Development of Long-Term Stability of Enveloped rVSV Viral Vector Expressing SARS-CoV-2 Antigen Using a DOE-Guided Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Virus Infection
2.2. Preparation of Materials
2.3. Excipients & Buffers
2.4. DOE Experimental Runs
2.5. Infectivity Assay
2.6. Modeling & Statistical Analysis
3. Results
3.1. Preliminary Stability Study
3.2. DOE-Based Accelerated Stress Study
3.3. Long-Term Stability Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakraborty, C.; Bhattacharya, M.; Dhama, K. SARS-CoV-2 Vaccines, Vaccine Development Technologies, and Significant Efforts in Vaccine Development during the Pandemic: The Lessons Learned Might Help to Fight against the Next Pandemic. Vaccines 2023, 11, 682. [Google Scholar] [CrossRef] [PubMed]
- Reinauer, E.B.; Grosso, S.S.; Henz, S.R.; Rabas, J.A.; Rodenstein, C.; Altrichter, J.; Scholz, M.; Kemter, K.F. Algorithm-Based Liquid Formulation Development Including a DoE Concept Predicts Long-Term Viral Vector Stability. J. Pharm. Sci. 2020, 109, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Fathi, A.; Dahlke, C.; Addo, M.M. Recombinant vesicular stomatitis virus vector vaccines for WHO blueprint priority pathogens. Hum. Vaccines Immunother. 2019, 15, 2269–2285. [Google Scholar] [CrossRef] [PubMed]
- McGettigan, J.P.; Sarma, S.; Orenstein, J.M.; Pomerantz, R.J.; Schnell, M.J. Expression and Immunogenicity of Human Immunodeficiency Virus Type 1 Gag Expressed by a Replication-Competent Rhabdovirus-Based Vaccine Vector. J. Virol. 2001, 75, 8724–8732. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.K.; Nasar, F.; Lee, M.; Johnson, J.E.; Wright, K.; Calderon, P.; Guo, M.; Natuk, R.; Cooper, D.; Hendry, R.M.; et al. Synergistic Attenuation of Vesicular Stomatitis Virus by Combination of Specific G Gene Truncations and N Gene Translocations. J. Virol. 2007, 81, 2056–2064. [Google Scholar] [CrossRef]
- Roberts, A.; Buonocore, L.; Price, R.; Forman, J.; Rose, J.K. Attenuated Vesicular Stomatitis Viruses as Vaccine Vectors. J. Virol. 1999, 73, 3723–3732. [Google Scholar] [CrossRef]
- Taddeo, A.; Veiga, I.B.; Devisme, C.; Boss, R.; Plattet, P.; Weigang, S.; Kochs, G.; Thiel, V.; Benarafa, C.; Zimmer, G. Optimized intramuscular immunization with VSV-vectored spike protein triggers a superior immune response to SARS-CoV-2. NPJ Vaccines 2022, 7, 82. [Google Scholar] [CrossRef]
- Khan, M.F.H.; Youssef, M.; Nesdoly, S.; Kamen, A.A. Development of Robust Freeze-Drying Process for Long-Term Stability of rVSV-SARS-CoV-2 Vaccine. Viruses 2024, 16, 942. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Administration of ERVEBO®. Available online: https://www.cdc.gov/vhf/ebola/clinicians/vaccine/vaccine-administration.html (accessed on 24 February 2024).
- Patzer, E.J.; Wagner, R.R.; Dubovi, E.J.; Compans, R.W. Viral Membranes: Model Systems for Studying Biological Membrane. CRC Crit. Rev. Biochem. 1979, 6, 165–217. [Google Scholar] [CrossRef]
- Lenard, J. Virus Envelopes and Plasma Membranes. Annu. Rev. Biophys. Bioeng. 1978, 7, 139–165. [Google Scholar] [CrossRef]
- Fraenkel-Conrat, H.; Wagner, R.R. (Eds.) Comprehensive Virology Volume 13: Structure and Assembly; Springer: Boston, MA, USA, 1979. [Google Scholar] [CrossRef]
- MManning, C.; Patel, K.; Borchardt, R.T. Stability of Protein Pharmaceuticals. Pharm. Res. 1989, 6, 903–918. [Google Scholar] [CrossRef]
- Volkin, D.B.; Mach, H.; Middaugh, C.R. Degradative covalent reactions important to protein stability. Mol. Biotechnol. 1997, 8, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Hovgaard, L.; Frokjaer, S.; van de Weert, M. (Eds.) Pharmaceutical Formulation Development of Peptides and Proteins; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar] [CrossRef]
- Petri, W.A.; Wagner, R.R. Reconstitution into lipososomes of the glycoprotein of vesicular stomatitis virus by detergent dialysis. J. Biol. Chem. 1979, 254, 4313–4316. [Google Scholar] [CrossRef] [PubMed]
- Chi, E.Y.; Krishnan, S.; Randolph, T.W.; Carpenter, J.F. Physical Stability of Proteins in Aqueous Solution: Mechanism and Driving Forces in Nonnative Protein Aggregation. Pharm. Res. 2003, 20, 1325–1336. [Google Scholar] [CrossRef]
- Carpenter, J.F.; Manning, M.C. (Eds.) Rational Design of Stable Protein Formulations; Springer: Boston, MA, USA, 2002; Volume 13. [Google Scholar] [CrossRef]
- Berg, A.; Wright, D.; Dulal, P.; Stedman, A.; Fedosyuk, S.; Francis, M.J.; Charleston, B.; Warimwe, G.M.; Douglas, A.D. Stability of chimpanzee adenovirus vectored vaccines (Chadox1 and chadox2) in liquid and lyophilised formulations. Vaccines 2021, 9, 1249. [Google Scholar] [CrossRef]
- Kadji, F.M.N.; Kotani, K.; Tsukamoto, H.; Hiraoka, Y.; Hagiwara, K. Stability of enveloped and nonenveloped viruses in hydrolyzed gelatin liquid formulation. Virol. J. 2022, 19, 94. [Google Scholar] [CrossRef] [PubMed]
- Kadji, F.M.N.; Kotani, K.; Tsukamoto, H.; Hiraoka, Y.; Hagiwara, K. Stability of Enveloped and Nonenveloped Viruses in a Stable Gelatin Liquid Formulation. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Warne, N.W.; Mahler, H.-C. Challenges in Protein Product Development. 2018. Available online: http://www.springer.com/series/8825 (accessed on 12 March 2024).
- White, J.A.; Estrada, M.; Flood, E.A.; Mahmood, K.; Dhere, R.; Chen, D. Development of a stable liquid formulation of live attenuated influenza vaccine. Vaccine 2016, 34, 3676–3683. [Google Scholar] [CrossRef]
- Kumru, O.S.; Saleh-Birdjandi, S.; Antunez, L.R.; Sayeed, E.; Robinson, D.; Worm, S.v.D.; Diemer, G.S.; Perez, W.; Caposio, P.; Früh, K.; et al. Stabilization and formulation of a recombinant Human Cytomegalovirus vector for use as a candidate HIV-1 vaccine. Vaccine 2019, 37, 6696–6706. [Google Scholar] [CrossRef]
- Sun, Y.; Shen, Z.; Zhang, C.; Yi, Y.; Zhu, K.; Xu, F.; Kong, W. Development of a Stable Liquid Formulation for Live Attenuated Influenza Vaccine. J. Pharm. Sci. 2019, 108, 2315–2322. [Google Scholar] [CrossRef]
- Pachauri, R.; Manu, M.; Vishnoi, P.; Preethi, B.O.; Tiwari, A.K.; Dhar, P. Stability of live attenuated classical swine fever cell culture vaccine virus in liquid form for developing an oral vaccine. Biologicals 2020, 68, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Wiggan, O.; Livengood, J.A.; Silengo, S.J.; Kinney, R.M.; Osorio, J.E.; Huang, C.Y.-H.; Stinchcomb, D.T. Novel formulations enhance the thermal stability of live-attenuated flavivirus vaccines. Vaccine 2011, 29, 7456–7462. [Google Scholar] [CrossRef]
- Shen, C.F.; Guilbault, C.; Li, X.; Elahi, S.M.; Ansorge, S.; Kamen, A.; Gilbert, R. Development of suspension adapted Vero cell culture process technology for production of viral vaccines. Vaccine 2019, 37, 6996–7002. [Google Scholar] [CrossRef]
- Kim, G.N.; Choi, J.-A.; Wu, K.; Saeedian, N.; Yang, E.; Park, H.; Woo, S.-J.; Lim, G.; Kim, S.-G.; Eo, S.-K.; et al. A vesicular stomatitis virus-based prime-boost vaccination strategy induces potent and protective neutralizing antibodies against SARS-CoV-2. PLoS Pathog. 2021, 17, e1010092. [Google Scholar] [CrossRef] [PubMed]
- Kiesslich, S.; Kim, G.N.; Shen, C.F.; Kang, C.Y.; Kamen, A.A. Bioreactor production of rVSV-based vectors in Vero cell suspension cultures. Biotechnol. Bioeng. 2021, 118, 2649–2659. [Google Scholar] [CrossRef]
- Yang, Z.; Paes, B.C.M.F.; Fulber, J.P.C.; Tran, M.Y.; Farnós, O.; Kamen, A.A. Development of an Integrated Continuous Manufacturing Process for the rVSV-Vectored SARS-CoV-2 Candidate Vaccine. Vaccines 2023, 11, 841. [Google Scholar] [CrossRef]
- Yahalom-Ronen, Y.; Tamir, H.; Melamed, S.; Politi, B.; Shifman, O.; Achdout, H.; Vitner, E.B.; Israeli, O.; Milrot, E.; Stein, D.; et al. A single dose of recombinant VSV-∆G-spike vaccine provides protection against SARS-CoV-2 challenge. Nat. Commun. 2020, 11, 6402. [Google Scholar] [CrossRef] [PubMed]
- Hasija, M.; Li, L.; Rahman, N.; Ausar, S.F. Forced degradation studies: An essential tool for the formulation development of vaccines. Vaccine Dev. Ther. 2013, 3, 11–33. [Google Scholar] [CrossRef]
- Brandau, D.T.; Jones, L.S.; Wiethoff, C.M.; Rexroad, J.; Middaugh, C.R. Thermal stability of vaccines. J. Pharm. Sci. 2003, 92, 218–231. [Google Scholar] [CrossRef]
- The International AIDS Vaccine Initiative (IAVI). Participants in Nigeria Vaccinated in First-Ever Phase 2 Lassa Fever Vaccine Clinical Trial, Sponsored by IAVI. Available online: https://www.iavi.org/press-release/iavi-c105-lassa-fever-vaccine-clinical-trial/#_ftn4 (accessed on 3 September 2024).
Virus | Type | Composition | Ref. |
---|---|---|---|
Human Cytomegalovirus vector (rHCMV-1) | DNA virus. | Trehalose, sucrose, sorbitol, and hydrolyzed gelatin, dextran 40, pH 7.00 | [24] |
Influenza virus | RNA viruses. | Sucrose (2.5%), arginine (1%), and human serum albumin (0.5%), optimum pH 6.5–6.7 | [25] |
Bovine herpesvirus (BHV) | DNA virus. | 5% hydrolyzed gelatin | [20] |
Classical swine fever virus (CSF) | RNA viruses. | Lactalbumin hydrolysate-Trehalose | [26] |
Flavivirus | RNA viruses. | Trehalose, albumin and a pluronic polymer | [27] |
Control | F1 | F2 | F3 | F4 | F5 |
---|---|---|---|---|---|
Neither excipient nor buffer was added. Only Mili Q water. | 10 mM histidine | 10 mM histidine | 10 mM sodium phosphate | 20% sucrose | 5% sucrose |
10% trehalose | 10% trehalose | 10% trehalose | 100 mM NaCl | 2 mM MgCl2 and | |
0.5% gelatin | 0.5% dextran 40 | 0.5% gelatin | 10 mM Tris-HCl | 25 mM Tris-HCl. | |
1 mM EDTA | |||||
pH 7.05 | pH 6.94 | pH 6.87 | pH 7.14 | pH 6.92 |
TGH1 | TGH2 | TGH3 | TGH4 | ||||
Trehalose | 10% | Trehalose | 10% | Trehalose | 5% | Trehalose | 5% |
Gelatin | 1% | Gelatin | 0.5% | Gelatin | 1% | Gelatin | 0.5% |
Histidine | 10 mM | Histidine | 10 mM | Histidine | 10 mM | Histidine | 10 mM |
pH | 6.8–7.2 | pH | 6.8–7.2 | pH | 6.8–7.2 | pH | 6.8–7.2 |
SGH1 | SGH2 | SGH3 | SGH4 | ||||
Sucrose | 10% | Sucrose | 10% | Sucrose | 5% | Sucrose | 5% |
Gelatin | 1% | Gelatin | 0.5% | Gelatin | 1% | Gelatin | 0.5% |
Histidine | 10 mM | Histidine | 10 mM | Histidine | 10 mM | Histidine | 10 mM |
pH | 6.8–7.2 | pH | 6.8–7.2 | pH | 6.8–7.2 | pH | 6.8–7.2 |
SoGH1 | SoGH2 | SoGH3 | SoGH4 | ||||
Sorbitol | 10% | Sorbitol | 10% | Sorbitol | 5% | Sorbitol | 5% |
Gelatin | 1% | Gelatin | 0.5% | Gelatin | 1% | Gelatin | 0.5% |
Histidine | 10 mM | Histidine | 10 mM | Histidine | 10 mM | Histidine | 10 mM |
pH | 6.8–7.2 | pH | 6.8–7.2 | pH | 6.8–7.2 | pH | 6.8–7.2 |
Four Design Variables | ||||
---|---|---|---|---|
Variables | Min | Mid | Max | Unit |
Gelatin Concentration | 0 | 0.5 | 1 | % |
Buffer Concentration | 0 | 10 | 20 | mM |
Trehalose Concentration | 0 | 5 | 10 | % |
pH | 6 | 7 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.F.H.; Wagner, C.E.; Kamen, A.A. Development of Long-Term Stability of Enveloped rVSV Viral Vector Expressing SARS-CoV-2 Antigen Using a DOE-Guided Approach. Vaccines 2024, 12, 1240. https://doi.org/10.3390/vaccines12111240
Khan MFH, Wagner CE, Kamen AA. Development of Long-Term Stability of Enveloped rVSV Viral Vector Expressing SARS-CoV-2 Antigen Using a DOE-Guided Approach. Vaccines. 2024; 12(11):1240. https://doi.org/10.3390/vaccines12111240
Chicago/Turabian StyleKhan, MD Faizul Hussain, Caroline E. Wagner, and Amine A. Kamen. 2024. "Development of Long-Term Stability of Enveloped rVSV Viral Vector Expressing SARS-CoV-2 Antigen Using a DOE-Guided Approach" Vaccines 12, no. 11: 1240. https://doi.org/10.3390/vaccines12111240
APA StyleKhan, M. F. H., Wagner, C. E., & Kamen, A. A. (2024). Development of Long-Term Stability of Enveloped rVSV Viral Vector Expressing SARS-CoV-2 Antigen Using a DOE-Guided Approach. Vaccines, 12(11), 1240. https://doi.org/10.3390/vaccines12111240