Changes in the Adaptive Cellular Repertoire after Infection with Different SARS-CoV-2 VOCs in a Cohort of Vaccinated Healthcare Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Sample Collection
2.2. Ethics
2.3. SARS-CoV-2 Molecular Diagnosis and VOC Assignment
2.4. Specific SARS-CoV-2 Serological Tests
2.5. Flow Cytometry Analysis of Whole Blood T and B Cell Populations
2.6. Statistical Analysis
3. Results
3.1. Population Characteristics Based on the VOC
3.2. The Different SARS-CoV-2 VOCs Influenced the Development of Specific Humoral Responses
3.3. The Frequency of B Cells Was in Accordance with the Anti-RBD-S IgG Response and VOC
3.4. The Immunophenotype of the T Lymphocytes Compartment Correlated with Different VOCs
3.5. The T Helper Lymphocytes Compartment Was Correlated with the VOC and Also with the Time Post Vaccination
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, A.T.; Garcia-Carreras, B.; Hitchings, M.D.T.; Yang, B.; Katzelnick, L.C.; Rattigan, S.M.; Borgert, B.A.; Moreno, C.A.; Solomon, B.D.; Trimmer-Smith, L.; et al. A Systematic Review of Antibody Mediated Immunity to Coronaviruses: Kinetics, Correlates of Protection, and Association with Severity. Nat. Commun. 2020, 11, 4704. [Google Scholar] [CrossRef]
- Covariant. CoVariants. 2023. Available online: https://covariants.org/ (accessed on 1 July 2023).
- SARS-CoV-2 Variants of Concern. 2023. Available online: https://www.ecdc.europa.eu/en/covid-19/variants-concern (accessed on 27 July 2023).
- Ke, H.; Chang, M.R.; Marasco, W.A. Immune Evasion of SARS-CoV-2 Omicron Subvariants. Vaccines 2022, 10, 1545. [Google Scholar] [CrossRef]
- Post, N.; Eddy, D.; Huntley, C.; van Schalkwyk, M.C.I.; Shrotri, M.; Leeman, D.; Rigby, S.; Williams, S.V.; Bermingham, W.H.; Kellam, P.; et al. Antibody Response to SARS-CoV-2 Infection in Humans: A Systematic Review. PLoS ONE 2020, 15, e0244126. [Google Scholar] [CrossRef]
- Peterson, C.J.; Lee, B.; Nugent, K. COVID-19 Vaccination Hesitancy among Healthcare Workers—A Review. Vaccines 2022, 10, 948. [Google Scholar] [CrossRef] [PubMed]
- Pooley, N.; Abdool Karim, S.S.; Combadière, B.; Ooi, E.E.; Harris, R.C.; El Guerche Seblain, C.; Kisomi, M.; Shaikh, N. Durability of Vaccine-Induced and Natural Immunity Against COVID-19: A Narrative Review. Infect. Dis. Ther. 2023, 12, 367–387. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; Theiler-Schwetz, V.; Trummer, C.; Krause, R.; Ioannidis, J.P.A. SARS-CoV-2 Reinfections: Overview of Efficacy and Duration of Natural and Hybrid Immunity. Environ. Res. 2022, 209, 112911. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Guo, Y.; Liu, L.; Schwanz, L.T.; Li, Z.; Nair, M.S.; Ho, J.; Zhang, R.M.; Iketani, S.; Yu, J.; et al. Antigenicity and Receptor Affinity of SARS-CoV-2 BA.2.86 Spike. Nature 2023, 624, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Castro Dopico, X.; Ols, S.; Loré, K.; Karlsson Hedestam, G.B. Immunity to SARS-CoV-2 Induced by Infection or Vaccination. J. Intern. Med. 2022, 291, 32–50. [Google Scholar] [CrossRef] [PubMed]
- Moss, P. The T Cell Immune Response against SARS-CoV-2. Nat. Immunol. 2022, 23, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Piubelli, C.; Ruggiero, A.; Calciano, L.; Mazzi, C.; Castilletti, C.; Tiberti, N.; Caldrer, S.; Verzè, M.; Longoni, S.S.; Accordini, S.; et al. Subjects Who Developed SARS-CoV-2 Specific IgM after Vaccination Show a Longer Humoral Immunity and a Lower Frequency of Infection. eBioMedicine 2023, 89, 104471. [Google Scholar] [CrossRef] [PubMed]
- Diagnostic Testing for SARS-CoV-2. 11 September 2020. Available online: https://www.who.int/publications/i/item/diagnostic-testing-for-sars-cov-2 (accessed on 27 July 2023).
- Marcolungo, L.; Beltrami, C.; Degli Esposti, C.; Lopatriello, G.; Piubelli, C.; Mori, A.; Pomari, E.; Deiana, M.; Scarso, S.; Bisoffi, Z.; et al. ACoRE: Accurate SARS-CoV-2 Genome Reconstruction for the Characterization of Intra-Host and Inter-Host Viral Diversity in Clinical Samples and for the Evaluation of Re-Infections. Genomics 2021, 113, 1628–1638. [Google Scholar] [CrossRef] [PubMed]
- Aksamentov, I.; Roemer, C.; Hodcroft, E.; Neher, R. Nextclade: Clade Assignment, Mutation Calling and Quality Control for Viral Genomes. J. Open Source Softw. 2021, 6, 3773. [Google Scholar] [CrossRef]
- Li, K.; Huang, B.; Wu, M.; Zhong, A.; Li, L.; Cai, Y.; Wang, Z.; Wu, L.; Zhu, M.; Li, J.; et al. Dynamic Changes in Anti-SARS-CoV-2 Antibodies during SARS-CoV-2 Infection and Recovery from COVID-19. Nat. Commun. 2020, 11, 6044. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.-X.; Liu, B.-Z.; Deng, H.-J.; Wu, G.-C.; Deng, K.; Chen, Y.-K.; Liao, P.; Qiu, J.-F.; Lin, Y.; Cai, X.-F.; et al. Antibody Responses to SARS-CoV-2 in Patients with COVID-19. Nat. Med. 2020, 26, 845–848. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sun, J.; Nie, S.; Li, H.; Kong, Y.; Liang, M.; Hou, J.; Huang, X.; Li, D.; Ma, T.; et al. Seroprevalence of Immunoglobulin M and G Antibodies against SARS-CoV-2 in China. Nat. Med. 2020, 26, 1193–1195. [Google Scholar] [CrossRef] [PubMed]
- Agrati, C.; Castilletti, C.; Goletti, D.; Sacchi, A.; Bordoni, V.; Mariotti, D.; Notari, S.; Matusali, G.; Meschi, S.; Petrone, L.; et al. Persistent Spike-Specific T Cell Immunity despite Antibody Reduction after 3 Months from SARS-CoV-2 BNT162b2-mRNA Vaccine. Sci. Rep. 2022, 12, 6687. [Google Scholar] [CrossRef]
- Ssentongo, P.; Ssentongo, A.E.; Voleti, N.; Groff, D.; Sun, A.; Ba, D.M.; Nunez, J.; Parent, L.J.; Chinchilli, V.M.; Paules, C.I. SARS-CoV-2 Vaccine Effectiveness against Infection, Symptomatic and Severe COVID-19: A Systematic Review and Meta-Analysis. BMC Infect. Dis. 2022, 22, 439. [Google Scholar] [CrossRef]
- Hall, V.; Foulkes, S.; Insalata, F.; Kirwan, P.; Saei, A.; Atti, A.; Wellington, E.; Khawam, J.; Munro, K.; Cole, M.; et al. Protection against SARS-CoV-2 after COVID-19 Vaccination and Previous Infection. N. Engl. J. Med. 2022, 386, 1207–1220. [Google Scholar] [CrossRef]
- Cameroni, E.; Bowen, J.E.; Rosen, L.E.; Saliba, C.; Zepeda, S.K.; Culap, K.; Pinto, D.; VanBlargan, L.A.; De Marco, A.; Di Iulio, J.; et al. Broadly Neutralizing Antibodies Overcome SARS-CoV-2 Omicron Antigenic Shift. Nature 2022, 602, 664–670. [Google Scholar] [CrossRef]
- Caldrer, S.; Mazzi, C.; Bernardi, M.; Prato, M.; Ronzoni, N.; Rodari, P.; Angheben, A.; Piubelli, C.; Tiberti, N. Regulatory T Cells as Predictors of Clinical Course in Hospitalised COVID-19 Patients. Front. Immunol. 2021, 12, 789735. [Google Scholar] [CrossRef]
- Da Costa, C.H.S.; De Freitas, C.A.B.; Alves, C.N.; Lameira, J. Assessment of Mutations on RBD in the Spike Protein of SARS-CoV-2 Alpha, Delta and Omicron Variants. Sci. Rep. 2022, 12, 8540. [Google Scholar] [CrossRef]
- Garcia-Valtanen, P.; Hope, C.M.; Masavuli, M.G.; Yeow, A.E.L.; Balachandran, H.; Mekonnen, Z.A.; Al-Delfi, Z.; Abayasingam, A.; Agapiou, D.; Stella, A.O.; et al. SARS-CoV-2 Omicron Variant Escapes Neutralizing Antibodies and T Cell Responses More Efficiently than Other Variants in Mild COVID-19 Convalescents. Cell Rep. Med. 2022, 3, 100651. [Google Scholar] [CrossRef] [PubMed]
- Quandt, J.; Muik, A.; Salisch, N.; Lui, B.G.; Lutz, S.; Krüger, K.; Wallisch, A.-K.; Adams-Quack, P.; Bacher, M.; Finlayson, A.; et al. Omicron BA.1 Breakthrough Infection Drives Cross-Variant Neutralization and Memory B Cell Formation against Conserved Epitopes. Sci. Immunol. 2022, 7, eabq2427. [Google Scholar] [CrossRef]
- Newell, K.L.; Clemmer, D.C.; Cox, J.B.; Kayode, Y.I.; Zoccoli-Rodriguez, V.; Taylor, H.E.; Endy, T.P.; Wilmore, J.R.; Winslow, G.M. Switched and Unswitched Memory B Cells Detected during SARS-CoV-2 Convalescence Correlate with Limited Symptom Duration. PLoS ONE 2021, 16, e0244855. [Google Scholar] [CrossRef] [PubMed]
- Oliviero, B.; Varchetta, S.; Mele, D.; Mantovani, S.; Cerino, A.; Perotti, C.G.; Ludovisi, S.; Mondelli, M.U. Expansion of Atypical Memory B Cells Is a Prominent Feature of COVID-19. Cell Mol. Immunol. 2020, 17, 1101–1103. [Google Scholar] [CrossRef] [PubMed]
- Sosa-Hernández, V.A.; Torres-Ruíz, J.; Cervantes-Díaz, R.; Romero-Ramírez, S.; Páez-Franco, J.C.; Meza-Sánchez, D.E.; Juárez-Vega, G.; Pérez-Fragoso, A.; Ortiz-Navarrete, V.; Ponce-de-León, A.; et al. B Cell Subsets as Severity-Associated Signatures in COVID-19 Patients. Front. Immunol. 2020, 11, 611004. [Google Scholar] [CrossRef] [PubMed]
- Giltiay, N.V.; Giordano, D.; Clark, E.A. The Plasticity of Newly Formed B Cells. J. Immunol. 2019, 203, 3095–3104. [Google Scholar] [CrossRef]
- Blair, P.A.; Noreña, L.Y.; Flores-Borja, F.; Rawlings, D.J.; Isenberg, D.A.; Ehrenstein, M.R.; Mauri, C. CD19+CD24hiCD38hi B Cells Exhibit Regulatory Capacity in Healthy Individuals but Are Functionally Impaired in Systemic Lupus Erythematosus Patients. Immunity 2010, 32, 129–140. [Google Scholar] [CrossRef]
- Zuo, J.; Dowell, A.C.; Pearce, H.; Verma, K.; Long, H.M.; Begum, J.; Aiano, F.; Amin-Chowdhury, Z.; Hoschler, K.; Brooks, T.; et al. Robust SARS-CoV-2-Specific T Cell Immunity Is Maintained at 6 Months Following Primary Infection. Nat. Immunol. 2021, 22, 620–626. [Google Scholar] [CrossRef]
- Cox, M.A.; Kahan, S.M.; Zajac, A.J. Anti-Viral CD8 T Cells and the Cytokines That They Love. Virology 2013, 435, 157–169. [Google Scholar] [CrossRef]
- Chicaybam, L.; Adusumilli, P.S. Co-Inhibitory Receptor Programmed Cell Death Protein 1 Targets Co-Stimulatory CD28. Transl. Cancer Res. 2017, 6, S1080–S1083. [Google Scholar] [CrossRef] [PubMed]
- Amodio, D.; Ruggiero, A.; Sgrulletti, M.; Pighi, C.; Cotugno, N.; Medri, C.; Morrocchi, E.; Colagrossi, L.; Russo, C.; Zaffina, S.; et al. Humoral and Cellular Response Following Vaccination with the BNT162b2 mRNA COVID-19 Vaccine in Patients Affected by Primary Immunodeficiencies. Front. Immunol. 2021, 12, 727850. [Google Scholar] [CrossRef]
- Sprent, J.; Surh, C.D. T Cell Memory. Annu. Rev. Immunol. 2002, 20, 551–579. [Google Scholar] [CrossRef]
- Mahnke, Y.D.; Brodie, T.M.; Sallusto, F.; Roederer, M.; Lugli, E. The Who’s Who of T-Cell Differentiation: Human Memory T-Cell Subsets: HIGHLIGHTS. Eur. J. Immunol. 2013, 43, 2797–2809. [Google Scholar] [CrossRef]
- Tye, E.X.C.; Jinks, E.; Haigh, T.A.; Kaul, B.; Patel, P.; Parry, H.M.; Newby, M.L.; Crispin, M.; Kaur, N.; Moss, P.; et al. Mutations in SARS-CoV-2 Spike Protein Impair Epitope-Specific CD4+ T Cell Recognition. Nat. Immunol. 2022, 23, 1726–1734. [Google Scholar] [CrossRef] [PubMed]
- Kombe Kombe, A.J.; Biteghe, F.A.N.; Ndoutoume, Z.N.; Jin, T. CD8+ T-Cell Immune Escape by SARS-CoV-2 Variants of Concern. Front. Immunol. 2022, 13, 962079. [Google Scholar] [CrossRef] [PubMed]
Variants of Concern | |||||
---|---|---|---|---|---|
VOCP (n = 9) | (n = 12) | VOCO (n = 14) | All (n = 35) | p Value 2 | |
Gender (F), n (%) | 3 (33.3%) | 7 (58.3%) | 8 (53%) | 18 (50%) | 0.497 § |
Age (years), median [IQR] | 46 [32–58] | 45 [36–55] | 48 [39–51] | 47 [23–73] | 0.912 ‡ |
No. doses of vaccine, (n) | 2 (9) | 2 (11), 3 (1) | 3 (14) | 2 (20), 3 (15) | p < 0.001 ‡ |
Subjects infected after 90 days from last vaccine dose; n (%) | 3 (33.3%) | 9 (75%) | 10 (71.4%) | 22 (62.8%) | 0.110 § |
Delay between positive molecular swab and last vaccine dose (months), median [IQR] | 2.5 [2.5–3.3] | 6.3 [3.6–7.5] | 3.8 [2.9–6.1] | 3.9 [1.3–9.5] | 0.022 ‡ |
Delay between positive and negative molecular swab (days), median [IQR] | 12 [5–20] | 13.5 [3–21] | 10 [6–16] | 10.5 [3–21] | 0.095 ‡ |
Type of symptoms, n (%) No symptoms | 3 (33.33%) | - | 1 (7.10%) | 4 (11.42%) | 0.070 § |
Fever | 3 (33.33%) | 6 (50.00%) | 6 (42.90%) | 15 (42.85%) | 0.824 § |
Anosmia | 2 (22.22%) | 7 (58.33%) | 1 (7.10%) | 10 (28.57%) | 0.016 § |
Sore throat | - | 2 (16.66%) | 11 (78.60%) | 13 (37.14%) | <0.001 § |
Ageusia | 2 (22.22%) | 7 (58.30%) | - | 9 (25.71%) | 0.002 § |
Cough | - | 5 (41.66%) | 6 (42.90%) | 11 (31.42%) | 0.065 § |
Myalgia | 3 (33.33%) | 4 (33.33%) | 4 (28.60%) | 11 (31.42%) | 1.000 § |
Intestinal disorder | 1 (11.11%) | 2 (16.66%) | - | 3 (8.75%) | 0.330 § |
Headache | 2 (22.22%) | 1 (8.3%) | 4 (28.60%) | 7 (20.00%) | 0.499 § |
Nasal congestion | 3 (33.33%) | 6 (50.00%) | 5 (35.70%) | 14 (40.00%) | 0.737 § |
Chest pain | 1 (11.11%) | - | - | 1 (2.85%) | 0.251 § |
SARS-CoV-2 VOCs | Multiple Comparisons’ p Value § | |||||||
---|---|---|---|---|---|---|---|---|
VOCP | VOCD | VOCO | All | p Value 2 | VOCD vs. VOCO | VOCD vs. VOCP | VOCO vs. VOCP | |
Antibody levels | ||||||||
Post-Vaccination (PV) subjects | n = 9 | n = 9 | n = 10 | n = 28 | ||||
IgM-S (index S/C) 1 | 1.09 [0.99–2.73] | 0.60 [0.43–0.96] | 0.26 [0.19–0.70] | 0.71 [0.26–1.10] | 0.021 | 0.099 | 0.112 | 0.06 |
IgG-N (index S/C) 1 | 0.04 [0.02–0.07] | 0.03 [0.02–0.08] | 0.12 [0.06–0.36] ✝ | 0.06 [0.03–0.15] | 0.038 | 0.059 | 0.722 | 0.09 |
IgG-RBD-S (BAU/mL) 1 | 2547 [1045–3911] | 1477 [1199–4068] ✝ | 3540 [1646–4970] | 2336 [1198–4495] | 0.215 | 0.23 | 0.659 | 0.23 |
Post-Infection (PI) subjects | n = 9 | n = 12 | n = 14 | n = 35 | ||||
IgM-S (index S/C) 1 | 0.30 [0.14–0.31] | 0.31 [0.12–0.52] | 0.45 [0.28–0.68] | 0.32 [0.06–26.22] | 0.315 | 0.455 | 0.972 | 0.416 |
IgG-N (index S/C) 1 | 2.62 [1.63–4.16] | 1.19 [0.92–2.93] | 3.11 [1.63–4.23] ✝ | 2.6 [0.15–40.15] | 0.321 | 0.472 | 0.479 | 0.777 |
IgG-RBD-S (BAU/mL) 1 | 1108 [773–2401] | 6809 [3334–8749] ✝ | 3869 [2372–5233] | 3832 [1806–5945] | 0.003 | 0.226 | 0.006 | 0.016 |
Delay between infection and last vaccine dose | ||||||||
PV < 90 days | n = 6 | n = 3 | n = 3 | n = 12 | ||||
IgM-S (index S/C) 1 | 1.06 [0.68–2.32] | 0.60 [0.28–0.90] | 0.32 [0.23–0.57] | 0.71 [0.30–1.05] | 0.236 | 0.663 | 0.549 | 0.467 |
IgG-N (index S/C) 1 | 0.06 [0.04–0.29] ✝ | 0.08 [0.02–0.09] | 0.37 [0.21–0.46] | 0.08 [0.04–0.36] | 0.374 | 0.574 | 0.897 | 0.574 |
IgG-RBD-S (BAU/mL) 1 | 2552 [733–4012] | 2060 [1627–3064] | 5022 [3654–6241] | 3099 [1194–4158] | 0.203 | 0.286 | 0.699 | 0.286 |
PV > 90 days | n = 3 | n = 9 | n = 10 | n = 22 | ||||
IgM-S (index S/C) 1 | 1.61 [1.3–2.2] | 0.76 [0.42–1.15] | 0.3 [0.2–0.5] | 0.7 [0.3–1.2] | 0.069 | 0.156 | 0.156 | 0.156 |
IgG-N (index S/C) 1 | 0.02 [0.02–0.03] ✝ | 0.03 [0.02–0.04] | 0.12 [0.06–1.25] | 0.04 [0.03–0.13] | 0.025 | 0.078 | 0.354 | 0.078 |
IgG-RBD-S (BAU/mL) 1 | 2547 [1295–3561] | 1349 [1138–4742] | 3540 [1410–4994] | 2386 [1221–4728] | 0.785 | 1.00 | 1.00 | 1.00 |
PI < 90 days | n = 6 | n = 3 | n = 3 | n = 12 | ||||
IgM-S (index S/C) 1 | 0.31 [0.18–0.69] | 0.23 [0.14–1.45] | 0.52 [0.30–0.92] | 0.31 [0.2–0.5] | 0.826 | 1.00 | 1.00 | 1.00 |
IgG-N (index S/C) 1 | 2.62 [0.94–4.18] | 1.09 [0.57–2.62] | 3.91 [2.08–4.79] | 2.92 [1.00–4.03] | 0.390 | 0.594 | 0.594 | 0.594 |
IgG-RBD-S (BAU/mL) 1 | 1581 [666–2226] | 9341 [6936–10,351] | 5416 [5124–7062] ✝ | 4531 [2117–5629] | 0.011 | 0.042 | 1.00 | 0.042 |
PI > 90 days | n = 3 | n = 9 | n = 10 | n = 22 | ||||
IgM-S (index S/C) 1 | 0.2 [0.13–0.25] | 0.4 [0.12–0.52] | 0.5 [0.3–0.6] | 0.31 [0.17–0.81] | 0.236 | 0.579 | 0.579 | 0.227 |
IgG-N (index S/C) 1 | 2.62 [2.12–3.82] | 1.21 [1.07–2.95] | 2.42 [1.63–4.09] | 2.35 [1.18–3.84] | 0.55 | 0.607 | 0.607 | 0.933 |
IgG-RBD-S (BAU/mL) 1 | 1108 [999–1894] | 6261 [2494–7797] | 2866 [2022–3887] ✝ | 2866 [1730–6006] | 0.091 | 0.236 | 0.193 | 0.226 |
VOCs | Multiple Comparisons’ p Value 3 | ||||||
---|---|---|---|---|---|---|---|
Characteristic | VOCP | VOCD | VOCO | VOCD vs. VOCO | VOCD vs. VOCP | VOCO vs. VOCP | p Value 2 |
n = 9 1 | n = 12 1 | n = 14 1 | |||||
Leukocytes (CD45+) | 17 [14–22] | 23 [3–34] | 14 [9–26] | 0.86 | 0.86 | 0.86 | 0.81 |
Total B cells (CD19+) | 4.8 [3.0–7.1] | 10.4 [7.1–13.3] | 8.2 [6.5–11.1] | 0.55 | 0.02 | 0.02 | 0.01 |
CD27-- (CD19+) | 63 [47–70] | 67 [59–76] | 60 [55–71] | 0.44 | 0.44 | 0.72 | 0.42 |
CD27+ memory B cells | 37 [30–52] | 33 [24–40] | 39 [25–44] | 0.51 | 0.51 | 0.48 | 0.48 |
Switched (CD27+ IgD-IgM-) | 39 [36–49] | 53 [44–62] | 43 [37–49] | 0.08 | 0.08 | 0.73 | 0.06 |
Unswitched (CD27+ IgD+ IgM+) | 59 [48–63] | 46 [38–57] | 55 [46–58] | 0.39 | 0.29 | 0.39 | 0.20 |
DN (CD27- IgD- IgM-) | 3.55 [1.81–6.84] | 3.76 [2.40–7.84] | 3.65 [2.51–5.28] | 0.87 | 0.86 | 0.86 | 0.87 |
Naïve B cells (CD27- IgD+) | 62 [40–70] | 61 [49–74] | 59 [50–70] | 0.94 | 0.94 | 0.94 | 0.78 |
Plasmablasts (Switched B cells CD27high CD38high) | 8 [0–11] | 12 [7–18] | 6 [4–11] | 0.21 | 0.27 | 0.72 | 0.24 |
Transitional B cells (CD27- CD38high CD24high) | 15 [9–23] | 13 [8–15] | 21 [14–24] | 0.06 | 0.37 | 0.37 | 0.07 |
CD19+ CD21low CD38low | 6.0 [3.9–7.2] | 5.5 [4.0–6.6] | 8.0 [4.1–10.5] | 0.32 | 0.97 | 0.51 | 0.49 |
Delay between infection and last vaccine dose | |||||||
PI < 90 days | n = 6 | n = 3 | n = 4 | ||||
Leukocytes (CD45+) | 14.8 [12.5–24.7] | 24.1 [4.3–24.3] | 10 [9–12] | 0.89 | 0.89 | 0.12 | 0.17 |
Total B cells (CD19+) | 6.26 [4.29–7.50] | 11.66 [10.03–14.62] | 7.30 [6.28–7.86] | 0.07 | 0.07 | 0.59 | 0.03 |
CD27- (CD19+) | 66.2 [54.9–76.1] | 69.7 [48.2–80.8] | 66.4 [58–71] | 1.00 | 1.00 | 1.00 | 0.98 |
CD27+ memory B cells | 33.9 [23.7–45.5] | 30.3 [18.7–50.8] | 33.3 [27–41] | 1.00 | 1.00 | 1.00 | 0.98 |
Switched (CD27+ IgD-IgM-) | 37.8 [27.2–53.4] | 43.2 [34.4–43.6] | 45.1 [39–51] | 0.89 | 0.89 | 0.89 | 0.73 |
Unswitched (CD27+ IgD- IgM-) | 15.4 [11.5–19.3] | 18.2 [10.2–28.5] | 51.2 [44–58] | 0.69 | 0.69 | 0.69 | 0.51 |
DN (CD27- IgD- IgM-) | 2.99 [1.80–7.09] | 2.69 [1.80–4.47] | 3.42 [2.91–5.36] | 0.69 | 0.69 | 0.69 | 0.56 |
Naïve B cells (CD27- IgD+) | 60.8 [48.6–76.9] | 61.0 [49.6–70.8] | 6.2 [58–66] | 0.89 | 0.89 | 0.89 | 0.79 |
Plasmablasts (Switched B cells CD27high CD38high) | 4.13 [0.00–12.50] | 11.95 [6.24–15.88] | 3.8 [2.9–6.3] | 0.53 | 0.53 | 0.74 | 0.42 |
Transitional B cells (CD27- CD38high CD24high) | 14.2 [9.0–18.3] | 13.9 [7.1–27.2] | 29.4 [23–37] | 0.32 | 1.00 | 0.12 | 0.09 |
CD19+ CD21low CD38low | 4.95 [3.66–7.17] | 5.37 [3.34–8.16] | 10.1 [6.1–14.7] | 0.56 | 0.89 | 0.56 | 0.50 |
PI > 90 days | n = 3 | n = 9 | n = 10 | ||||
Leukocytes (CD45+) | 21.0 [18.0–21.5] | 21.6 [3.3–41.4] | 21.6 [10.0–27.3] | 1.00 | 1.00 | 1.00 | 0.93 |
Total B cells (CD19+) | 2.96 [2.71–4.49] | 10.1 [4.85–13.36] | 10.6 [6.48–11.31] | 0.76 | 0.06 | 0.05 | 0.04 |
CD27- (CD19+) | 42.2 [41.8–63.0] | 64.3 [59.0–78.2] | 59.9 [54.4–76.0] | 0.28 | 0.28 | 0.28 | 0.20 |
CD27+ memory B cells | 57.1 [36.5–57.8] | 35.6 [21.5–40.5] | 39.2 [20.6–43.7] | 0.30 | 0.22 | 0.22 | 0.15 |
Switched (CD27+ IgD- IgM-) | 43.0 [39.0–48.0] | 59.1 [46.7–63.5] | 43.2 [37.4–46.2] | 0.02 | 0.20 | 0.93 | 0.02 |
Unswitched (CD27+ IgD+ IgM+) | 24.4 [18.5–31.8] | 13.2 [7.2–14.7] | 14.7 [11.3–22.9] | 0.20 | 0.20 | 1.00 | 0.16 |
DN (CD27- IgD- IgM-) | 4.30 [2.07–7.86] | 5.30 [2.38–10.02] | 3.86 [2.24–5.32] | 0.86 | 0.86 | 0.93 | 0.58 |
Naïve B cells (CD27- IgD+) | 39.7 [33.6–60.6] | 54.2 [49.0–76.5] | 57.7 [49.6–76.6] | 0.96 | 0.22 | 0.22 | 0.24 |
Plasmablasts (Switched B cells CD27high CD38high) | 8.0 [6.04–14.40] | 11.5 [6.67–23.84] | 6.7 [4.92–12.66] | 0.71 | 0.71 | 0.71 | 0.49 |
Transitional B cells (CD27- CD38high CD24high) | 25.6 [6.5–36.6] | 12.8 [7.6–15.8] | 19.0 [13.5–22.3] | 0.86 | 0.86 | 0.93 | 0.58 |
CD19+ CD21low CD38low | 6.31 [4.43–7.94] | 5.60 [3.97–6.75] | 7.87 [3.59–9.37] | 0.68 | 0.68 | 0.80 | 0.58 |
Variant of Concern VOCs | Multiple Comparisons’ p Value 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|
% T Cells Subset | Population of Reference | VOCP N = 9 1 | VOCD, N = 12 1 | VOCO, N = 14 1 | VOCD vs. VOCO | VOCD vs. VOCP | VOCO vs. VOCP | p Value 2 | Adj. p Value 3 |
CD3+ | CD45+ | 8 [7–15] | 25 [14–32] | 21 [13–28] | 0.537 | 0.043 | 0.095 | 0.039 | 0.126 |
CD4+ | CD3+ | 36 [27–48] | 52 [45–59] | 54 [42–58] | 0.979 | 0.055 | 0.045 | 0.043 | 0.126 |
CD8+ | CD3+ | 50 [42–60] | 35 [31–46] | 35 [29–41] | 0.487 | 0.038 | 0.038 | 0.023 | 0.084 |
TCM-CD8+ | CD8+ | 7 [5–8] | 12 [10–16] | 11 [7–14] | 0.554 | 0.074 | 0.109 | 0.059 | 0.151 |
TEMRA-CD8+ | CD8+ | 33 [17–38] | 25 [15–33] | 14 [7–26] | 0.175 | 0.374 | 0.054 | 0.044 | 0.126 |
TEM-CD8+ | CD8+ | 54 [46–63] | 43 [40–53] | 51 [38–60] | 0.625 | 0.329 | 0.625 | 0.365 | 0.486 |
TN-CD8+ | CD8+ | 7 [2–15] | 16 [11–22] | 18 [11–32] | 0.487 | 0.105 | 0.105 | 0.071 | 0.151 |
CD8+ (CD57-/PD1-) | CD8+ | 27 [25–36] | 44 [31–53] | 46 [39–70] | 0.52 | 0.165 | 0.164 | 0.760 | 0.829 |
CD8+ (CD57-/PD1+) | CD8+ | 13 [10–17] | 22 [17–34] | 16 [9–19] | 0.127 | 0.076 | 0.825 | 0.456 | 0.543 |
CD8+ (CD57+/PD1-) | CD8+ | 39 [19–49] | 19 [11–26] | 29 [10–35] | 0.52 | 0.165 | 0.165 | 0.966 | 0.966 |
CD8+ (CD57+/PD1+) | CD8+ | 14 [11–19] | 9 [7–13] | 7 [3–8] | 0.142 | 0.189 | 0.039 | 0.633 | 0.717 |
TEM-CD8+ (CD57-/PD1-) | EM-CD8+ | 31 [24–48] | 35 [27–43] | 53 [41–67] | 0.071 | 0.804 | 0.071 | 0.044 | 0.126 |
TEM-CD8+ (CD57-/PD1+) | EM-CD8+ | 17 [14–31] | 30 [18–39] | 24 [13–33] | 0.589 | 0.380 | 0.592 | 0.377 | 0.492 |
TEM-CD8+ (CD57+/PD1-) | EM-CD8+ | 23 [16–35] | 14 [8–29] | 14 [5–18] | 0.425 | 0.361 | 0.218 | 0.164 | 0.259 |
TEM-CD8+ (CD57+/PD1+) | EM-CD8+ | 21 [17–24] | 12 [5–16] | 4 [2–5] | 0.006 | 0.110 | 0.001 | <0.001 | 0.004 |
TEMRA-CD8+ (CD57-/PD1-) | TEMRA-CD8+ | 13 [10–19] | 21 [18–24] | 35 [23–49] | 0.072 | 0.110 | 0.054 | 0.017 | 0.077 |
TEMRA-CD8+ (CD57-/PD1+) | TEMRA-CD8+ | 76 [63–84] | 46 [40–66] | 46 [28–70] | 0.857 | 0.055 | 0.071 | 0.054 | 0.147 |
TEMRA-CD8+ (CD57+/PD1-) | TEMRA-CD8+ | 4 [2–5] | 7 [5–17] | 4 [1–15] | 0.259 | 0.076 | 0.777 | 0.103 | 0.199 |
TEMRA-CD8+ (CD57+/PD1+) | TEMRA-CD8+ | 5 [4–11] | 14 [10–25] | 3 [2–6] | 0.024 | 0.233 | 0.176 | 0.020 | 0.082 |
TCM-CD4+ | CD4+ | 55 [46–58] | 58 [47–67] | 46 [37–49] | 0.033 | 0.241 | 0.061 | 0.011 | 0.053 |
TEMRA-CD4+ | CD4+ | 0.64 [0.30–0.89] | 0.43 [0.13–0.71] | 1.14 [0.32–2.39] | 0.546 | 0.546 | 0.546 | 0.442 | 0.553 |
TEM-CD4+ | CD4+ | 40 [31–45] | 17 [15–30] | 32 [23–41] | 0.329 | 0.128 | 0.329 | 0.119 | 0.217 |
TN-CD4+ | CD4+ | 10 [4–14] | 17 [14–21] | 21 [17–32] | 0.129 | 0.031 | 0.001 | 0.001 | 0.008 |
CD4+ (CD57-/PD1-) | CD4+ | 67 [63–69] | 59 [50–66] | 88 [78–94] | 0.003 | 0.082 | 0.045 | 0.001 | 0.013 |
CD4+ (CD57-/PD1+) | CD4+ | 25 [21–28] | 33 [27–36] | 7 [3–10] | <0.001 | 0.014 | 0.014 | <0.001 | 0.004 |
CD4+ (CD57+/PD1-) | CD4+ | 4.5 [2.7–5.1] | 1.1 [0.8–2.4] | 1.2 [0.4–2.0] | 0.537 | 0.074 | 0.109 | 0.067 | 0.151 |
CD4+ (CD57+/PD1+) | CD4+ | 6.4 [2.6–6.7] | 4.0 [2.3–8.0] | 2.1 [1.2–3.1] | 0.125 | 0.804 | 0.125 | 0.103 | 0.199 |
TCM-CD4+ (CD57-/PD1-) | CM-CD4+ | 81 [78–83] | 68 [66–74] | 80 [64–83] | 0.158 | 0.002 | 0.637 | 0.012 | 0.069 |
TCM-CD4+ (CD57-/PD1+) | CM-CD4+ | 1.33 [0.95–1.45] | 0.54 [0.41–0.59] | 0.60 [0.40–1.24] | 0.456 | 0.023 | 0.061 | 0.020 | 0.082 |
TCM-CD4+ (CD57+/PD1-) | CM-CD4+ | 17 [13–20] | 31 [25–32] | 19 [16–31] | 0.102 | 0.001 | 0.329 | 0.004 | 0.03 |
TCM-CD4+ (CD57+/PD1+) | CM-CD4+ | 1.20 [1.01–1.87] | 0.90 [0.62–1.08] | 0.64 [0.53–1.26] | 0.607 | 0.425 | 0.406 | 0.407 | 0.508 |
TEM-CD4+ (CD57-/PD1-) | EM-CD4+ | 58 [45–63] | 36 [19–40] | 66 [55–81] | 0.002 | 0.021 | 0.156 | 0.001 | 0.012 |
TEM-CD4+ (CD57-/PD1+) | EM-CD4+ | 22 [5–34] | 52 [43–58] | 8 [1–14] | <0.001 | 0.004 | 0.156 | <0.001 | 0.004 |
TEM-CD4+ (CD57+/PD1-) | EM-CD4+ | 14 [7–21] | 1 [1–6] | 13 [9–25] | 0.005 | 0.054 | 0.682 | 0.005 | 0.035 |
TEM-CD4+ (CD57+/PD1+) | EM-CD4+ | 5 [4–10] | 9 [3–22] | 3 [2–5] | 0.143 | 0.512 | 0.263 | 0.101 | 0.199 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caldrer, S.; Accordini, S.; Mazzi, C.; Tiberti, N.; Deiana, M.; Matucci, A.; Rizzi, E.; Tais, S.; Filippo, F.; Verzè, M.; et al. Changes in the Adaptive Cellular Repertoire after Infection with Different SARS-CoV-2 VOCs in a Cohort of Vaccinated Healthcare Workers. Vaccines 2024, 12, 230. https://doi.org/10.3390/vaccines12030230
Caldrer S, Accordini S, Mazzi C, Tiberti N, Deiana M, Matucci A, Rizzi E, Tais S, Filippo F, Verzè M, et al. Changes in the Adaptive Cellular Repertoire after Infection with Different SARS-CoV-2 VOCs in a Cohort of Vaccinated Healthcare Workers. Vaccines. 2024; 12(3):230. https://doi.org/10.3390/vaccines12030230
Chicago/Turabian StyleCaldrer, Sara, Silvia Accordini, Cristina Mazzi, Natalia Tiberti, Michela Deiana, Andrea Matucci, Eleonora Rizzi, Stefano Tais, Fabio Filippo, Matteo Verzè, and et al. 2024. "Changes in the Adaptive Cellular Repertoire after Infection with Different SARS-CoV-2 VOCs in a Cohort of Vaccinated Healthcare Workers" Vaccines 12, no. 3: 230. https://doi.org/10.3390/vaccines12030230
APA StyleCaldrer, S., Accordini, S., Mazzi, C., Tiberti, N., Deiana, M., Matucci, A., Rizzi, E., Tais, S., Filippo, F., Verzè, M., Cattaneo, P., Chiecchi, G. P., Castilletti, C., Delledonne, M., Gobbi, F., & Piubelli, C. (2024). Changes in the Adaptive Cellular Repertoire after Infection with Different SARS-CoV-2 VOCs in a Cohort of Vaccinated Healthcare Workers. Vaccines, 12(3), 230. https://doi.org/10.3390/vaccines12030230