing Zika or dengue virus infectivity. Vaccine 2018, 36, 1846–1852. [Google Scholar] [CrossRef]
- He, J.; Lai, H.; Esqueda, A.; Chen, Q. Plant-produced antigen displaying virus-like particles evokes potent antibody responses against West Nile virus in mice. Vaccines 2021, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Stander, J.; Chabeda, A.; Rybicki, E.P.; Meyers, A.E. A plant-produced virus-like particle displaying envelope protein domain III elicits an immune response against West Nile virus in mice. Front. Plant Sci. 2021, 12, 738619. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Acharya, D.; Paul, A.M.; Lai, H.; He, J.; Bai, F.; Chen, Q. Antibody-dependent enhancement activity of a plant-made vaccine against West Nile virus. Vaccines 2023, 11, 197. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.H.; Hu, C.C.; Liao, J.T.; Lee, Y.L.; Huang, Y.W.; Lin, N.S.; Hsu, Y.H. Production of Japanese encephalitis virus antigens in plants using bamboo mosaic virus-based vector. Front. Microbiol. 2017, 8, 788. [Google Scholar] [CrossRef]
- Hurtado, J.; Acharya, D.; Lai, H.; Sun, H.; Kallolimath, S.; Steinkellner, H.; Chen, Q. In vitro and in vivo efficacy of anti-chikungunya virus monoclonal antibodies produced in wild-type and glycoengineered Nicotiana benthamiana plants. Plant Biotechnol. J. 2020, 18, 266–273. [Google Scholar] [CrossRef]
- Esqueda, A.; Jugler, C.; Chen, Q. Design and expression of a bispecific antibody against dengue and chikungunya virus in plants. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2021; Volume 660, pp. 223–238. [Google Scholar]
- Arlen, P.A.; Singleton, M.; Adamovicz, J.J.; Ding, Y.; Davoodi-Semiromi, A.; Daniell, H. Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts. Infect. Immun. 2008, 76, 3640–3650. [Google Scholar] [CrossRef]
- Alvarez, M.L.; Cardineau, G.A. Prevention of bubonic and pneumonic plague using plant-derived vaccines. Biotechnol. Adv. 2010, 28, 184–196. [Google Scholar] [CrossRef]
- Rosales-Mendoza, S.; Soria-Guerra, R.E.; Moreno-Fierros, L.; Alpuche-Solís, Á.G.; Martínez-González, L.; Korban, S.S. Expression of an immunogenic F1-V fusion protein in lettuce as a plant-based vaccine against plague. Planta 2010, 232, 409–416. [Google Scholar] [CrossRef]
- Benvenuto, E.; Broer, I.; D’Aoust, M.A.; Hitzeroth, I.; Hundleby, P.; Menassa, R.; Ma, J. Plant molecular farming in the wake of the closure of Medicago Inc. Nat. Biotechnol. 2023, 41, 893–894. [Google Scholar] [CrossRef]
- Ward, B.J.; Gobeil, P.; Séguin, A.; Atkins, J.; Boulay, I.; Charbonneau, P.Y.; Landry, N. Phase 1 randomized trial of a plant-derived virus-like particle vaccine for COVID-19. Nat. Med. 2021, 27, 1071–1078. [Google Scholar] [CrossRef]
- Charland, N.; Gobeil, P.; Pillet, S.; Boulay, I.; Séguin, A.; Makarkov, A.; Ward, B.J. Safety and immunogenicity of an AS03-adjuvanted plant-based SARS-CoV-2 vaccine in Adults with and without Comorbidities. Npj Vaccines 2022, 7, 142. [Google Scholar] [CrossRef] [PubMed]
- Sobrino-Mengual, G.; Armario-Nájera, V.; Balieu, J.; Walet-Balieu, M.L.; Saba-Mayoral, A.; Pelacho, A.M.; Lerouge, P. The SARS-CoV-2 spike protein receptor-binding domain expressed in rice callus features a homogeneous mix of complex-type glycans. Int. J. Mol. Sci. 2024, 25, 4466. [Google Scholar] [CrossRef] [PubMed]
- Song, S.J.; Diao, H.P.; Guo, Y.F.; Hwang, I. Advances in Subcellular Accumulation Design for Recombinant Protein Production in Tobacco. BioDesign Res. 2024, 6, 0047. [Google Scholar] [CrossRef] [PubMed]
- Maclean, J.; Koekemoer, M.; Olivier, A.J.; Stewart, D.; Hitzeroth, I.I.; Rademacher, T.; Rybicki, E.P. Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: Comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. J. Gen. Virol. 2007, 88, 1460–1469. [Google Scholar] [CrossRef]
- Streatfield, S.J. Regulatory issues for plant-made pharmaceuticals and vaccines. Expert Rev. Vaccines 2005, 4, 591–601. [Google Scholar] [CrossRef]
- Entine, J.; Felipe, M.S.S.; Groenewald, J.H.; Kershen, D.L.; Lema, M.; McHughen, A.; Wray-Cahen, D. Regulatory approaches for genome edited agricultural plants in select countries and jurisdictions around the world. Transgenic Res. 2021, 30, 551–584. [Google Scholar] [CrossRef] [PubMed]
- Kirk, D.D.; McIntosh, K.; Walmsley, A.M.; Peterson, R.K. Risk analysis for plant-made vaccines. Transgenic Res. 2005, 14, 449–462. [Google Scholar] [CrossRef]
- Moyle, P.M. Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines. Biotechnol. Adv. 2017, 35, 375–389. [Google Scholar] [CrossRef]
- Spiegel, H.; Boes, A.; Voepel, N.; Beiss, V.; Edgue, G.; Rademacher, T.; Fischer, R. Application of a scalable plant transient gene expression platform for malaria vaccine development. Front. Plant Sci. 2015, 6, 1169. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.M.; Chichester, J.A.; Mett, V.; Jaje, J.; Tottey, S.; Manceva, S.; Yusibov, V. A plant-produced Pfs25 VLP malaria vaccine candidate induces persistent transmission blocking antibodies against Plasmodium falciparum in immunized mice. PLoS ONE 2013, 8, e79538. [Google Scholar] [CrossRef] [PubMed]
Arthropod Specie | Antigen Vaccine Prototype/ Expressión Platform | Pathogen | Animal Model and Immunization Schedule | Main Findings | Reference |
---|---|---|---|---|---|
Haemaphysalis longicornis | Gut protein Acid phosphatase (HL-3) expressed in Escherichia coli | N/A | Rabbits: One subcutaneous dose of 0.8 mg of rHL-3 protein emulsified with Freund’s complete adjuvant, with two boosters of 0.8 mg of rHL-3 protein with Freund’s incomplete adjuvant, at 14-day intervals. | Adult female ticks fed on vaccinated rabbits had a 10.6% reduction in engorgement weight and a mortality rate of 28%, compared to those ticks fed on unvaccinated rabbits. | [64] |
Haemaphysalis longicornis | Salivary protein Longistatin, expressed in Escherichia coli | N/A | Mice: Two intramuscular doses of 30 μg of recombinant longistatin emulsified with TiterMax® Gold adjuvant (Sigma), 14 days apart. | -Elicited a specific IgG humoral response. Tick engorgement reduction by 54%, post-engorgement body weight by >11%, and nymphal molt by approximately 34%, with vaccine effectiveness of 73%. | [65] |
Haemaphysalis longicornis | Paramyosin expressed in Escherichia coli | N/A | Rabbits: Three doses of 500 μg recombinant vaccine, the first one adjuvanted with Freund’s complete and two doses with Freund’s incomplete, at 2-week intervals. | -Elicited a specific IgG humoral response. -Reduction in tick engorgement weight, oviposition, and hatchability. | [66] |
Haemaphysalis longicornis | Lipocalin homologue from H. longicornis (HlLIP) expressed in Escherichia coli | N/A | Rabbits: Three subcutaneous doses of 500 µg of rHlLIP protein (0.5 mL), the first with complete Freund’s adjuvant, and the subsequent two with incomplete Freund’s adjuvant, at two-week intervals. | -Elicited a specific humoral IgG response. -The vaccination efficacy was 60.17% by the reduction in engorged weight, oviposition and egg hatching rate of ticks. | [67] |
Haemaphysalis longicornis | Triosephosphate isomerase, expressed in Escherichia coli | N/A | Rabbits: three groups (9 rabbits/group). In the experimental group, 0.5 mL rHlTIM (1 μg/μL) mixed with equal volumes of Freund’s complete adjuvant was injected at day 0, followed by two injections with 0.5 mL rHlTIM (1 μg/μL) mixed with equal volumes of Freund’s incomplete adjuvant at intervals of two weeks. | -Elicited a specific humoral IgG response. -Vaccine efficacy of 50.9% by the reductions in engorgement weight, oviposition and hatchability of ticks. | [68] |
Arthropod Specie | Antigen vaccine Prototype/ Expressión Platform | Pathogen | Animal Model and Immunization Schedule | Main Findings | Reference |
---|---|---|---|---|---|
Amblyomma americanum | The gut proteins: Putative threonyl-tRNA synthetase (2C9), 60S ribosomal proteins L13a (2D10) and L13e (2B7), subolesin and interphase cytoplasm foci protein 45 (2G7), expressed in Escherichia coli | N/A | Cattle: 3 subcutaneous doses (weeks 0, 4 and 6) with 100 μg of purified recombinant proteins emulsified with the adjuvant Montanide ISA 50V. | -Elicited a specific IgG humoral response. -An overall efficacy of 30% was obtained with respect to the effect of the vaccine in nymphs and adults, with greater control efficacy for adult ticks, 55%, after immunization with recombinant 2G7 or subolesin. | [69] |
Amblyomma sculptum | The salivary proteins AsKunitz, AsBasicTail and As8.9kDa, expressed in Escherichia coli | N/A | Mice: Three subcutaneous doses of 5 µg of each recombinant protein plus 0.1 mg aluminum hydroxide gel as adjuvant, at 2-week intervals. | -Elicited a specific humoral IgG response. -Vaccine efficacy against A. sculptum females was 59.4% with rAsBasicTail and 85% with immunization with rAsKunitz and rAs8.9kDa. The mortality of nymphs fed with immunized mice reached 70–100%. | [70] |
Arthropod Specie | Antigen Vaccine Prototype/ Expressión Platform | Pathogen | Animal Model and Immunization Schedule | Main Findings | Reference |
---|---|---|---|---|---|
Hyalomma asiaticum and H. anatolicum | Cathepsin L-like cysteine protease | N/A | Rabbits: Animals were immunized with rHasCPL. Prior to immunization, 200 µg of rHasCPL (0.2 mL) was mixed with equal volume of Inject Alum adjuvant and injected into each rabbit. All rabbits were immunized 3 × at 14-day intervals. | -Vaccine efficacy of 54.8%. | [71] |
Antigen | Efficacy | References |
---|---|---|
Bm86 (R. microplus Bm86 antigen) | Reduction of 70–90% of Rhipicephalus microplus | [41] |
Bm95 (R. microplus Bm95 antigen) | Reduction of 58 and 89% in South American strains of R. microplus | [16] |
Bm95-msp1a (R. microplus Bm95 antigen fused to the Anaplasma marginale major surface protein 1a) | 64% overall efficacy against R. microplus | [55] |
RmAQP1 (R. microplus aquaporine) | 75% and 68% efficacy against Brazilian strains of R. microplus | [58] |
Ba86 (Boophilus annulatus Bm86 ortholog protein) | Efficacy of 83% and 71.5% against Mercedes and Media Joya strains of R. annulatus and R. microplus, respectively | [43] |
Subolesin (R. microplus) | 51% overall efficacy against R. microplus | [20] |
Subolesin-mps1a (R. microplus Subolesin fused to the Anaplasma marginale major surface protein 1a) | 60% overall efficacy against R. microplus | [55] |
Ferritin 2 from: IrFER2 (I. ricinus) and RmFER2 (R. microplus) | Efficacy of 64% and 72% against R. microplus and R. annulatus, respectively | [57] |
VDAC (R. microplus) mitochondrial protein | 82% efficacy against R. microplus | [49] |
P0 (synthetic ribosomal peptide from ticks) conjugated to hemocyanin from Megathura crenulate) | Overall efficacy of 90% against R. sanguineus feed on rabbits and 96% against a Brazilian strain of R. microplus | [61] |
Subolesin peptide (from R. microplus) | 67% efficacy against R. microplus | [21] |
Bm86 polypeptide (from R. microplus Bm86 antigen) | 58% efficacy against R. microplus | [40] |
Chitinase peptide (from R. microplus) | 71% efficacy | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trujillo, E.; Ramos-Vega, A.; Monreal-Escalante, E.; Almazán, C.; Angulo, C. Overview of Recombinant Tick Vaccines and Perspectives on the Use of Plant-Made Vaccines to Control Ticks of Veterinary Importance. Vaccines 2024, 12, 1178. https://doi.org/10.3390/vaccines12101178
Trujillo E, Ramos-Vega A, Monreal-Escalante E, Almazán C, Angulo C. Overview of Recombinant Tick Vaccines and Perspectives on the Use of Plant-Made Vaccines to Control Ticks of Veterinary Importance. Vaccines. 2024; 12(10):1178. https://doi.org/10.3390/vaccines12101178
Chicago/Turabian StyleTrujillo, Edgar, Abel Ramos-Vega, Elizabeth Monreal-Escalante, Consuelo Almazán, and Carlos Angulo. 2024. "Overview of Recombinant Tick Vaccines and Perspectives on the Use of Plant-Made Vaccines to Control Ticks of Veterinary Importance" Vaccines 12, no. 10: 1178. https://doi.org/10.3390/vaccines12101178
APA StyleTrujillo, E., Ramos-Vega, A., Monreal-Escalante, E., Almazán, C., & Angulo, C. (2024). Overview of Recombinant Tick Vaccines and Perspectives on the Use of Plant-Made Vaccines to Control Ticks of Veterinary Importance. Vaccines, 12(10), 1178. https://doi.org/10.3390/vaccines12101178