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Abstract: Background: Haemonchus contortus (H. contortus), a nematode with global prevalence,
poses a major threat to the gastrointestinal health of sheep and goats. In an effort to combat this
parasite, a nanovaccine was created using a recombinant ADP-ribosylation factor 1 (ARF1) antigen
encapsulated within poly lactic-co-glycolic acid (PLGA). This study aimed to assess the effectiveness
of this nanovaccine in providing protection against H. contortus infection. Methods: Fifteen goats
were randomly divided into three groups. The experimental group received two doses of the PLGA
encapsulated rHcARF1 (rHcARF1-PLGA) nanovaccine on days 0 and 14. Fourteen days after the
second immunization, both the experimental and positive control groups were challenged with
8000 infective larvae (L3) of H. contortus, while the negative control group remained unvaccinated and
unchallenged. At the end of the experiment on the 63rd day, all animals were humanly euthanized.
Results: The results showed that the experimental group had significantly higher levels of sera IgG,
IgA, and IgE antibodies, as well as increased concentrations of cytokines, such as IL-4, IL-9, IL-17,
and TGF-β, compared to the negative control group after immunization. Following the L3 challenge,
the experimental group exhibited a 47.5% reduction in mean eggs per gram of feces (EPG) and a
55.7% reduction in worm burden as compared to the positive control group. Conclusions: These
findings indicate that the nanovaccine expressing rHcARF1 offers significant protective efficacy
against H. contortus infection in goats. The results also suggest the need for more precise optimization
of the antigen dose or a reassessment of the vaccination regimen. Additionally, the small sample size
limits the statistical rigor and the broader applicability of the findings.

Keywords: H. contortus; ARF1; PLGA polymer; nanovaccine; immunomodulation; goats

1. Introduction

Haemonchus contortus (H. contortus) ranks among the most harmful gastrointestinal
nematodes, particularly affecting small ruminants, exhibiting a ubiquitous global dis-
tribution [1]. This helminthic parasite infects its host population primarily through the
ingestion of forage contaminated with infective larvae, subsequently establishing resi-
dence within the abomasum to feed on the blood of its host. Clinical manifestations in
afflicted animals encompass dehydration, debility, diminished production yields, and ane-
mia [2]. Notably, young lambs are especially vulnerable to the lethal consequences of this

Vaccines 2024, 12, 1188. https://doi.org/10.3390/vaccines12101188 https://www.mdpi.com/journal/vaccines

https://doi.org/10.3390/vaccines12101188
https://doi.org/10.3390/vaccines12101188
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vaccines
https://www.mdpi.com
https://orcid.org/0000-0001-8560-7714
https://orcid.org/0000-0001-6006-1954
https://orcid.org/0000-0002-2587-0171
https://orcid.org/0000-0001-5314-5869
https://orcid.org/0000-0003-4777-5973
https://orcid.org/0000-0001-8899-2777
https://orcid.org/0000-0002-7343-7815
https://orcid.org/0000-0002-7143-6827
https://orcid.org/0000-0003-1458-3676
https://doi.org/10.3390/vaccines12101188
https://www.mdpi.com/journal/vaccines
https://www.mdpi.com/article/10.3390/vaccines12101188?type=check_update&version=1


Vaccines 2024, 12, 1188 2 of 17

nematode infection [3]. Unfortunately, an effective vaccine targeting H. contortus remains
absent. As a result, the primary approaches for managing this parasitic menace entail
meticulous pasture management practices and the periodic administration of anthelmintic
treatments. Unfortunately, protracted reliance on anthelmintics has spurred the emergence
of resistance to these drugs. Consequently, the proliferation of drug-resistant H. contortus
strains now presents a substantial threat to the sustainability of small ruminant husbandry
worldwide [4,5]. The advent of efficacious anti-parasitic vaccines stands to introduce a
pivotal novel dimension to the strategic management and control of GIN infections in
small ruminants.

ADP-ribosylation factor 1 (ARF1) isolated from H. contortus, denoted as HcARF1, was
pinpointed as the primary antigen of interest within the infective larval stages [6]. ARF1 is
categorized within the group of Ras-associated GTPases and plays a pivotal role in facilitat-
ing vesicular trafficking, as well as functioning as a signal transduction mediator [7–10].
ARF1 is involved in critical biological functions necessary for the parasite’s survival within
its host. It likely plays a role in regulating metabolic pathways and enabling the parasite to
adapt to the host environment, both of which are vital for sustaining the infection [11]. This
protein has been meticulously characterized across a spectrum of eukaryotic organisms,
including model species such as Drosophila melanogaster, Saccharomyces cerevisiae, Plasmod-
ium falciparum, and Caenorhabditis elegans [12–14]. In pursuit of an effective vaccine design
against H. contortus, Hasan et al. recently employed biodegradable nanoparticles, including
PLGA and chitosan NPs, to encapsulate HcARF1. This approach demonstrated enhanced
immune responses in murine subjects [15]. Complementing these findings, in vitro investi-
gations have underscored the immunomodulatory properties of HcARF1, shedding light
on its crucial role in the pathogenesis of H. contortus [16].

Within the realm of nano-medicine, the biodegradable polymer poly (lactic-co-
glycolic acid) (PLGA) has emerged as a subject of heightened interest, offering a novel
approach to combat infectious parasites [15,17]. PLGA, when harnessed in conjunction
with specific antigens, has demonstrated its capacity to elicit a potent immune response,
proving effective against various parasitic infections, including leishmaniasis and toxo-
plasmosis [18–20]. PLGA nanoparticles (NPs) play a multidimensional role, not only in
optimizing vaccine delivery but also in reducing the required dosage and injection fre-
quency and extending the antigen’s presence within the host organism [21]. Furthermore,
a subset of NPs possess inherent immunomodulatory properties, capable of triggering
or augmenting the immune response [22–25]. According to a recent study by Hasan
et al., PLGA shows considerable efficacy in encapsulating parasitic antigens and can
trigger significant immunogenic responses in the host, leading to notable lymphocyte
proliferation and activation of T cells and dendritic cell (DC) subsets [17]. Our previous
research demonstrated that rHcARF1 exhibits robust immunogenicity against H. contortus
in vitro. When encapsulated within PLGA nanoparticles, this protein effectively induced
protective immunity by modulating both cellular and humoral immune responses in a
murine model [15,16]. PLGA particles with antigens and toll-like receptor ligands trigger
strong antitumor immune responses. Encapsulating the novel dsRNA adjuvant Riboxxim
in PLGA markedly boosts dendritic cell activation and CD8+ T cell responses over con-
ventional dsRNA analogs. This approach effectively inhibits primary tumor growth,
prevents metastases, and improves survival, with even greater efficacy when combined
with immune checkpoint blockade [26].

In our present study, we are delving into the protective response elicited by an antigen
delivery system, specifically the antigen–NPs complex denoted as HcARF1-PLGA, in the
context of H. contortus infection. Our findings suggest that this nanovaccine regimen,
when coupled with appropriate management practices, may offer a robust defense against
the infection.
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2. Experimental Materials and Procedures
2.1. Ethics Approval

All animals in this study were subject to rigorous ethical oversight and management
procedures, adhering to the directives set forth by the Animal Ethics Committee at Nanjing
Agricultural University, China. Furthermore, all animal experimentation strictly followed
the guidelines established by the Animal Welfare Council of China. Additionally, the
experimental protocols obtained official approval from the Science and Technology Agency
of Jiangsu Province, as indicated by the approval ID SYXK (SU) 2010-0005.

2.2. Reagents, Parasites, and Proteins

PLGA (poly (lactic-co-glycolic acid)) with a composition of Lactic acid/Glycolide of
65:35 and a molecular weight range of 40,000–75,000, as well as polyvinyl alcohol (PVA)
with a molecular weight range of 31,000–50,000, were procured from Sigma-Aldrich (St.
Louis, MO, USA). The Micro-BCATM Protein Assay Kit was obtained from CW Biotech
(Beijing, China PR). Antibodies, including rabbit anti-goat IgG, rabbit anti-goat IgA (abcam,
Shanghai, China), and the Immunoglobulin E (IgE) detection kit (Jinyibai, Nanjing, China),
were utilized. ELISA kits for goat IL-9, goat IL-4, goat IL-17, goat TGF-β1, and goat IFN-γ
were sourced from HengYuan (Shanghai, China).

In this investigation, the H. contortus strain was sustained via consecutive passages
within our laboratory setting. The third-stage (L3) larvae were cultivated at the Laboratory
of Veterinary Parasitic Diseases at Nanjing Agricultural University [27]. Total RNA was
isolated from adult worms of H. contortus collected from the abomasum of donor goats as
described previously [28], and cDNA was synthesized by reverse transcription reaction
using a cDNA Kit. The complete ORF of HcARF1 was amplified via RT-PCR using primers
specific to the H. contortus ARF gene (GI: 533372025, GenBank accession HF964523.1).
Purified PCR products were cloned into the pMD19-T vector and transformed into E. coli
(DH5α) cells. Positive clones were confirmed through BamHI/XhoI digestion, sequenced,
and analyzed using DNAssist 3.11 software. The HcARF1 gene was cloned into the pET32a
(+) vector, sequenced to verify correct insertion, and expressed in E. coli BL21(DE3) cells with
IPTG induction. The histidine-tagged fusion protein was purified using His Bind® Resin,
dialyzed in PBS to remove imidazole, and endotoxins were eliminated with ToxinEraser™.
Purity, expression, and concentration were assessed via a 12% SDS-PAGE and Coomassie
staining, and storage of the rHcARF1 protein was conducted in-house at −80 ◦C [16].

2.3. The Optimization of Polyvinyl Alcohol (PVA)

Prior to the commencement of PLGA NP synthesis, a comprehensive investigation
was conducted to determine the optimal concentration of PVA. In the current investigation,
we considered three distinct gradients of PVA concentrations, specifically set at 1%, 4%, and
6%. Subsequently, we proceeded to assess the characteristics of the PLGA NPs generated
under these varying PVA concentrations utilizing scanning electron microscopy (SEM),
employing a JEOL IT-100 microscope from Tokyo, Japan.

2.4. Synthesis of rHcARF1-Loaded PLGA NPs

PLGA nanoparticles (NPs) were fabricated using the double emulsion technique, as
previously described [27], with some modifications to maintain sterility. In brief, the inner
aqueous phase was created by dissolving the recombinant protein rHcARF1 (2.2 mg/mL) in
a 6% PVA solution. Simultaneously, the organic phase was prepared by dissolving 5% PLGA
in methylene chloride, resulting in a solution of 50 mg of PLGA per 1 mL of methylene
chloride. The inner aqueous phase and the organic phase were amalgamated to form
the water-oil (w/o) emulsion, utilizing an ultrasonic processor (JY92-IIN, NingBo Scientz
Biotechnology, Ningbo, China) for a 4-min duration (40 W, 5 s, 5 s), while maintaining an
ice bath. This w/o emulsion was subsequently introduced into the external aqueous phase,
comprised of a 6% PVA solution in deionized water. The same sonication conditions were
applied to obtain the final emulsion, forming a water-oil-water (w/o/w) configuration. The
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organic solvent within the emulsion was eliminated through evaporation under magnetic
stirring for a duration of 4–5 h in a chemical fume cupboard, conducted at room temperature.
The resultant antigen-loaded NPs (rHcARF1-PLGA) were separated from the NP solution
through centrifugation at 20,000× g for 40 min at 4 ◦C. The supernatant was collected
to determine protein loading efficiency using the Micro-BCATM protein assay kit. At the
same time, the precipitated NPs were subjected to two wash cycles via centrifugation
with ultrapure water. The NPs were subsequently placed within a freeze-drying machine
(LabconcoTM, Thermo Fisher Scientific, Waltham, MA, USA) for a period of 24 h and stored
at −80 ◦C until they were ready for use in further experiments.

For the preparation of blank PLGA NPs, to serve as a control in subsequent experi-
ments, the antigen rHcARF1 was intentionally omitted from the process, ensuring these
NPs remained antigen-free.

2.5. Physical Characteristics of rHcARF1-Loaded PLGA NPs

To determine the encapsulation efficiency (EE) and loading capacity (LC) of rHcARF1
within the nanoparticles (NPs), we employed the Micro-BCATM protein assay kit. These
parameters were calculated using the following equations [29,30]:

EE = (total protein − unbound protein)/total protein × 100%

LC = loaded protein/total mass of the nanovaccine × 100%

The surface structure and dimensions of the PLGA NPs were examined using a cold
field emission SEM (JEOL IT-100, Tokyo, Japan). Subsequently, the powdered NPs were
prepared for examination by being loaded onto aluminum stubs and coated with platinum.

To validate the integrity of the loaded protein, a sodium dodecyl sulfate–polyacrylamide
gel electrophoresis (SDS-PAGE) gel was run.

2.6. Goats Immunization

The experiment was conducted after receiving the necessary permissions from the
Animal Care and Ethics Committee at Nanjing Agricultural University (Approval ID:
201009022) for the inoculation of goats with the nanovaccine. Fifteen locally crossbred
female goats, aged between 5 and 6 months, were reared in a controlled indoor envi-
ronment that was maintained free from nematode infestations. The animal housing and
surroundings were subjected to daily cleaning procedures, with disinfection executed
every three days during the trial. The goats were categorized into three groups, each
consisting of five animals, with an emphasis on achieving a balanced distribution of body
weight (15 ± 2.5 kg). All goats were clinically and visibly healthy before undergoing
immunization. To prevent natural helminth infections, all goats received Levamisole at
a dosage of 8 mg/kg of body weight every two weeks, in accordance with the recom-
mended guidelines.

In the experimental group (n = 5), the goats received the rHcARF1-PLGA nanovac-
cine intramuscularly (I/M) on day 0. The nanovaccine had a rHcARF1 concentration
of 2.7 ng/µL and was administered in 1 mL of PBS (pH 7.4). The inoculation dose was
evenly distributed between two different injection sites (the thigh and shoulder muscles
of the goats). A subsequent booster dose of the nanovaccine was administered after a
2-week interval on day 14. The negative control group (n = 5) remained unvaccinated and
unexposed to L3 challenges, yet they received mock vaccinations with 1 mL of PBS. In a
similar manner, the positive control group (n = 5) remained unvaccinated. They were also
mock-vaccinated with 1 mL of PBS (pH 7.4). On day 28, animals from both the experimen-
tal and positive control groups were orally challenged with 8000 L3 (infective larvae of
H. contortus). On day 64, all animals were sacrificed humanely for further investigation.
Schedule for vaccinations, challenge with infection, and sampling are mentioned in Table 1.
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Table 1. Schedule for vaccinations, challenge with infection, and sampling.

Day of Experiment 0 14 28 43 50 52 54 56 58 60 62 63

Vaccination/Immunization * *

Challenge with L3 *

Serum collection for IgG, IgA, and IgE * * * * * *

Feces collection for fecal egg count * * * * * * *

Worms count *

‘*’ means the occurance of event in the study perios.

2.7. Collection of the Serum Samples

Blood samples were obtained from the goats via the jugular vein at specific time points,
namely 0, 14, 28, 43, 54, and 63 days throughout the experimental period. Each blood
collection event involved drawing five milliliters of blood from each goat collected into
sterile plain universal tubes. The samples were refrigerated overnight at 4 ◦C to allow
coagulation of the blood. The resulting supernatant was then subjected to centrifugation
at 3200× g for 20 min. The separated serum was subsequently preserved at −20 ◦C until
required for analysis.

2.8. ELISA for the Determination of Antibodies in Sera

The levels of serum IgA and IgG were determined using the indirect enzyme-linked
immunosorbent assay (ELISA) method, following established protocols [27]. In brief, 96-
well clear, polystyrene high bind strip wellTM microplates (Corning, San Diego, CA, USA)
were treated with 240 ng/µL of rHcARF1 and allowed to incubate at 4 ◦C for all the night.

Next, serum samples, appropriately diluted in PBS containing 0.5% Tween-20 (PBST),
were introduced into every well of a 96-well plate and incubated at 37 ◦C for 1–2 h.
Following incubation, the wells underwent thorough washing with PBST and were sub-
sequently incubated with Horseradish Peroxidase (HRP)-conjugated rabbit anti-goat IgA
and HRP-conjugated rabbit anti-goat IgG. The enzymatic reaction was halted by the ad-
dition of 2 M H2SO4 after introducing 200 µL of substrate solution (A: H2O2, B: 3,3′,5,5′-
Tetramethylbenzidine). Each plate was equipped with standard controls (negative and
positive). Ultimately, the results were quantified by measuring the absorbance at 450 nm
using a microplate enzyme-linked immunosorbent assay reader (Thermo Scientific, San
Jose, CA, USA). Serum IgE levels were determined using a goat IgE ELISA kit in accordance
with the manufacturer’s instructions.

2.9. Determination of Cytokine Concentration

The indirect enzyme-linked immunosorbent assay (ELISA) was employed to quan-
tify the serum concentrations of Interleukin (IL)-4, IL-9, IL-17, interferon-γ (IFN-γ), and
transforming growth factor-β (TGF-β) at various time points, specifically on days 0, 14, 28,
43, 54, and 63 throughout the experimental duration. In this analysis, goat cytokine ELISA
kits (IL-4 ml9024598, IL-9 ml60807530, IL-17 ml90156742, TGF-β ml20153590, and IFN-γ
ml4767261) were utilized, all of which were procured from HengYuan, Shanghai, China
PR. All procedural steps were meticulously carried out following the precise instructions
provided by the kit manufacturer.



Vaccines 2024, 12, 1188 6 of 17

2.10. Parasitological Techniques

Fresh fecal samples were aseptically obtained via rectal collection from each goat
at specific time points, namely, on days 50, 52, 54, 56, 58, 60, and 62 throughout the
experimental timeline. Subsequently, the fecal egg count, also known as EPG (eggs per
gram), was quantified by employing the modified McMaster method [31]. The reduction in
EPG was calculated employing the following formula:

RE (%) = (Positive group − Experimental group)/Positive group × 100%

Here, ‘RE’ denotes the reduction rate of the fecal egg count.

2.11. Abomasal Worm Loads

On the 63rd day of the experiment, all animals were humanely euthanized, and
a thorough examination of the abomasum was conducted to determine the quantity of
worms, including both male and female specimens [32]. The contents of the abomasum
were systematically retrieved, and the mucosa was gently scratched and washed with a
lukewarm 0.9% sodium chloride solution to dislodge the adhering maggots. Then, all
worms from the abomasum and mucosal surface were collected carefully, enumerated, and
classified on the basis of gender. The evaluation of declines in the total worm population
was conducted by following the same approach employed for determining EPG.

2.12. Differential Cell Counts

To perform a differential blood cell count, blood samples were aseptically collected
from all goats through jugular vein puncture. These samples were deposited into evacuated
glass tubes (Becton Dickinson, Oxford, England) coated with ethylenediamine tetraacetic
acid (EDTA) on specified days, including days 0, 14, 28, 43, and 63 of the experimental
periods. The classification of blood cell types was accomplished using an automated
electronic cell counter (Mindray BC-5000 Vet, Shenzhen, China).

2.13. Statistical Analysis

The data from all experiments were presented in the format of mean ± standard
deviation (SD). To assess and clarify significant differences among the groups, the two-way
ANOVA test with Tukey’s multiple comparisons test was employed. Significance levels for
data differences were established as p < 0.05, p < 0.01, and p < 0.001 [17].

3. Results
3.1. The Working Concentration of PVA

The assessment of particle morphology and size was conducted using SEM at
varying PVA concentrations, specifically 1%, 4%, and 6%. The particle size displayed
irregularity at PVA concentrations of 1% and 4% and yielded NPs of more than 2 µm
(Supplemental Figure S1). Hence, 6% PVA was selected as the most appropriate for
subsequent experiments.

3.2. Characteristics of Antigen-Loaded PLGA NPs
3.2.1. Scanning Electron Microscopy of Antigen Encapsulating NPs

The SEM analysis demonstrated the smooth surface characteristics of the nanoparticles,
with the size of rHcARF1-PLGA NPs ranging between 63 nm and 125 nm (Figure 1A,B).
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NPs (blank NPs) did not exhibit any conforming sign or band (Figure 1C). The western 
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immune sera, notably the rat anti-rHcARF1, which manifested as a distinct band. In 
contrast, sera from normal rats exhibited no significant recognition of the HcARF1 protein, 
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Figure 1. The scanning electron microscope was employed to ascertain the morphology and size
characteristics of nanoparticles (NPs). Their morphology was visualized at a magnification of 10,000×.
In (A), the SEM image depicts rHcARF1-PLGA NPs, (B) provides a graphical representation of the
size distribution of rHcARF1-PLGA NPs, and (C) showcases an SDS-PAGE analysis with a 12%
separating gel, conducted to investigate the interaction between rHcARF1 and PLGA nanoparticles.
In this analysis, Lane M represents the standard protein molecular weight marker; Lane 1 indicates
PBS-PLGA NPs and Lane 2 demonstrates PLGA NPs bound with rHcARF1.

3.2.2. Analysis of SDS-PAGE

A 12% SDS-PAGE gel was utilized to evaluate the binding and integrity of rHcARF1
with PLGA NPs. The results unambiguously demonstrated that the molecular weight of
the protein remained unaffected by the NP formulation. Specifically, the rHcARF1-PLGA
NPs exhibited a prominent band with a size of approximately 38 kDa, while PBS-PLGA
NPs (blank NPs) did not exhibit any conforming sign or band (Figure 1C). The western blot
analysis validated the specific detection of the recombinant HcARF1 protein by the immune
sera, notably the rat anti-rHcARF1, which manifested as a distinct band. In contrast, sera
from normal rats exhibited no significant recognition of the HcARF1 protein, suggesting
a lack of specific binding (Supplementary Figure S2). While, densitometry readings of
immunoblot are mentioned in Table S1.

3.2.3. Encapsulation Efficiency and Loading Capacity Assessment

Subsequent to the conjugation process, PLGA NPs were subjected to precipitation,
and the residual amount of unbound rHcARF1 protein was quantified. The analysis
demonstrated an encapsulation efficiency (EE) of 72.37 ± 3.51%, indicating the successful
encapsulation of this proportion of rHcARF1 within the PLGA NPs. Furthermore, ap-
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proximately 25 ± 1.1% of the protein was loaded (LC) by the PLGA NPs, as detailed in
Table 2.

Table 2. Characterization of recombinant antigen (rHcARF1) loaded-PLGA NPs. Data are presented
as the mean ± SD (n = 3).

NPs Size (nm) LC a EE b

rHcARF1-PLGA NPs 100 ± 36 25 ± 1.1 72.37 ± 3.51

LC a = (total protein − unbound protein)/total dry weight of Nano-vaccine × 100%. EE b = (total protein
− unbound protein)/total protein × 100%.

3.3. Nanovaccine Modulated the Sera IgG, IgA, and IgE

In the experimental group (rHcARF1-PLGA), a noteworthy increase in specific serum
IgA levels was observed from the period of immunization to the challenge, reaching peak
values on days 28 and 54 compared to positive and negative controls. Furthermore, serum
IgG levels, particularly on day 43, showed a significant elevation in the nanovaccine group
(rHcARF1-PLGA) compared to the positive and negative control groups (p < 0.05, p < 0.01,
p < 0.001; Figure 2A,B).
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Figure 2. The quantification of rHcARF-1 sera immunoglobulin levels (IgG, IgA, and IgE) was carried
out using both spectrophotometry and enzyme-linked immunosorbent assay (ELISA) techniques.
In (A–C), the IgA, IgG and IgE titers of the rHcARF-1 experimental group, the negative control group,
and the positive control group were reported as mean values with standard deviation (mean ± SD)
based on optical density measurements taken at 450 nm. The presented data are representative of
triplicate experiments, and statistical significance levels are indicated as follows: * p < 0.05, ** p < 0.01,
and *** p < 0.001.

A similar trend was evident in the total IgE serum levels of goats subjected to the same
treatment as described earlier. The IgE serum levels in the experimental group exhibited
a significant increase on day 28. They reached their zenith on day 43 (p < 0.01, p < 0.001),
persisting at elevated levels until the conclusion of the study, in contrast to the positive and
negative control groups (Figure 2C).
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3.4. Nanovaccine Augmented the Production of Sera Cytokines

Subsequent to immunization with rHcARF1-PLGA, a conspicuous upsurge was de-
tected in the production of cytokines, specifically IL-4 (days 14 to 63), IL-9 (days 28 to
54), IL-17 (days 54, 63), and TGF-β (days 54, 63) in all vaccinated animals. All these cy-
tokines were increased and showed statistical significance (p < 0.05, p < 0.01, p < 0.001)
when compared to the negative control group following the challenge (Figure 3). In the
case of the positive control, IL-4 (days 43 to 63), IL-9 (days 43, 54), and IL-17 (days 63)
concentrations were higher as compared to the negative control (p < 0.05, p < 0.01, p < 0.001).
It is remarkable that goats immunized with the nanovaccine produced more IL-4 (days 43)
and IL-9 (days 43) after the L3 challenge as compared with the positive control (p < 0.05).
However, no substantial alterations were observed in the concentration of IFN-γ in any of
the groups, both before and after the challenge with L3 larvae.
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of the experiment. After day 54, this decrease was significant, and the trend continued
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reduction continued after day 62, resulting in a significant 47.5% decrease in comparison
to the positive control group (p < 0.01, p < 0.001). The negative control group did not exhibit

Figure 3. Sera cytokine levels, including IL-4, IL-9, IL-17, TGF-β, and IFN-γ, were quantified and are
expressed as mean values accompanied by standard deviation (mean ± SD). The concentration of IL-4,
(A), IL-9 (B), IL-17 (C), TGF-β (D), and IFN-γ (E). The experimental animals received immunization on
day 0 and day 14, followed by a challenge with L3 on day 28. The presented data are representative of
triplicate experiments, and statistical significance levels are indicated as follows: * p < 0.05, ** p < 0.01
and *** p < 0.001.

3.5. Nanovaccine Reduced the EPG and Worm Load

Figure 4 presents a comparison of EPG counts between vaccinated and unvaccinated
goats after the challenge. Fecal egg count results demonstrated that egg shedding com-
menced in the experimental (rHcARF1-PLGA) and positive control groups on day 50 of the
experiment. After day 54, this decrease was significant, and the trend continued until day
58. Subsequently, egg shedding in the experimental group decreased, and this reduction
continued after day 62, resulting in a significant 47.5% decrease in comparison to the posi-
tive control group (p < 0.01, p < 0.001). The negative control group did not exhibit any egg
shedding throughout the experimental period as it was not challenged with H. contortus L3.
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that received vaccinations with rHcARF1-PLGA and were subsequently challenged, designated as
the rHcARF1-PLGA group. The positive control group comprised goats injected with PBS only and
subjected to the same challenge, while the negative control group consisted of uninfected and
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Additionally, goats that received the nanovaccine displayed a noteworthy reduction
in worm burdens by 55.7% when compared with unvaccinated goats (Figure 5, p < 0.001).
This reduction was evident for both female (53.6%, p < 0.01) and male worms (59.7%, p <
0.05), underscoring the substantial efficacy of the nanovaccine against this helminth.

Figure 5. Quantification of female, male, and total worm counts was conducted across multiple
experimental groups. The outcomes are reported as the mean values accompanied by their standard

Figure 4. The reduction in egg shedding, quantified as eggs per gram (EPG), was expressed as
the mean value along with its standard deviation (mean ± SD). The experimental groups included
goats that received vaccinations with rHcARF1-PLGA and were subsequently challenged, designated
as the rHcARF1-PLGA group. The positive control group comprised goats injected with PBS only
and subjected to the same challenge, while the negative control group consisted of uninfected and
unimmunized goats. The presented data are representative of triplicate experiments, and statistical
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Additionally, goats that received the nanovaccine displayed a noteworthy reduction in
worm burdens by 55.7% when compared with unvaccinated goats (Figure 5, p < 0.001). This
reduction was evident for both female (53.6%, p < 0.01) and male worms (59.7%, p < 0.05),
underscoring the substantial efficacy of the nanovaccine against this helminth.
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Figure 5. Quantification of female, male, and total worm counts was conducted across multiple
experimental groups. The outcomes are reported as the mean values accompanied by their standard
error of the mean (mean ± SEM). The experimental cohort receiving the nanovaccine and subsequent
challenge is designated as the rHcARF1-PLGA group. The positive control group comprises goats
exclusively administered with PBS and subsequently challenged, while the negative control group
encompasses goats that remained uninfected and devoid of immunization. The presented data are a
representative of statistical significance at levels * p < 0.05, ** p < 0.01 and *** p < 0.001.
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3.6. Nanovaccine Modulated the Blood Cell Counts

The peripheral basophil counts displayed a significant increase after immunization
(days 43 and 63, p < 0.05, p < 0.001) in the vaccinated group when compared to the positive
and negative control groups (Figure 6A). Notably, a significant distinction was observed
between the experimental and positive groups. Subsequent to the second immunization,
the eosinophil count in vaccinated animals exhibited a remarkable elevation (p < 0.05) from
days 28 to 63 in contrast to the negative group (Figure 6B). However, the goats that received
nanovaccine did not show a remarkable difference as compared to the positive control
group in this case.
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are shown in this figure. Within the study, the rHcARF1-PLGA group signifies goats that were
vaccinated with the nanovaccine and subsequently challenged, whereas the positive control group
pertains to goats exclusively administered with PBS and subsequently subjected to the same
challenge. The negative control group encompasses goats that remained uninfected and were not
subjected to any immunization. Immunization of the animals occurred on days 0 and 14, followed
by a challenge involving 8000 H. contortus L3 larvae on day 28. The presented data are a
representative of triplicate experiments, denoted as statistical significance at levels * p < 0.05, ** p <
0.01 and *** p < 0.001.

4. Discussion
Vaccination strategies for combating Haemonchus contortus (H. contortus) infections

are of paramount importance in the realm of livestock research. The intricate and dynamic
life cycle of H. contortus has thus far posed a formidable challenge in the development of
an effective vaccine that can boost natural immunity. Notably, the parasite’s larvae
undergo antigenic and molecular transformations with each molting stage [33,34],
underscoring the necessity of identifying protective candidate antigens tailored to the
specific parasite stage. In this study, we assessed the protective immunity elicited by

Figure 6. The quantification of basophils, eosinophils, neutrophils, lymphocytes, monocytes, and
hemoglobin levels in the blood is presented as the mean values accompanied by their respective
standard errors of the mean (means ± SEM). The fluctuation of different blood fractions, such as
basophils (A), eosinophils (B), lymphocytes (C), hemoglobin (D), monocytes (E) and neutrophils
(F) are shown in this figure. Within the study, the rHcARF1-PLGA group signifies goats that were
vaccinated with the nanovaccine and subsequently challenged, whereas the positive control group
pertains to goats exclusively administered with PBS and subsequently subjected to the same challenge.
The negative control group encompasses goats that remained uninfected and were not subjected to
any immunization. Immunization of the animals occurred on days 0 and 14, followed by a challenge
involving 8000 H. contortus L3 larvae on day 28. The presented data are a representative of triplicate
experiments, denoted as statistical significance at levels * p < 0.05, ** p < 0.01 and *** p < 0.001.
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According to Figure 6C, continuous elevation in blood lymphocyte counts was noted
in the immunized group after the secondary immunization, with a significant difference
compared to the negative control group observed from days 43 to 63 (p < 0.001). The
increasing trend of lymphocytes was obvious as compared to positive control also on
days 63 (p < 0.05).

Concerning hemoglobin concentration, a non-significant reduction was observed in
the rHcARF1-PLGA and positive control groups after the challenge with L3 larvae (days
28–63) in comparison to the worm-free goats in the negative control group (Figure 6D).
Moreover, no significant differences were detected in the hematocrit values for monocytes
and neutrophils among all groups during the experiment (Figure 6E,F).

4. Discussion

Vaccination strategies for combating Haemonchus contortus (H. contortus) infections are
of paramount importance in the realm of livestock research. The intricate and dynamic life
cycle of H. contortus has thus far posed a formidable challenge in the development of an
effective vaccine that can boost natural immunity. Notably, the parasite’s larvae undergo
antigenic and molecular transformations with each molting stage [33,34], underscoring the
necessity of identifying protective candidate antigens tailored to the specific parasite stage.
In this study, we assessed the protective immunity elicited by rHcARF1, in conjunction with
the nanomaterial PLGA, against H. contortus infection in goats. The vaccine formulation
consisted of the helminth recombinant protein rHcARF1, efficiently encapsulated within
the biodegradable polymer PLGA NPs. This choice was made following previous findings
confirming the capacity of this antigenic molecule to modulate the cellular and humoral
immune response of host immune cells [15,16].

The integration of recombinant proteins and nanospheres in vaccines against H. con-
tortus presents notable scientific advantages. Recombinant proteins are produced with high
specificity and purity, utilizing control systems that ensure only the targeted antigens are
included. This precision minimizes contamination risks and allows for the incorporation
of specific epitopes that can trigger a strong immune response [17,27]. Additionally, the
consistent production of recombinant proteins ensures uniformity in vaccine quality and ef-
fectiveness while eliminating the risks associated with vaccines derived from live or killed
pathogens [35]. PLGA-based nanospheres enhance vaccine performance by providing
controlled, sustained release of antigens and targeted delivery to antigen-presenting cells.
This approach improves the durability of the immune response and stabilizes the antigen,
minimizing side effects [36–38]. Together with recombinant proteins, these nanospheres
optimize the vaccine’s potency, stability, and safety against H. contortus.

Numerous experimental studies have previously demonstrated the efficacy of DNA
vaccines in reduced egg shedding and diminishing worm loads in the context of this
helminth infestation (H. contortus) [27,32,39]. In our present investigation, we consistently
observed reductions in both EPG counts and abomasal worm burden. This achievement
represents a noteworthy exemplar of a nanoparticle-based approach that has yielded a
modest yet promising response. It introduces an innovative concept of combining potential
helminth antigens with a biopolymer, specifically PLGA. Nevertheless, it is important to
acknowledge that EPG can exhibit variability based on factors such as the immune status
of the animals, their age, and the specific strains of H. contortus [40].

Antibodies are widely recognized as critical components in providing significant
immunity against H. contortus [41]. Particularly, antibodies of the IgG, IgA, and IgE classes
bind to antigens, forming immune complexes that activate an inflammatory cascade. This
response leads to increased mucus production, smooth muscle contractions, and, ultimately,
the expulsion or death of the parasite [42,43]. Goats in the experimental group in the
current investigation exhibited a significant increase in IgG titers, particularly after booster
vaccinations, compared to the unvaccinated control group. These findings are consistent
with our previous research, where the Dim-1 protein of H. contortus induced significantly
elevated IgG levels compared to control groups [32]. Similar responses have also been
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documented in other nematode infections, including Ascaris suum [44] and Trichostrongylus
colubriformis [45]. Collectively, these results underscore the ability of rHcARF1 to elicit a
robust immune response in the host.

In our investigation, we observed a significant elevation (p < 0.05, p < 0.01) in serum-
specific IgA levels in response to the nanovaccine on days 28 and 54, as compared to the
positive control group. These findings align with previous research indicating a close
relationship between abomasal IgA levels and worm burdens associated with various
parasites [46–48]. Among the different immunoglobulin isotypes, IgE has consistently
demonstrated associations with nematode infections [43,49,50]. Furthermore, studies
involving resistant sheep have revealed elevated production levels of IgG1 and IgE [51].
In our current study, the results revealed a significant increase in total serum IgE levels
in the experimental groups at days 28 and 43 (p < 0.01, p < 0.001) when compared to the
negative control group. These collective findings underscore the potential importance of
IgG, IgA, and IgE in inducing protective immunity against H. contortus.

Regarding immune responses to helminth infections, eosinophils play a crucial role in
providing resistance to parasites in ovine species [52]. Eosinophilia, characterized by an
increase in eosinophils, has been observed in various allergic diseases as well as parasitic
infections [53]. In our current investigation, we observed elevated levels of eosinophils,
basophils, and lymphocytes in the blood of the immunized group in comparison to the
negative control group. This data is consistent with the common knowledge of the strong
connection between eosinophils and the ability to resist helminth parasites [54]. It is well-
established that H. contortus infection often leads to a reduced hemoglobin level. A previous
study also reported lowered hemoglobin levels in the blood of vaccinated animals [32].
Consequently, the low hemoglobin level suggests that hemoglobin values may not serve as
a reliable indicator of worm burdens in infected animals. We found a miniature increase
in the hemoglobin level of the nanovaccine group on day 14 before the L3 challenge,
which probably means that the antigen (rHcARF1) started to produce its immune response.
However, after the L3 challenge, the protective effect was diminished, as shown by the
hemoglobin level. In our present study, we did not observe significant differences in the
values of two blood fractions (monocytes, neutrophils) between the experimental and
positive groups. It is conceivable that the infection of H. contortus L3 larvae contributed
to the increased values in both groups. However, further investigations are required to
provide a more comprehensive explanation.

IL-4 is the quintessential cytokine signaling the Th2 immune response and is chiefly
responsible for triggering the switch to the IgE isotype [55]. Elevated IL-4 levels in H. con-
tortus infections have been linked to an increased production of IgE directed against H.
contortus [56]. Notably, cells isolated from the abomasal and mesenteric lymph nodes of
H. contortus-infected lambs exhibited reduced IFN-γ expression compared to uninfected
counterparts [51]. TGF-β, a powerful regulator, exerts dual roles by suppressing both Th1
and Th2 cells while fostering the maintenance and function of regulatory T (Treg) cells.
Additionally, TGF-β has significant implications in hematopoiesis and plays pivotal roles
in embryogenesis, tissue regeneration, cell proliferation, and differentiation [57]. A body of
experimental evidence underscores the essential role of IL-17 as a driving force behind the
recruitment and activation of neutrophils [58]. Furthermore, IL-9, a well-established Th2-
associated cytokine, amplifies the biological function of IL-4 in expediting the expulsion of
worms [59]. Our study unveiled that the concentration of IL-4 in vaccinated animals (from
day 14 to day 63) significantly surpassed that in the negative control group. The current
research recorded an elevated production of IL-9 (from days 28 to 54), IL-17 (from days 54 to
63), and TGF-β (from days 54 to 63) in the nanovaccine group relative to the control group
(p < 0.05, p < 0.01, p < 0.001). Furthermore, the goats that received the nanovaccine secreted
more IL-4, IL-9, IL-17, and TGF-β on days 14, 28, 43, 54, and 63 compared to the positive
control, respectively. Simultaneously, we observed no significant differences in IFN-γ
concentration across all groups. In light of our understanding of cytokines, it is plausible
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to hypothesize that rHcARF1 plays a critical role in the pathogenesis and elicitation of
inflammatory responses in H. contortus infections.

The rHcARF1-PLGA nanovaccine demonstrated partial protection against H. contor-
tus infection in goats; however, several important limitations must be addressed. First,
although reductions in eggs per gram (EPG) of feces (47.5%) and worm burden (55.7%)
were statistically significant, the level of protection was incomplete. This indicates a need
for further refinement of the antigen dose, formulation, or vaccination schedule to enhance
efficacy. Second, the relatively small sample size (n = 15) limits the generalization of these
findings, necessitating larger, more comprehensive trials to validate the protective effects
of the vaccine and assess its applicability in broader contexts. Lastly, this study did not
include a direct comparison with the licensed vaccine (Barbervax®) for Haemochosis. Fu-
ture investigations should focus on such comparisons to determine the relative efficacy,
long-term immune response, and cost-effectiveness of the rHcARF1-PLGA nanovaccine in
relation to existing immunological products.

5. Conclusions

Our research shows that the nanovaccine effectively protects goats from H. contortus
infestations. It significantly reduces egg shedding and worm loads in the abomasum. The
vaccine also induces strong immune responses, marked by increased cytokine levels in vac-
cinated goats. By combining the antigen with PLGA nanoparticles, this approach enhances
antibody production and improves the host’s defense against H. contortus. However, more
detailed studies are needed to elucidate the complex mechanisms through which HcARF1
contributes to this protective effect.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/vaccines12101188/s1. Figure S1: An investigation was conducted
to determine the optimal concentration of polyvinyl alcohol (PVA) for a study involving the design
of two distinct PVA concentration gradients. The morphology of the resultant poly (lactic-co-glycolic
acid) nanoparticles (PLGA NPs) was assessed through scanning electron microscopy. (A) 1% PVA
(B) 4% PVA. Scale bars: (A = 10 µm, B = 5 µm); Figure S2: The western blot analysis confirmed
the presence of the purified recombinant HcARF1 (rHcARF1) protein by specifically detecting it
with rat anti-rHcARF1 sera. Lane M shows the molecular weight marker for protein size reference.
Lane 1, which was probed with normal rat sera, serves as a negative control to ensure probing
specificity. Lanes 2 and 3 display different concentrations of total excretory-secretory (ES) proteins
from H. contortus, probed with antibodies derived from Sprague-Dawley (SD) rats immunized
with rHcARF1, demonstrating the recognition of rHcARF1 within the ES protein sample. Table S1:
Densitometry readings/intensity ratio (Band size) measured by ImageJ software 1.51.
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