COVID-19 in City Council Civil Servants, 1 March 2020–31 January 2023: Risk of Infection, Reinfection, Vaccine Effectiveness and the Impact of Heterologous Triple Vaccination
Abstract
:1. Background
2. Methods
2.1. Ethical Considerations
2.2. Study Endpoint
2.3. Statistical Analysis
3. Results
- Wuhan: 1 March 2020–31 October 2020;
- Alpha: 1 November 2021–31 May 2021;
- Delta: 1 June 2021–30 November 2021;
- Omicron: 1 December 2021–31 January 2023.
4. Discussion
4.1. Main Findings
4.2. Interpretation of Findings
4.2.1. Occupational Risk
4.2.2. Vaccine Effectiveness
4.2.3. Heterologous Triple Vaccination
4.3. Strengths and Weaknesses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carlsten, C.; Gulati, M.; Hines, S.; Rose, C.; Scott, K.; Tarlo, S.M.; Torén, K.; Sood, A.; de la Hoz, R.E. COVID-19 as an occupational disease. Am. J. Ind. Med. 2021, 64, 227–237. [Google Scholar] [CrossRef]
- Wong, J.; Cummings, K.J.; Gibb, K.; Rodriguez, A.; Heinzerling, A.; Vergara, X.P. Risk factors for COVID-19 among Californians working outside the home. J. Ind. Med. 2023, 66, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Cegolon, L.; Magnano, G.; Negro, C.; Larese Filon, F.; ORCHESTRA Working Group. SARS-CoV-2 Reinfections in Health-Care Workers, 1 March 2020–31 January 2023. Viruses 2023, 15, 1551. [Google Scholar] [CrossRef] [PubMed]
- Cegolon, L.; Ronchese, F.; Ricci, F.; Negro, C.; Larese-Filon, F. SARS-CoV-2 Infection in Health Care Workers of Trieste (North-Eastern Italy), 1 October 2020–7 February 2022: Occupational Risk and the Impact of the Omicron Variant. Viruses 2022, 14, 1663. [Google Scholar] [CrossRef]
- Cegolon, L.; Negro, C.; Pesce, M.; Filon, F.L. COVID-19 Incidence and Vaccine Effectiveness in University Staff, 1 March 2020–2 April 2022. Vaccines 2023, 11, 483. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Preventing and Mitigating COVID-19 at Work: Policy Brief, 19 May 2021. Available online: https://www.who.int/publications-detail-redirect/WHO-2019-nCoV-workplace-actions-policy-brief-2021-1 (accessed on 24 August 2023).
- Fadel, M.; Gilbert, F.; Legeay, C.; Dubée, V.; Esquirol, Y.; Verdun-Esquer, C.; Dinh, A.; Sembajwe, G.; Goldberg, M.; Roquelaure, Y.; et al. Association between COVID-19 infection and work exposure assessed by the Mat-O-Covid job exposure matrix in the CONSTANCES cohort. Occup. Environ. Med. 2022, 79, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Oude Hengel, K.M.; Burdorf, A.; Pronk, A.; Schlünssen, V.; Stokholm, Z.A.; Kolstad, H.A.; van Veldhoven, K.; Basinas, I.; van Tongeren, M.; Peters, S. Exposure to a SARS-CoV-2 infection at work: Development of an international job exposure matrix (COVID-19-JEM). Scand. J. Work Environ. Health 2022, 48, 61–70. [Google Scholar] [CrossRef]
- Verbeeck, J.; Vandersmissen, G.; Peeters, J.; Klamer, S.; Hancart, S.; Lernout, T.; Dewatripont, M.; Godderis, L.; Molenberghs, G. Confirmed COVID-19 Cases per Economic Activity during Autumn Wave in Belgium. Int. J. Environ. Res. Public Health 2021, 18, 12489. [Google Scholar] [CrossRef] [PubMed]
- Marinaccio, A.; Boccuni, F.; Rondinone, B.M.; Brusco, A.; D’Amario, S.; Iavicoli, S. Occupational factors in the COVID-19 pandemic in Italy: Compensation claims applications support establishing an occupational surveillance system. Occup. Environ. Med. 2020, 77, 818–821. [Google Scholar] [CrossRef]
- Worldometers: COVID—Coronavirus Statistics. Available online: https://www.worldometers.info/coronavirus/country/italy/ (accessed on 8 February 2024).
- Cherrie, M.; Rhodes, S.; Wilkinson, J.; Mueller, W.; Nafilyan, V.; Van Tongeren, M.; Pearce, N. Longitudinal changes in proportionate mortality due to COVID-19 by occupation in England and Wales. Scand. J. Work Environ. Health 2022, 48, 611–620. [Google Scholar] [CrossRef]
- Beale, S.; Hoskins, S.; Byrne, T.; Fong, W.L.; Fragaszy, E.; Geismar, C.; Kovar, J.; Navaratnam, A.M.; Nguyen, V.; Patel, P.; et al. Differential risk of SARS-CoV-2 infection by occupation: Evidence from the virus watch prospective cohort study in England and Wales. J. Occup. Med. Toxicol. 2023, 18, 5. [Google Scholar] [CrossRef]
- Mutambudzi, M.; Niedzwiedz, C.; Macdonald, E.B.; Leyland, A.; Mair, F.; Anderson, J.; Celis-Morales, C.; Cleland, J.; Forbes, J.; Gill, J.; et al. Occupation and risk of severe COVID-19: Prospective cohort study of 120 075 UK Biobank participants. Occup. Environ. Med. 2020, 78, 307–314. [Google Scholar] [CrossRef]
- Rhodes, S.; Wilkinson, J.; Pearce, N.; Mueller, W.; Cherrie, M.; Stocking, K.; Gittins, M.; Katikireddi, S.V.; Van Tongeren, M. Occupational differences in SARS-CoV-2 infection: Analysis of the UK ONS COVID-19 infection survey. J. Epidemiol. Community Health 2022, 76, 841–846. [Google Scholar] [CrossRef]
- Nafilyan, V.; Pawelek, P.; Ayoubkhani, D.; Rhodes, S.; Pembrey, L.; Matz, M.; Coleman, M.; Allemani, C.; Windsor-Shellard, B.; van Tongeren, M.; et al. Occupation and COVID-19 mortality in England: A national linked data study of 14.3 million adults. Occup. Environ. Med. 2022, 79, 433–441. [Google Scholar] [CrossRef]
- Rhodes, S.; Beale, S.; Wilkinson, J.; van Veldhoven, K.; Basinas, I.; Mueller, W.; Hengel, K.M.; Burdorf, A.; Peters, S.; Stokholm, Z.A.; et al. Exploring the relationship between job characteristics and infection: Application of a COVID-19 job exposure matrix to SARS-CoV-2 infection data in the United Kingdom. Scand. J. Work Environ. Health 2023, 49, 171–181. [Google Scholar] [CrossRef]
- Rhodes, S.; Demou, E.; Wilkinson, J.; Cherrie, M.; Edge, R.; Gittins, M.; Katikireddi, S.V.; Kromydas, T.; Mueller, W.; Pearce, N.; et al. Potential contribution of vaccination uptake to occupational differences in risk of SARS-CoV-2: Analysis of the ONS COVID-19 Infection Survey. Occup. Environ. Med. 2023, 81, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Meyerowitz, E.A.; Richterman, A.; Gandhi, R.T.; Sax, P.E. Transmission of SARS-CoV-2: A Review of Viral, Host, and Environmental Factors. Ann. Intern. Med. 2021, 174, 69–79. [Google Scholar] [CrossRef]
- International Labour Organization HealthWISE—Work Improvement in Health Services. Instructional Material. ILO. Updated 31 July 2014. Available online: https://www.ilo.org/sector/Resources/training-materials/WCMS_250540/lang--en/index.htm (accessed on 2 January 2024).
- Cegolon, L.; Mastrangelo, G.; Emanuelli, E.; Camerotto, R.; Spinato, G.; Frezza, D. Early Negativization of SARS-CoV-2 Infection by Nasal Spray of Seawater plus Additives: The RENAISSANCE Open-Label Controlled Clinical Trial. Pharmaceutics 2022, 14, 2502. [Google Scholar] [CrossRef]
- Lin, J.L.; Zhang, F.; Li, Y.-B.; Yuan, S.H.; Wu, J.H.-; Zhang, J.; Zhang, L.; He, Y.; Che, J.; Yin, Y. Efficacy of physiological seawater nasal irrigation for the treatment of children with SARS-CoV-2 Omicron BA.2 variant infection: A randomized controlled trial. World J. Pediatr. 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Cegolon, L.; Javanbakht, M.; Mastrangelo, G. Nasal disinfection for the prevention and control of COVID-19: A scoping review on potential chemo-preventive agents. Int. J. Hyg. Environ. Health 2020, 230, 113605. [Google Scholar] [CrossRef]
- Cegolon, L.; Mirandola, M.; Salaris, C.; Salvati, M.V.; Mastrangelo, G.; Salata, C. Hypothiocyanite and Hypothiocyanite/Lactoferrin Mixture Exhibit Virucidal Activity In Vitro against SARS-CoV-2. Pathogens 2021, 10, 233. [Google Scholar] [CrossRef]
- Lan, F.Y.; Wei, C.F.; Hsu, Y.T.; Christiani, D.C.; Kales, S.N. Work-related COVID-19 transmission in six Asian countries/areas: A follow-up study. PLoS ONE 2020, 15, e0233588. [Google Scholar] [CrossRef]
- Jennings, W.G.; Perez, N.M. The Immediate Impact of COVID-19 on Law Enforcement in the United States. Am. J. Crim. Justice 2020, 45, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Reuter, M.; Rigó, M.; Formazin, M.; Liebers, F.; Latza, U.; Castell, S.; Jöckel, K.H.; Greiser, K.H.; Michels, K.B.; Krause, G.; et al. Occupation and SARS-CoV-2 infection risk among 108 960 workers during the first pandemic wave in Germany. Scand. J. Work Environ. Health 2022, 48, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Ghoroubi, N.; Counil, E.; Khlat, M. Potential Work-related Exposure to SARS-CoV-2 by Standard Occupational Grouping Based on Pre-lockdown Working Conditions in France. Saf. Health Work 2023, 14, 488–491. [Google Scholar] [CrossRef]
- Menezes, F.D.S.; Garcia, L.P.; Maeno, M.; Prearo, L.C.; Toporcov, T.N.; Algranti, E. The role of occupation in SARS-CoV-2 infection within a Brazilian municipality: A test-negative case-control study. Am. J. Ind. Med. 2023, 66, 1090–1100. [Google Scholar] [CrossRef]
- De Matteis, S.; Cencedda, V.; Pilia, I.; Cocco, P. COVID-19 incidence in a cohort of public transport workers. Med. Lav. 2022, 113, e2022039. [Google Scholar] [PubMed]
- Lopez, A.S.; Hill, M.; Antezano, J.; Vilven, D.; Rutner, T.; Bogdanow, L.; Claflin, C.; Kracalik, I.T.; Fields, V.L.; Dunn, A.; et al. Transmission Dynamics of COVID-19 Outbreaks Associated with Child Care Facilities—Salt Lake City, Utah, April–July 2020. MMWR Morb. Mortal. Wkly Rep. 2020, 69, 1319–1323. [Google Scholar] [CrossRef]
- Alishaq, M.; Al Ajmi, J.A.; Shaheen, M.; Elgendy, M.; Vinoy, S.; Thomas, A.G.; Joseph, S.; Mathew, T.E.; Joseph, R.; Thomas, C.; et al. SARS-CoV-2 infection in 3241 School working staffs: Impact of SARS CoV-2 variants of concern [Wild, B.1.1.7 and Omicron]. PLoS ONE 2023, 18, e0291989. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. Baden. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Voysey, M.; Clemens, S.A.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Cegolon, L.; Mauro, M.; Sansone, D.; Tassinari, A.; Gobba, F.M.; Modenese, A.; Casolari, L.; Liviero, F.; Pavanello, S.; Scapellato, M.L.; et al. A Multi-Center Study Investigating Long COVID-19 in Healthcare Workers from North-Eastern Italy: Prevalence, Risk Factors and the Impact of Pre-Existing Humoral Immunity-ORCHESTRA Project. Vaccines 2023, 11, 1769. [Google Scholar] [CrossRef] [PubMed]
- Ssentongo, P.; Ssentongo, A.E.; Voleti, N.; Groff, D.; Sun, A.; Ba, D.M.; Nunez, J.; Parent, L.J.; Chinchilli, V.M.; Paules, C.I. SARS-CoV-2 vaccine effectiveness against infection, symptomatic and severe COVID-19: A systematic review and meta-analysis. BMC Infect. Dis. 2022, 22, 439. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Shao, W.; Chen, X.; Zhang, B.; Wang, G.; Zhang, W. Real-world effectiveness of COVID-19 vaccines: A literature review and meta-analysis. Int. J. Infect. Dis. 2022, 114, 252–260. [Google Scholar] [CrossRef]
- Basavanna, P.N.; Basavanagowdappa, H.; Siddaiah, A.; Patra, A.; Srinivasan, V.; Janardhan, S.M.; Pasi, R.; Ravi, K.S. Omicron and vaccine booster dose—An update. Indian J. Community Health 2022, 34, 167–169. [Google Scholar] [CrossRef]
- Mahase, E. COVID-19: Pfizer vaccine efficacy was 52% after first dose and 95% after second dose, paper shows. BMJ 2020, 371, m4826. [Google Scholar] [CrossRef]
- Carazo, S.; Skowronski, D.M.; Brisson, M.; Barkati, S.; Sauvageau, C.; Brousseau, N.; Gilca, R.; Fafard, J.; Talbot, D.; Ouakki, M.; et al. Protection against omicron (B.1.1.529) BA.2 reinfection conferred by primary omicron BA.1 or pre-omicron SARS-CoV-2 infection among health-care workers with and without mRNA vaccination: A test-negative case-control study. Lancet Infect. Dis. 2022, 23, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Dolby, T.; Nafilyan, V.; Pawelek, P. Coronavirus and Vaccination Rates in People Aged 18 to 64 Years by Occupation and Industry; Office for National Statistics: Newport, UK, 2022. [Google Scholar]
- Beale, S.; Burns, R.; Braithwaite, I.; Byrne, T.; Fong, W.L.E.; Fragaszy, E.; Geismar, C.; Hoskins, S.; Kovar, J.; Navaratnam, A.M.; et al. Occupation, worker vulnerability, and COVID-19 vaccination uptake: Analysis of the virus watch prospective cohort study. Vaccine 2022, 40, 7646–7652. [Google Scholar] [CrossRef]
- Nafilyan, V.; Dolby, T.; Finning, K.; Pawelek, P.; Edge, R.; Morgan, J.; Glickman, M.; Pearce, N.; van Tongeren, M. Differences in COVID-19 vaccination coverage by occupation in England: A national linked data study. Occup. Environ. Med. 2022, 79, 758–766. [Google Scholar] [CrossRef]
- Cegolon, L.; Pol, R.; Simonetti, O.; Larese Filon, F.; Luzzati, R. Molnupiravir, Nirmatrelvir/Ritonavir, or Sotrovimab for High-Risk COVID-19 Patients Infected by the Omicron Variant: Hospitalization, Mortality, and Time until Negative Swab Test in Real Life. Pharmaceuticals 2023, 16, 721. [Google Scholar] [CrossRef]
- Garg, I.; Sheikh, A.B.; Pal, S.; Shekhar, R. Mix-and-Match COVID-19 Vaccinations (Heterologous Boost): A Review. Infect. Dis. Rep. 2022, 14, 537–546. [Google Scholar] [CrossRef]
- Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N. Engl. J. Med. 2021, 384, 2092–2101. [Google Scholar] [CrossRef]
- MacNeil, J.R.; Su, J.R.; Broder, K.R.; Guh, A.Y.; Gargano, J.W.; Wallace, M.; Hadler, S.C.; Scobie, H.M.; Blain, A.E.; Moulia, D.; et al. Updated Recommendations from the Advisory Committee on Immunization Practices for Use of the Janssen (Johnson & Johnson) COVID-19 Vaccine After Reports of Thrombosis with Thrombocytopenia Syndrome Among Vaccine Recipients—United States, April 2021. MMWR. Morb. Mortal. Wkly. Rep. 2021, 70, 651–656. [Google Scholar]
- Sadoff, J.; Davis KDouoguih, M. Thrombotic thrombocytopenia after AdCOVS vaccination—Response from the manufacturer. N. Engl. J. Med. 2021, 384, 1965–1966. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.H.; Stuart, A.; Greenland, M.; Liu, X.; Nguyen Van-Tam, J.S.; Snape, M.D.; Com-COV Study Group. Heterologous prime-boost COVID-19 vaccination: Initial reactogenicity data. Lancet 2021, 397, 2043–2046. [Google Scholar] [CrossRef] [PubMed]
- Spencer, A.J.; McKay, P.F.; Belij-Rammerstorfer, S.; Ulaszewska, M.; Bissett, C.D.; Hu, K.; Samnuan, K.; Blakney, A.K.; Wright, D.; Sharpe, H.R.; et al. Heterologous vaccination regimens with self-amplifying RNA and adenoviral COVID vaccines induce robust immune responses in mice. Nat. Commun. 2021, 12, 2893. [Google Scholar] [CrossRef] [PubMed]
- Borobia, A.; Carcas, A.J.; Pérez-Olmeda, M.; Castaño, L.; Bertran, M.J.; García-Pérez, J.; Campins, M.; Portolés, A.; González-Pérez, M.; Morales, M.T.G.; et al. Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): A multicentre, open-label, randomised, controlled, phase 2 trial. Lancet 2021, 398, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shaw, R.H.; Stuart, A.S.V.; Greenland, M.; Aley, P.K.; Andrews, N.J.; Cameron, J.C.; Charlton, S.; Clutterbuck, E.A.; Collins, A.M.; et al. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): A single-blind, randomised, non-inferiority trial. Lancet 2021, 398, 856–869. [Google Scholar] [CrossRef] [PubMed]
- Guibert, N.; Trepat, K.; Pozzetto, B.; Josset, L.; Fassier, J.B.; Allatif, O.; Saker, K.; Brengel-Pesce, K.; Walzer, T.; Vanhems, P.; et al. A third vaccine dose equalises the levels of effectiveness and immunogenicity of heterologous or homologous COVID-19 vaccine regimens, Lyon, France, December 2021 to March 2022. Eurosurveillance 2023, 28, 2200746. [Google Scholar] [CrossRef] [PubMed]
- Au, W.Y.; Cheung, P.P.-H. Effectiveness of heterologous and homologous COVID-19 vaccine regimens: Living systematic review with network meta-analysis. BMJ 2022, 377, e069989. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Jin, P.; Guo, X.; Zhu, J.; Wang, X.; Wan, P.; Wan, J.; Liu, J.; Li, J.; Zhu, F. The 6-Month Antibody Durability of Heterologous Convidecia Plus CoronaVac and Homologous CoronaVac Immunizations in People Aged 18-59 Years and over 60 Years Based on Two Randomized Controlled Trials in China. Vaccines 2023, 11, 1815. [Google Scholar] [CrossRef] [PubMed]
TERMS | STRATA | TOTAL | Primary Infections | p | Primary Reinfections | p | ||
---|---|---|---|---|---|---|---|---|
No | Yes | No | Yes | |||||
Total | 2314 (100) | 870 (37.6) | 1444 (62.4) | 1182 (81.9) | 262 (18.1) | |||
Sex | Females | 1629 (70.4) | 577 (35.4) | 1052 (64.6) | <0.001 * | 325 (82.9) | 67 (17.1) | 0.527 * |
Males | 685 (29.6) | 293 (42.8) | 392 (57.2) | 857 (81.5) | 195 (18.5) | |||
Age (years) | Median (IQR) | 53 (46; 58) | 54 (47; 59) | 53 (46; 58) | 0.026 ** | 53 (46; 58) | 51 (44; 57) | 0.014 ** |
23–29 | 28 (1.2) | 11 (39.3) | 17 (60.7) | 0.215 * | 14 (82.4) | 3 (17.7) | 0.102 * | |
30–39 | 222 (9.6) | 85 (38.3) | 137 (61.7) | 113 (82.5) | 24 (17.5) | |||
40–49 | 594 (25.7) | 199 (33.5) | 395 (66.5) | 306 (77.5) | 89 (22.5) | |||
50–59 | 1026 (44.3) | 400 (39.0) | 626 (61.0) | 520 (83.1) | 106 (16.9) | |||
60+ | 444 (19.2) | 175 (39.4) | 269 (60.6) | 229 (85.1) | 40 (14.9) | |||
Occupation | Clerks | 1123 (48.5) | 451 (40.2) | 672 (59.8) | <0.001 * | 567 (84.4) | 105 (15.6) | 0.003 * |
Nursery teachers | 764 (33.0) | 253 (33.1) | 511 (66.9) | 399 (78.1) | 112 (21.9) | |||
Police officers | 198 (8.6) | 63 (31.8) | 135 (68.2) | 104 (77.0) | 31 (23.0) | |||
Technicians | 229 (9.9) | 103 (45.0) | 126 (55.0) | 112 (88.9) | 14 (11.1) |
PANDEMIC WAVE | Primary Infections (N = 1444) | Reinfections (N = 262) | ||||
---|---|---|---|---|---|---|
First | Second | Third | ||||
Wuhan (1 Mar 2020–31 Oct 2020) | 35 (2.4) | 0 | 0 | 0 | ||
Alpha (1 Nov 2020– 31 May 2021) | Total | N (%) | 171 (11.8) | 0 | 0 | 0 |
Unvaccinated or infected before 1st dose | N (%) | 48 (3.3) | ||||
Infected between 1st–2nd dose | N (%) | 18 (1.2) | ||||
M ± SD (days) | 18.4 ± 11.5 | |||||
Infected between 2nd–3rd dose | N (%) | 1 (0.1) | ||||
M ± SD (days) | 44 | |||||
Infected after 3rd dose | N (%) | 0 | ||||
Delta (1 Jun 2021– 30 Nov 2021) | Total | N (%) | 171 (11.8) | 0 | 0 | 0 |
Unvaccinated or infected before 1st dose | N (%) | 83 (5.7) | ||||
Infected between 1st–2nd dose | N (%) | 5 (0.3) | ||||
M ± SD (days) | 83.6 ± 72.6 | |||||
Infected between 2nd–3rd dose | N (%) | 80 (5.5) | ||||
M ± SD (days) | 219 ± 57.2 | |||||
Infected after 3rd dose | N (%) | 0 | ||||
Omicron (1 Dec 2021– 31 Jan 2023) | Total | N (%) | 1067 (73.9) | 262 (100) | 9 (100) | 2 (100) |
Unvaccinated or infected before 1st dose | N (%) | 237 (16.4) | 114 (43.5) | 5 (50.0) | 1 (50.0) | |
Infected between 1st–2nd dose | N (%) | 23 (1.6) | 30 (11.5) | 2 (0.2) | 0 | |
M ± SD (days) | 199.7 ± 195.1 | 338.2 ± 153.1 | 389 ± 72.8 | 0 | ||
Infected between 2nd–3rd dose | N (%) | 224 (15.5) | 59 (22.5) | 1 (0.1) | 0 | |
M ± SD (days) | 263.6 ± 99.6 | 447.1 ± 126.7 | 321 | 0 | ||
Infected between 3rd–4rd dose | N (%) | 575 (39.8) | 70 (26.7) | 1 (0.1) | 1 (50) | |
M ± SD (days) | 423.7 ± 113.9 | 516.9 ± 112.4 | 444 | 600 |
Dose | Comirnaty | Spikevax | Vaxzevria | Janssen | Comirnaty Bivalent 1 * | Comirnaty bivalent 2 ** | Total |
---|---|---|---|---|---|---|---|
1 (M:2) | 918 (49.7) | 370 (20.0) | 518 (28.0) | 40 (2.2) | 1846 (36.0) | ||
2 (M:2) | 943 (54.6) | 349 (20.2) | 434 (25.1) | 1726 (33.67) | |||
3 (M:2) | 740 (52.4) | 662 (46.9) | 1 (0.1) | 8 (0.6) | 1411 (27.5) | ||
4 (M:2) | 75 (53.2) | 5 (3.5) | 6 (4.3) | 55 (39.0) | 141 (27.5) | ||
5 | 1 (20.0) | 4 (80.0) | 5 (0.1) | ||||
Total | 2677 (52.1) | 1386 (27) | 952 (18.5) | 40 (0.8) | 7 (0.1) | 67 (1.3) | 5129 (100) |
TERMS | STRATA | Entire Period (1 Mar 2020–31 Jan 2023) (N. Infections = 1444) | Wuhan Wave (1 Mar 2020–31 Oct 2020) (N. Infections = 35) | Alpha Wave (1 Nov 2020–31 May 2021) (N. Infections = 171) | Delta Wave (1 Jun 2021–30 Nov 2021) (N. Infections = 171) | Omicron Wave (1 Dec 2021–31 Jan 2023) (N. Infections = 1067) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N. | P-d × 10,000 | Rate × 10,000 (95%CI) | N. | P-d × 10,000 | Rate × 10,000 (95%CI) | N. | P-d × 10,000 | Rate × 10,000 (95%CI) | N. | P-d × 10,000 | Rate × 10,000 (95%CI) | N. | P-d × 10,000 | Rate × 10,000 (95%CI) | ||
Sex | Males | 392 | 582,718 | 6.73 (6.09; 7.43) | 26 | 167,571 | 0.54 (0.28; 1.03) | 60 | 137,904 | 4.35 (3.38; 5.60) | 40 | 124,402 | 3.21 (2.36; 4.38) | 283 | 215,002 | 13.16 (11.72; 14.79) |
Females | 1052 | 1,359,400 | 7.74 (7.28; 8.22) | 9 | 397,571 | 0.65 (0.45; 0.96) | 111 | 332,613 | 3.34 (2.77; 4.02) | 131 | 296,510 | 4.42 (4.73; 5.25) | 783 | 481,569 | 16.25 (15.16; 17.44) | |
Age (years) | 20–29 | 17 | 23,184 | 7.33 (4.56; 11.80) | 0 | 6888 | 0 | 4 | 5182 | 7.72 (2.90; 20.57) | 1 | 5147 | 1.94 (0.27; 13.79) | 12 | 8885 | 13.51 (7.67; 23.78) |
30–39 | 137 | 187,998 | 7.29 (6.16; 8.62) | 2 | 54,572 | 0.37 (0.09; 1.47) | 17 | 44,876 | 3.79 (2.35; 6.09) | 18 | 40.349 | 4.46 (2.81; 7.08) | 100 | 68,310 | 14.64 (12.03; 17.81) | |
40–49 | 395 | 485,312 | 8.14 (7.37; 8.98) | 5 | 145,805 | 0.34 (0.14; 0.82) | 48 | 120,164 | 4.00 (3.01; 5.30) | 66 | 207,037 | 6.17 (4.84; 7.85) | 276 | 174,952 | 15.78 (14.02; 17.75) | |
50–59 | 626 | 867,059 | 7.22 (6.68; 7.81) | 17 | 250,703 | 0.68 (0.42; 1.09) | 72 | 208,926 | 3.45 (2.74; 4.34) | 65 | 186,705 | 3.48 (2.73; 4.44) | 472 | 308,714 | 15.26 (13.94; 16.70) | |
60+ | 269 | 378,565 | 7.11 (6.31; 8.01) | 11 | 107,360 | 1.02 (0.57; 185) | 30 | 91.369 | 3.28 (2.06; 4.70) | 21 | 81,272 | 2.58 (1.68; 3.96) | 207 | 135,710 | 15.25 (13.31; 17.48) | |
Occupation | Administrative | 672 | 967,390 | 6.95 (6.44; 7.49) | 25 | 272,507 | 0.92 (0.62; 1.36) | 62 | 231,777 | 2.67 (2.09 3.43) | 50 | 204,797 | 2.44 (1.85; 3.22) | 535 | 340,163 | 15.73 (14.45; 17.12) |
Nursery teachers | 511 | 624,610 | 8.18 (7.50; 8.92) | 5 | 187,833 | 0.27 (0.11; 0.64) | 51 | 155,619 | 3.28 (2.49; 4.31) | 92 | 138,117 | 6.66 (5.43; 8.17) | 363 | 219,356 | 16.50 (14.89; 18.29) | |
Police officers | 135 | 151,335 | 8.92 (7.54; 10.56) | 1 | 48,689 | 0.21 (0.03; 1.46) | 42 | 36,407 | 11.54 (8.53; 15.61) | 16 | 35,772 | 4.47 (2.74; 7.31) | 76 | 64,079 | 11.86 (9.47; 14.85) | |
Technicians | 126 | 198,783 | 6.34 (5.32; 7.55) | 4 | 56,300 | 0.71 (0.27; 1.89) | 16 | 46,714 | 3.43 (2.10; 5.59) | 13 | 41,824 | 3.11 (1.80; 5.35) | 93 | 72,973 | 12.74 (10.40; 15.62) | |
Vaccine doses before infection (Number) | 0 | 344 | 348,707 | 9.87 (8.87; 10.96) | NA | NA | NA | 146 | 225,291 | 6.48 (5.51; 7.62) | 84 | 116,728 | 7.20 (5.81; 8.91) | 239 | 125,615 | 19.03 (16.77; 21.60) |
1 | 46 | 29,737 | 15.47 (11.59; 20.65) | NA | NA | NA | 22 | 134,001 | 1.64 (1.08; 2.49) | 6 | 26,259 | 2.28 (1.03; 5.09) | 16 | 25,410 | 6.30 (3.85; 10.28) | |
2 | 301 | 292,128 | 10.30 (9.20; 11.54) | NA | NA | NA | 1 | 104,762 | 0.10 (0.01; 0.68) | 81 | 261,147 | 3.10 (2.49; 3.86) | 234 | 137,537 | 17.01 (14.97; 19.34) | |
3 | 694 | 1,137,887 | 6.10 (5.66; 6.57) | NA | NA | NA | NA | NA | NA | 0 | 16,008 | NA | 565 | 367,892 | 15.36 (14.15; 16.68) | |
4 | 59 | 133,659 | 4.41 (3.42; 5.69) | NA | NA | NA | NA | 20.448 | NA | 0 | NA | NA | 12 | 40,217 | 2.98 (1.69; 5.25) | |
Triple dose * (M = 781) | Homologous | 418 | 331,381 | 12.6 (11.5; 13.9) | NA | NA | NA | NA | NA | NA | NA | NA | NA | 401 | 294,723 | 13.6 (12.3; 15.0) |
Heterologous | 187 | 129,932 | 14.4 (12.5; 16.6) | NA | NA | NA | NA | NA | NA | NA | NA | NA | 170 | 120,808 | 14.1 (12.1; 16.4) |
TERMS | STRATA | N. Reinfections | P-d at Risk × 10,000 | Rate × 10,000 (95%CI) |
---|---|---|---|---|
Sex | Females | 67 | 135,982 | 4.93 (3.88; 6.26) |
Males | 195 | 345,355 | 5.65 (4.91; 6.50) | |
Age (years) | 20–29 | 3 | 6296 | 4.76 (1.54; 14.77) |
30–39 | 24 | 44,421 | 5.40 (3.62; 8.06) | |
40–49 | 89 | 130,981 | 6.79 (5.52; 8.36) | |
50–59 | 106 | 210,303 | 5.04 (4.17; 6.10) | |
>60 | 40 | 89,335 | 4.48 (3.28; 6.10) | |
Job task | Administrative | 105 | 213,019 | 4.93 (4.07; 5.97) |
Nursery teachers | 112 | 170,290 | 6.58 (5.47; 7.92) | |
Local police officers | 31 | 54,010 | 5.74 (4.04; 8.16) | |
Technicians | 14 | 44,017 | 3.18 (1.88; 5.37) | |
COVID-19 vaccine doses (Number) | 0 | 114 | 114,650 | 9.94 (8.28; 11.95) |
1 | 15 | 22,422 | 6.69 (4.03; 11.10) | |
2 | 58 | 115,789 | 5.01 (3.87; 6.48) | |
3 | 72 | 211,157 | 3.43 (2.72; 4.32) | |
4 | 3 | 18,338 | 1.64 (0.53; 5.07) | |
Triple dose (M: 202) | Homologous | 27 | 21,831 | 12.4 (8.5; 18.0) |
Heterologous | 18 | 11,387 | 15.0 (10.0; 25.1) |
TERMS | STRATA | PRIMARY INFECTIONS | PRIMARY REINFECTIONS | ||||||
---|---|---|---|---|---|---|---|---|---|
Entire Study Period (1 March 20– 31 January 23) | Wuhan Wave (1 March 20– 31 October 20) | Alpha Wave (1 November 20– 31 May 21) | Delta Wave (1 June 21– 30 November 21) | Omicron Wave (1 Decmber 21– 31 January 23) | Only Workers Immunized with 3+ Doses * (23 September 21– 31 January 23) | Entire Period (1 March 20– 31 January 23) | Only Workers Immunized with 3+ Doses * (23 September 21– 31 January 23) | ||
aHR (95%CI) (2314 obs.) | aHR (95%CI) (2314 obs.) | aHR (95%CI) (2261 obs.) | aHR (95%CI) (2.106 obs.) | aHR (95%CI) (1937 obs) | aHR (95%CI) (1217 obs.) | aHR (95%CI) (1388 obs.) | aHR (95%CI) (88 obs.) | ||
Sex | Males | reference | reference | reference | reference | reference | reference | reference | reference |
Females | 1.28 (1.12; 1.45) | 1.30 (0.57; 2.94) | 1.25 (0.87; 1.78) | 1.38 (0.93; 2.05) | 1.29 (1.10; 1.49) | 1.26 (1.03; 1.56) | 1.03 (0.76; 1.42) | 0.98 (0.42; 2.33) | |
Age (years) | 20–29 | reference | NA | reference | reference | reference | reference | reference | NA |
30–39 | 1.40 (0.84; 2.33) | 0.60 (0.14; 2.60) | 0.50 (0.17; 1.50) | 2.14 (0.28; 16.14) | 1.35 (0.74; 2.48) | 0.58 (0.26; 1.28) | 1.08 (0.32; 3.63) | 1.35 (0.38; 4.76) | |
40–49 | 1.65 (1.01; 2.71) | 0.59 (0.22; 1.61) | 0.68 (0.24; 1.89) | 2.66 (0.37; 19.28) | 1.58 (0.88; 2.84) | 0.69 (0.32; 1.46) | 1.17 (0.37; 3.77) | 1.60 (0.78; 3.27) | |
50–59 | 1.49 (0.91; 2.43) | Reference | 0.58 (0.21; 1.60) | 1.69 (0.23; 12.22) | 1.54 (0.86; 2.75) | 0.57 (0.27; 1.21) | 0.91 (0.28; 2.89) | reference | |
60+ | 1.44 (0.87; 2.37) | 1.46 (0.68; 3.11) | 0.61 (0.21; 1.74) | 1.36 (0.18; 10.18) | 1.51 (0.83; 2.71) | 0.55 (0.26; 1.19) | 0.85 (0.26; 2.79) | 0.88 (0.37; 2.12) | |
Occupation | Admin. clerks | reference | reference | reference | reference | reference | reference | reference | reference |
Nursery teachers | 1.27 (1.13; 1.43) | 0.31 (0.12; 0.82) | 1.34 (0.91; 1.96) | 2.42 (1.70; 3.44) | 1.23 (1.07; 1.40) | 0.89 (0.72; 1.09) | 1.09 (0.83; 1.44) | 1.74 (0.80; 3.79) | |
Local police officers | 1.82 (1.50; 2.22) | 0.26 (0.03; 1.99) | 6.82 (4.48; 10.40) | 2.99 (0.68; 2.38) | 1.43 (1.11; 1.84) | 1.07 (0.76; 1.49) | 1.08 (0.69; 1.68) | 0.38 (0.08; 1.73) | |
Technicians | 0.92 (0.76; 1.13) | 0.80 (0.26; 2.44) | 1.20 (0.68; 2.11) | 1.27 (0.68; 2.38) | 0.85 (0.68; 1.07) | 0.78 (0.55; 1.09) | 0.56 (0.32; 1.00) | 0.45 (0.10; 2.10) | |
N. doses of COVID-19 vaccine | 0 | reference | reference | reference | reference | reference | reference | ||
1 | 2.12 (1.55; 2.90) | NA | 0.25 (0.16; 0.39) | 0.41 (0.17; 0.93) | 1.30 (0.78; 2.17) | 0.47 (0.27; 0.82) | |||
2 | 0.98 (0.84; 1.15) | NA | 0.01 (0.00; 0.08) | 0.30 (0.22; 041) | 1.07 (0.89; 1.29) | 0.42 (0.30; 0.58) | |||
3 | 0.42 (0.36; 0.47) | NA | NA | NA | 0.42 (0.36; 0.49) | 0.32 (0.24; 0.44) | |||
4 | 0.30 (0.23; 0.40) | NA | NA | NA | 0.09 (0.05; 0.16) | 0.14 (0.05; 0.46) | |||
Triple vaccinaton * | Homologous | NA | NA | NA | NA | NA | reference | NA | reference |
Heterologous | NA | NA | NA | NA | NA | 1.15 (0.94; 1.42) | NA | 1.19 (0.57; 2.50) | |
Pseudo-R2 | 0.161 | 0.277 | 0.076 | 0.046 | 0.014 | 0.002 | 0.021 | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cegolon, L.; Larese Filon, F. COVID-19 in City Council Civil Servants, 1 March 2020–31 January 2023: Risk of Infection, Reinfection, Vaccine Effectiveness and the Impact of Heterologous Triple Vaccination. Vaccines 2024, 12, 254. https://doi.org/10.3390/vaccines12030254
Cegolon L, Larese Filon F. COVID-19 in City Council Civil Servants, 1 March 2020–31 January 2023: Risk of Infection, Reinfection, Vaccine Effectiveness and the Impact of Heterologous Triple Vaccination. Vaccines. 2024; 12(3):254. https://doi.org/10.3390/vaccines12030254
Chicago/Turabian StyleCegolon, Luca, and Francesca Larese Filon. 2024. "COVID-19 in City Council Civil Servants, 1 March 2020–31 January 2023: Risk of Infection, Reinfection, Vaccine Effectiveness and the Impact of Heterologous Triple Vaccination" Vaccines 12, no. 3: 254. https://doi.org/10.3390/vaccines12030254
APA StyleCegolon, L., & Larese Filon, F. (2024). COVID-19 in City Council Civil Servants, 1 March 2020–31 January 2023: Risk of Infection, Reinfection, Vaccine Effectiveness and the Impact of Heterologous Triple Vaccination. Vaccines, 12(3), 254. https://doi.org/10.3390/vaccines12030254