The Equal Neutralizing Effectiveness of BNT162b2, ChAdOx1 nCoV-19, and Sputnik V Vaccines in the Palestinian Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Settings
2.2. Blood Sampling and Data Collection
2.3. Cell Lines
2.4. Neutralization Assay
2.5. SARS-CoV-2 CLIA Assay
2.6. Statistical Analysis
2.7. Ethical Approval, Registration and Patient Consent Procedures
2.8. Data Availability
3. Results
3.1. Demographic Characteristics of the Participants
3.2. Post-Vaccine SARS-CoV-2 Total Antibodies
3.3. Serum Neutralization among Individuals Vaccinated with BNT162b2, ChAdOx1 or Sputnik V
3.4. Correlation between Serum Neutralization Efficacy and Demographic Parameters across BNT162b2, ChAdOx1 or Sputnik V Vaccinated Individuals
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parker, E.P.K.; Shrotri, M.; Kampmann, B. Keeping track of the SARS-CoV-2 vaccine pipeline. Nat. Rev. Immunol. 2020, 20, 650. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, L.Y.; Lu, Q.B.; Cui, F. Vaccination with the Inactivated Vaccine (Sinopharm BBIBP-CorV) Ensures Protection against SARS-CoV-2 Related Disease. Vaccines 2022, 10, 920. [Google Scholar] [CrossRef] [PubMed]
- Mascellino, M.T.; Di Timoteo, F.; De Angelis, M.; Oliva, A. “Overview of the Main Anti-SARS-CoV-2 Vaccines: Mechanism of Action, Efficacy and Safety” [Response To Letter]. Infect. Drug Resist. 2021, 14, 4501–4502. [Google Scholar] [CrossRef] [PubMed]
- D’Apice, L.; Trovato, M.; Gramigna, G.; Colavita, F.; Francalancia, M.; Matusali, G.; Meschi, S.; Lapa, D.; Bettini, A.; Mizzoni, K.; et al. Comparative analysis of the neutralizing activity against SARS-CoV-2 Wuhan-Hu-1 strain and variants of concern: Performance evaluation of a pseudovirus-based neutralization assay. Front. Immunol. 2022, 13, 981693. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H. Development of Corona-virus-disease-19 Vaccines. JMA J. 2021, 4, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Perez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, M.N.; Minassian, A.M.; Ewer, K.J.; Flaxman, A.L.; Folegatti, P.M.; Owens, D.R.; Voysey, M.; Aley, P.K.; Angus, B.; Babbage, G.; et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): A single-blind, randomised, controlled, phase 2/3 trial. Lancet 2021, 396, 1979–1993. [Google Scholar] [CrossRef]
- Sadoff, J.; Le Gars, M.; Shukarev, G.; Heerwegh, D.; Truyers, C.; de Groot, A.M.; Stoop, J.; Tete, S.; Van Damme, W.; Leroux-Roels, I.; et al. Interim Results of a Phase 1-2a Trial of Ad26.COV2.S COVID-19 Vaccine. N. Engl. J. Med. 2021, 384, 1824–1835. [Google Scholar] [CrossRef]
- Logunov, D.Y.; Dolzhikova, I.V.; Shcheblyakov, D.V.; Tukhvatulin, A.I.; Zubkova, O.V.; Dzharullaeva, A.S.; Kovyrshina, A.V.; Lubenets, N.L.; Grousova, D.M.; Erokhova, A.S.; et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021, 397, 671–681. [Google Scholar] [CrossRef]
- Xia, S.; Zhang, Y.; Wang, Y.; Wang, H.; Yang, Y.; Gao, G.F.; Tan, W.; Wu, G.; Xu, M.; Lou, Z.; et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: A randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis. 2021, 21, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Hu, Y.; Xu, M.; Chen, Z.; Yang, W.; Jiang, Z.; Li, M.; Jin, H.; Cui, G.; Chen, P.; et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 2021, 21, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Pallett, S.J.C.; Heskin, J.; Groppelli, E.; Mazzella, A.; Moore, L.S.P. Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants. Lancet Microbe 2022, 3, e167. [Google Scholar] [CrossRef]
- Zimmermann, P.; Curtis, N. Factors That Influence the Immune Response to Vaccination. Clin. Microbiol. Rev. 2019, 32, e00084-18. [Google Scholar] [CrossRef]
- WHO. COVID-19 in Occupied Palestinian Territory, Including East Jerusalem [Internet]. 2023. Available online: https://covid19.who.int/region/emro/country/ps (accessed on 17 October 2023).
- Maraqa, B.; Alkarajeh, M.; Almahareeq, M.; Al-Shakhra, K.; Al-Kalia, M. Palestinian analysis of COVID-19 vaccine compliance and reported death by vaccination type. J. Family Med. Prim. Care 2022, 11, 7362–7366. [Google Scholar] [CrossRef] [PubMed]
- Damour, A.; Delalande, P.; Cordelieres, F.; Lafon, M.E.; Faure, M.; Segovia-Kueny, S.; Stalens, C.; Mathis, S.; Spinazzi, M.; Violleau, M.H.; et al. Anti-SARS-CoV-2 (COVID-19) vaccination efficacy in patients with severe neuromuscular diseases. Rev. Neurol. 2023, 179, 983–992. [Google Scholar] [CrossRef] [PubMed]
- Infantino, M.; Pieri, M.; Nuccetelli, M.; Grossi, V.; Lari, B.; Tomassetti, F.; Calugi, G.; Pancani, S.; Benucci, M.; Casprini, P.; et al. The WHO International Standard for COVID-19 serological tests: Towards harmonization of anti-spike assays. Int. Immunopharmacol. 2021, 100, 108095. [Google Scholar] [CrossRef] [PubMed]
- Muecksch, F.; Wise, H.; Batchelor, B.; Squires, M.; Semple, E.; Richardson, C.; McGuire, J.; Clearly, S.; Furrie, E.; Greig, N.; et al. Longitudinal Serological Analysis and Neutralizing Antibody Levels in Coronavirus Disease 2019 Convalescent Patients. J. Infect. Dis. 2021, 223, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Deng, J.C.; Goldstein, D.R. How aging impacts vaccine efficacy: Known molecular and cellular mechanisms and future directions. Trends Mol. Med. 2022, 28, 1100–1111. [Google Scholar] [CrossRef]
- Shaikh, S.R.; Beck, M.A.; Alwarawrah, Y.; MacIver, N.J. Emerging mechanisms of obesity-associated immune dysfunction. Nat. Rev. Endocrinol. 2024, 20, 136–148. [Google Scholar] [CrossRef]
- Nasr, M.C.; Geerling, E.; Pinto, A.K. Impact of Obesity on Vaccination to SARS-CoV-2. Front. Endocrinol. 2022, 13, 898810. [Google Scholar] [CrossRef] [PubMed]
- Ramamurthy, T.; Wagener, D.; Chowdhury, G.; Majumder, P.P. A large study on immunological response to a whole-cell killed oral cholera vaccine reveals that there are significant geographical differences in response and that O blood group individuals do not elicit a higher response. Clin. Vaccine Immunol. 2010, 17, 1232–1237. [Google Scholar] [CrossRef]
- Richie, E.E.; Punjabi, N.H.; Sidharta, Y.Y.; Peetosutan, K.K.; Sukandar, M.M.; Wasserman, S.S.; Lesmana, M.M.; Wangsasaputra, F.F.; Pandam, S.S.; Levine, M.M.; et al. Efficacy trial of single-dose live oral cholera vaccine CVD 103-HgR in North Jakarta, Indonesia, a cholera-endemic area. Vaccine 2000, 18, 2399–2410. [Google Scholar] [CrossRef]
- Kabagenyi, J.; Natukunda, A.; Nassuuna, J.; Sanya, R.E.; Nampijja, M.; Webb, E.L.; Elliott, A.M.; Nkurunungi, G. Urban-rural differences in immune responses to mycobacterial and tetanus vaccine antigens in a tropical setting: A role for helminths? Parasitol. Int. 2020, 78, 102132. [Google Scholar] [CrossRef] [PubMed]
- Damour, A.; CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 33076 Bordeaux, France; Wodrich, H.; CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 33076 Bordeaux, France. Personal communication, 2023.
- Sadeghalvad, M.; Mansourabadi, A.H.; Noori, M.; Nejadghaderi, S.A.; Masoomikarimi, M.; Alimohammadi, M.; Rezaei, N. Recent developments in SARS-CoV-2 vaccines: A systematic review of the current studies. Rev. Med. Virol. 2023, 33, e2359. [Google Scholar] [CrossRef]
- Karbiener, M.; Farcet, M.R.; Zollner, A.; Masuda, T.; Mori, M.; Moschen, A.R.; Kreil, T.R. Calibrated comparison of SARS-CoV-2 neutralizing antibody levels in response to protein-, mRNA-, and vector-based COVID-19 vaccines. NPJ Vaccines 2022, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Tada, T.; Zhou, H.; Samanovic, M.I.; Dcosta, B.M.; Cornelius, A.; Herati, R.S.; Mulligan, M.J.; Landau, N.R. Neutralization of SARS-CoV-2 Variants by mRNA and Adenoviral Vector Vaccine-Elicited Antibodies. Front. Immunol. 2022, 13, 797589. [Google Scholar] [CrossRef]
- Stuart, A.S.; Shaw, R.H.; Liu, X.; Greenland, M.; Aley, P.K.; Andrews, N.J.; Cameron, J.C.; Charlton, S.; Clutterbuck, E.A.; Collins, A.M.; et al. Immunogenicity, safety, and reactogenicity of heterologous COVID-19 primary vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines in the UK (Com-COV2): A single-blind, randomised, phase 2, non-inferiority trial. Lancet 2022, 399, 36–49. [Google Scholar] [CrossRef]
- Liu, Y.; Sanchez-Ovando, S.; Carolan, L.; Dowson, L.; Khvorov, A.; Jessica Hadiprodjo, A.; Tseng, Y.Y.; Delahunty, C.; Khatami, A.; Macnish, M.; et al. Superior immunogenicity of mRNA over adenoviral vectored COVID-19 vaccines reflects B cell dynamics independent of anti-vector immunity: Implications for future pandemic vaccines. Vaccine 2023, 41, 7192–7200. [Google Scholar] [CrossRef]
- van den Hoogen, L.L.; Verheul, M.K.; Vos, E.R.A.; van Hagen, C.C.E.; van Boven, M.; Wong, D.; Wijmenga-Monsuur, A.J.; Smits, G.; Kuijer, M.; van Rooijen, D.; et al. SARS-CoV-2 Spike S1-specific IgG kinetic profiles following mRNA or vector-based vaccination in the general Dutch population show distinct kinetics. Sci. Rep. 2022, 12, 5935. [Google Scholar] [CrossRef]
- Brunner, W.M.; Freilich, D.; Victory, J.; Krupa, N.; Scribani, M.B.; Jenkins, P.; Lasher, E.G.; Fink, A.; Shah, A.; Cross, P.; et al. Comparison of antibody response durability of mRNA-1273, BNT162b2, and Ad26.COV2.S SARS-CoV-2 vaccines in healthcare workers. Int. J. Infect. Dis. 2022, 123, 183–191. [Google Scholar] [CrossRef] [PubMed]
Frequency | Percent | Mean of Antibody Titer | p Value | |
---|---|---|---|---|
(AU/mL) | ||||
Age | ||||
18–39 | 769 | 68.7 | 285.5 | 0.591 |
40–49 | 119 | 10.6 | 294.8 | |
50 and above | 232 | 20.7 | 372.0 | |
Body Mass Index (BMI) | ||||
Underweight | 53 | 4.7 | 245.4 | 0.602 |
Normal | 537 | 47.9 | 316.7 | |
Overweight | 384 | 34.3 | 306.8 | |
Obese | 146 | 13.0 | 276.5 | |
Gender | ||||
Male | 580 | 51.8 | 332.3 | 0.105 |
Female | 540 | 48.2 | 274.9 | |
Smoking | ||||
Non-Smoker | 788 | 70.4 | 313.7 | 0.087 |
Current Smoker | 332 | 29.6 | 283.0 | |
Blood Group | ||||
A | 403 | 36.0 | 321.2 | 0.072 |
B | 190 | 17.0 | 322.7 | |
AB | 88 | 7.9 | 312.1 | |
O | 439 | 39.2 | 280.1 | |
Type of Vaccine | ||||
Pfizer | 727 | 64.9 | 322.1 | 0.126 |
AstraZeneca | 185 | 16.5 | 227.1 | |
Sputnik V | 208 | 18.6 | 312.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damour, A.; Faure, M.; Landrein, N.; Ragues, J.; Ardah, N.; Dhaidel, H.; Lafon, M.-E.; Wodrich, H.; Basha, W. The Equal Neutralizing Effectiveness of BNT162b2, ChAdOx1 nCoV-19, and Sputnik V Vaccines in the Palestinian Population. Vaccines 2024, 12, 493. https://doi.org/10.3390/vaccines12050493
Damour A, Faure M, Landrein N, Ragues J, Ardah N, Dhaidel H, Lafon M-E, Wodrich H, Basha W. The Equal Neutralizing Effectiveness of BNT162b2, ChAdOx1 nCoV-19, and Sputnik V Vaccines in the Palestinian Population. Vaccines. 2024; 12(5):493. https://doi.org/10.3390/vaccines12050493
Chicago/Turabian StyleDamour, Alexia, Muriel Faure, Nicolas Landrein, Jessica Ragues, Narda Ardah, Haneen Dhaidel, Marie-Edith Lafon, Harald Wodrich, and Walid Basha. 2024. "The Equal Neutralizing Effectiveness of BNT162b2, ChAdOx1 nCoV-19, and Sputnik V Vaccines in the Palestinian Population" Vaccines 12, no. 5: 493. https://doi.org/10.3390/vaccines12050493
APA StyleDamour, A., Faure, M., Landrein, N., Ragues, J., Ardah, N., Dhaidel, H., Lafon, M. -E., Wodrich, H., & Basha, W. (2024). The Equal Neutralizing Effectiveness of BNT162b2, ChAdOx1 nCoV-19, and Sputnik V Vaccines in the Palestinian Population. Vaccines, 12(5), 493. https://doi.org/10.3390/vaccines12050493