
Citation: Xu, L.; Ren, W.; Wang, Q.; Li,

J. Advances in Nucleic Acid Universal

Influenza Vaccines. Vaccines 2024, 12,

664. https://doi.org/10.3390/

vaccines12060664

Academic Editor: Ralph A. Tripp

Received: 9 April 2024

Revised: 13 June 2024

Accepted: 13 June 2024

Published: 17 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Advances in Nucleic Acid Universal Influenza Vaccines
Liang Xu 1,†, Weigang Ren 1,†, Qin Wang 1 and Junwei Li 1,2,*

1 Department of Infectious Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of
Chinese Medicine, Nanjing 210003, China; luomu77956@163.com (L.X.); rwg20161564@163.com (W.R.);
wangqin6621628@163.com (Q.W.)

2 Medical Innovation Center for Infectious Disease of Jiangsu Province, Nanjing 210003, China
* Correspondence: junwli@yeah.net
† These authors contributed equally to this work.

Abstract: Currently, vaccination with influenza vaccines is still an effective strategy to prevent
infection by seasonal influenza virus in spite of some drawbacks with them. However, due to the
rapid evolution of influenza viruses, including seasonal influenza viruses and emerging zoonotic
influenza viruses, there is an urgent need to develop broad-spectrum influenza vaccines to cope
with the evolution of influenza viruses. Nucleic acid vaccines might meet the requirements well.
Nucleic acid vaccines are classified into DNA vaccines and RNA vaccines. Both types induced potent
cellular and humoral immune responses, showing great promise for the development of universal
influenza vaccines. In this review, the current status of an influenza universal nucleic acid vaccine
was summarized.
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1. Introduction

Seasonal and pandemic influenza viruses, as well as emerging zoonotic influenza
viruses, cause intense concern for public health. According to the report by the World
Health Organization (WHO), annual seasonal influenza virus epidemics lead to approx-
imately 3–5 million infections and 290,000–650,000 deaths worldwide [1]. Pandemics of
influenza viruses caused even more serious damage and death in the historically recorded
pandemics, including the 1918 (H1N1) Spanish Flu, 1957 (H2N2) Flu Pandemic in Asia,
1968 (H3N2) Hong Kong Pandemic, 1977 (H1N1) Russia Flu Pandemic and 2009 (H1N1)
Flu Pandemic around the world [2,3]. Avian-origin influenza viruses spillover could also
result in potential epidemics, even pandemics, and lead to public panic, such as the H5N1
influenza virus with around 50% mortality and H7N9 with 40% mortality, despite lacking
evidence of human-to-human transmission [4,5].

Currently, vaccination with seasonal influenza vaccines is an effective strategy to
prevent seasonal pandemic or endemic influenza viruses. Influenza virus vaccines licensed
include inactivated, recombinant and live-attenuated influenza vaccines (LAIVs), which
contain antigens from H1N1, H3N2 and two influenza B types, and mainly induce hu-
moral immune responses against the viral surface glycoproteins, hemagglutinin (HA) and
neuraminidase (NA) [6]. Due to the high variation of both surface proteins of influenza
viruses, the protection efficacy conferred by vaccination with seasonal influenza vaccines
is limited [7]. Statistically, the effectiveness of current influenza vaccines is under 60% [8].
Inactivated and recombinant influenza vaccines fail to trigger a vigorous immune response
in those 65 and older and immuno-compromised people, who are vulnerable when facing
an infection by seasonal or emerging influenza viruses [9].

LAIVs were reported to provide strong, long-lasting cell-mediated and potent humoral
immunity; nevertheless, the biological safety of LAIV is a major concern. The fear of viru-
lence reversal and viral shedding by LAIV is a key hurdle preventing the broad distribution
of LAIV [10]. Egg-based influenza virus vaccines cause antigen changes because of the
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possibility of generating chicken embryo adaptive mutations or protein posttranslational
modifications, which enhance the replication of vaccine virus in eggs, thus leading to an
antigenicity shift. In addition, there is a time-gap between the influenza viruses recom-
mended by WHO influenza surveillance system and their production, leading to untimely
supplies of influenza vaccine following the reports of seasonal influenza surveillance.

In recent years, many approaches have been employed to eliminate the defects of
existing influenza vaccines to overcome the antigen drift and shift caused by the evolution
of influenza viruses, including the development of vaccines covering as many strains as
possible and the adaption of highly conserved epitopes adopted from HA2, M2e, or NP
of different influenza viruses [11]. In spite of the high specificity of humoral immune
responses that bind and neutralize influenza viruses, T cell immune responses instigated
by T cell-specific epitopes or adjuvants show cross-reactivity in a broad manner to control
infection by influenza viruses [12]. Compared to seasonal influenza vaccines that are
composed of multivalent HA protein antigens or live-attenuated influenza viruses, nucleic
acid influenza vaccines encoding influenza virus antigens inducing potent humoral and
cellular immune responses could enhance the protection against a broad array of influenza
viruses [13].

In order to better elucidate the mechanism of nucleic acid vaccine reactions in the
body, the process of the immune response induced by nucleic acid influenza vaccines
is illuminated in Figure 1. As shown, after encapsulated DNA or mRNA enters target
cells, the particle is dissociated in endosomes with an acidic environment, releasing the
antigen-coding DNA or mRNA into the cytoplasm. mRNAs as templates are translated by
the host protein synthesis machinery directly in the host cytoplasm. Otherwise, different
from mRNA, the DNA is first transported to the nucleus, then transcribed into mRNA,
which is necessary for the antigen expression, then used as a template to be translated
into proteins. The translated antigenic protein is processed by lyases to generate antigenic
peptides that bind to the major histocompatibility complex (MHC I or II). The bound
complex is presented on the cell surface, recognized by receptors on the ancestral B cells or
T cells, and elicits an immune response.

The humoral immune response is mainly mediated by B lymphocytes, which recognize
antigens presented via the MHC II pathway and are activated through the synergistic action
of T helper (Th) cells. Activated T cells secrete IL-4 and IL-21, which promote the entry of B
cells into the germinal center and their differentiation into plasma cells or memory B cells.
Plasma cells are responsible for producing and secreting specific antibodies to neutralize
influenza viruses. Memory B cells, on the other hand, provide a rapid and potent antibody
response to the secondary immune response by stimulation of the same antigenic peptides.

The cellular immune response involves two subtypes of T cells. Helper T cells enhance
the overall immune response by recognizing antigens and producing cytokines (e.g., IL-2
and IFN-γ) via the MHC II pathway, while CD8+ cytotoxic T cells recognize and destroy
virus-infected cells expressing pathogen-specific antigens via the MHC I pathway. In this
process, cytokines have indispensable functions in orchestrating cellular interactions and
shaping the nature and magnitude of immune responses.

Researchers have demonstrated that DNA and mRNA themselves present immuno-
genicity or adjuvanticity, which instigates innate immunity and induces cytokines, enhanc-
ing the cellular and humoral immune responses and vice versa. The diagram also illustrates
the inherent memory function of the immune system, which is reflected in the generation
of memory T cells that rapidly respond to previous infectious events and protect against
future infections [14,15].

As for a preventive approach to infectious diseases, the development of prophylactic
strategies against hypervariable infectious pathogens should be focused on multiple targets
or antigens. In the case of influenza viruses, there has been much progress in recent years in
novel and rational universal nucleic acid influenza vaccine designs, but so far, no effective
one has been approved for use for this purpose. However, the advances in this field have
brought the light of hope. In a recent published paper of a phase 1/2 randomized clinical
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trial of mRNA-based seasonal influenza vaccine, the results showed that an mRNA vaccine
(mRNA-1010) elicited a potent humoral immune response [16]. Here, universal nucleic acid
influenza vaccines in development are summarized as a new vaccine platform that shows
several advantages against the conventional vaccine platform based on protein antigens.
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plasma cells or memory B cells in the germinal center. They secrete specific antibodies to neutralize 
influenza viruses. Helper T cells enhance the overall immune response by recognizing antigens and 
producing cytokines via the MHC II pathway, while CD8+ cytotoxic T cells recognize and destroy 
virus-infected cells expressing pathogen-specific antigens via the MHC I pathway. MHC, major his-
tocompatibility complex. 
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Figure 1. The immune response mechanisms of different nucleic acid vaccines, including DNA
vaccines and mRNA vaccines. Briefly, after encapsulated DNA or mRNA is released from endosomes
into the cytoplasm, the protein encoding T- or B-cell epitopes is produced and digested to generate
antigenic peptides to be presented by the major histocompatibility complex (MHC) on the cell surface,
recognized by receptors on the ancestral B cells or T cells, eliciting humoral and cellular immune
responses. Humoral immunity is activated through the synergistic action of T helper (Th) cells via
the MHC II pathway. Activated T cells secrete cytokines, promoting B cells to differentiate into
plasma cells or memory B cells in the germinal center. They secrete specific antibodies to neutralize
influenza viruses. Helper T cells enhance the overall immune response by recognizing antigens and
producing cytokines via the MHC II pathway, while CD8+ cytotoxic T cells recognize and destroy
virus-infected cells expressing pathogen-specific antigens via the MHC I pathway. MHC, major
histocompatibility complex.

2. A Brief Description of Influenza Viruses
2.1. Influenza Epidemiology

There are two different influenza seasons in the world. In the Northern Hemisphere,
it is between November and March. In the Southern Hemisphere, it is between June and
September. Influenza can be classified into pandemics, epidemics, localized outbreaks,
and sporadic cases infected by avian-origin influenza viruses, according to the degree of
epidemic. Seasonal influenza is an acute respiratory infection caused by influenza A or B
viruses that is endemic around the world with symptoms ranging from mild to severe and
potentially fatal. All age groups could be affected. Symptoms of influenza include acute
onset of fever, cough, sore throat, body aches and fatigue. Hospitalizations and deaths
occur mainly in high-risk groups such as young children, pregnant women, the elderly,
and immune-compromised persons [17]. In most adults, the symptoms are mild and they
recover within 1–2 weeks. There are also reports on the spillover of avian influenza viruses
from avians to human, such as the constantly reported infections by H5N1 influenza viruses
with the potential for human-to-human transmission. The H7N9 epidemic in 2013 caused
over 1500 infections, and H3N8 infections have been reported in humans [1,4]. These
cross-species transmissions of avian influenza viruses led to public panic when they were
reported in an exaggerated manner.
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2.2. Influenza Virus Typology and Structural Characteristics

There are four types of influenza viruses according to their NP gene, classified A, B, C,
and D [18]. Furthermore, influenza A viruses are subtyped according to the hemagglutinin
(HA) and neuraminidase (NA) on the surface of the influenza virus. There are currently
18 different H subtypes (H1-H18) and 11 different N subtypes (N1-N11) of influenza A
viruses [19]. The subtypes of influenza A virus that often circulate in the population include
A/H1N1 and A/H3N2. Influenza B viruses that circulate in humans are not classified into
subtypes but are further divided into two lineages, namely B/Yamagata and B/Victoria.

The influenza A and B viruses have a segmented genome coding 10–12 proteins. The
polymerase is responsible for replication and transcription of these segments. The PB1
subunit contains the catalytic activity for RNA synthesis, while PB2 is involved in cap-
binding and host adaptation. PA is responsible for endonuclease activity and cleavage of
host mRNA [20]. In the influenza virion particles, the polymerase forms a complex with
the viral RNA (vRNA) and nucleoprotein (NP) to assemble the ribonucleoprotein (RNP)
complex, which is essential for viral replication and protects the viral RNA from degrada-
tion by RNases [21]. There are four structural proteins on the viral envelope, HA, NA, M1
and M2, which were identified as viral antigens to be used in vaccine development [22–24].

Similar to influenza A, the genome of influenza B, comprising eight negative-sense,
single-stranded viral RNA (vRNA) segments, encodes four envelope proteins, HA, NA, NB,
and BM2, and ribonucleoproteins PB1, PB2, PA, and NP [25]. Analysis of the evolutionary
dynamics showed Yamagata lineage viruses had alternating dominance between antigenic
groups, while Victoria lineage viruses showed antigenic drift of a single lineage [26].

The HA trimer is synthesized as a single polypeptide chain (HA0). HA0 is then
cleaved by host cell proteases to become mature HA, which consists of HA1 and HA2
subunits. HA1 promotes viral entry by engaging the receptor and HA2 mediates virus-host
membrane fusion [27]. NA is an essential glycoprotein on the surface of the influenza
virus and it is responsible for the release of progeny virions from the host cell to infect
new cells [28]. M2 protein is an ion channel that plays a crucial role in viral uncoating and
replication. Upon entering the acidic environment of the endosome, M2 facilitates proton
influx into the virion, leading to the disassociation of vRNPs from the viral matrix protein
(M1) and their subsequent release into the host cellular cytoplasm [29]. The M1 protein
is the most abundant protein in the influenza virion and it plays a critical role in viral
assembly and budding by providing structural integrity and shaping the viral particles [30].

NP encapsulates the vRNA, protecting it from degradation and recognition by the
host’s innate immune system, and it has been identified as a conserved internal antigen,
primarily targeting cytotoxic T lymphocyte (CTL) recognition during influenza virus in-
fection and it has been shown to mediate cross-protection against heterotypic influenza
viruses [31,32]. M2e is the extracellular N-terminal domain of M2 that is highly conserved
in human influenza A virus strains, mediating protective immunity and relying primar-
ily on Fcγ-mediated effector mechanisms, such as antibody-dependent cell cytotoxicity
(ADCC) or the anti-immunogenicity of M2e. Attempts have been made to couple the M2e
domain to vectors and novel adjuvants and multiple immunizations with high doses have
been used to enhance its antigenicity [33].

HA2 forms most of the highly conserved stem-like structure, which anchors the
globular domain to the viral membrane and contains the viral fusion peptide, inducing a
cross-protective immune response [34]. The long α helix (LAH) domain (HA2 76-130aa) is
the most conserved region in the HA stem region of the influenza virus, which has also
been explored as a target for broad-spectrum influenza vaccines. Antibodies against stems
typically have broad cross-reactivity and often have a neutralizing effect, and they can also
help eliminate infected cells through Fcγ-mediated effector function (ADCC) [35,36].

3. Nucleic Acid Vaccines

Nucleic acid vaccines use genetic material from a disease-causing virus or pathogenic
bacteria to stimulate an immune response against these pathogens. Nucleic acid vaccines
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have two forms, DNA vaccines and RNA vaccines [15]. DNA vaccines are designed on the
base of plasmids that encode the targeting antigens, such as HA, NA and M2 of influenza
viruses, which stimulate humoral immune responses and sometimes induce immununos-
timulatory molecules. The common immunostimulatory molecules used as adjuvants
include IL-2, GM-CSF, CpG, etc. [37]. DNA vaccines not only stimulate humoral immune
responses but also cellular immune responses. There are several routes employed as ad-
ministration methods of DNA vaccines, including intramuscular (IM), intradermal (ID),
mucosal, and electro-transportation [38]. In addition, DNA vaccines have been approved
to prevent infectious disease in animals, such as horse West Nile virus disease [39].

In the 1990s, in vitro transcribed mRNA was shown to be transported into animal
cells and be translated in mice [40]. Since then, mRNA technology was introduced into
vaccine research and development. After internalization by endocytosis, a DNA vaccine is
transferred to the nucleus for transcription, and the transcribed mRNA is exported into
the cytoplasm for translation. However, RNA vaccines are translated directly after being
released from endosomes [41].

3.1. Advantages and Disadvantages of Nucleic Acid Vaccines

Researchers suggested that nucleic acid vaccines showed the features of simplicity,
high safety, effectiveness and low cost. DNA and RNA vaccines are non-living entities
without the risk of transformation into a pathogen, which enhances their safety during
vaccine manufacture. Furthermore, both of them induce potent T cell and humoral immu-
nity and can be manufactured on a large scale. In recent studies, the results showed that
mRNA vaccines could be delivered intranasally and instigated potent mucosal immune
responses including T cell and humoral immune responses, which are crucial to inhibit the
replication of respiratory pathogens [42–44]. However, there are still some disadvantages
within nucleic acid vaccines that should be resolved. DNA vaccines showed relatively
low immunogenicity, especially in large animals. As mentioned above, during the process
of antigen expression, DNA enters the cellular nucleus, which may incur risks with the
potential to integrate into the host genome, leading to insertional mutagenesis [41,45]. As
well, the formation of anti-DNA antibodies, induction of autoimmunity and immunological
tolerance are the concerns in the design of DNA vaccines.

3.2. Universal Influenza DNA Vaccines

Compared to traditional influenza vaccines, influenza vaccines based on nucleic acids
have significant advantages, bringing together the nucleic acids encoding the antigens of
each influenza virus strain, creating a multivalent universal influenza vaccine or conserved
antigen vaccine, which would solve the problem of the differences between the encoded
vaccine antigen and the epidemic influenza virus, and greatly improve the protective effects
of the influenza vaccine. Although there are several disadvantages in the DNA vaccine
platform, conserved immunogens developed on the DNA vaccine platform are promising
candidates for the creation of the universal vaccine against influenza viruses. Their ability to
induce protective immunity has been demonstrated in animal models. Universal influenza
virus DNA vaccine candidates are most often designed by adopting genes encoding the
conserved proteins HA2, NP, M1, and M2, and the catalytic subunit of PB1 [46–48]. The
encoding genes in DNA plasmids expressed individual protein antigens or combined
protein antigens that could induce cross-protective immunity against homologous or
heterologous influenza viruses in animal models [49]. Study results show the efficacy of
universal influenza DNA vaccines encoding multiple antigens, conferring better protection
than that encoding a single antigen.

Researchers created an optimized M2e DNA vaccine and tested its efficacy against
both homologous and heterologous influenza viruses. It induced significant humoral
and cellular immune responses, suggesting that this vaccine candidate provided potent
protection against both homologous and heterologous viruses [50]. The article by Jaroslav
Hollý et al. described studies on M2e DNA vaccines and the results of the immunogenicity
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and protective properties of the vaccine were evaluated by administering the M2e DNA
vaccine to BALB/c mice and performing viral challenge experiments, showing that the mice
produced anti-M2e antibodies after vaccination with the M2e DNA vaccine. The survival
rate of mice vaccinated with the M2e DNA vaccine was high after the viral challenge
experiment [51]. Therefore, such studies indicated that the optimized M2e DNA vaccine
could be a promising candidate for a universal influenza vaccine, inducing both humoral
and cellular immune responses.

3.3. Development of Universal Influenza mRNA Vaccines

As the mRNA vaccine platform has shown great promise in the development of
vaccines against infectious diseases, it has also been used to develop universal mRNA
vaccines against influenza. In the last decade, research on a universal influenza mRNA
vaccine progressed dramatically. The successful employment of SARS-CoV-2 mRNA
vaccines in control of COVID-19 further accelerated the research and development of
universal influenza mRNA vaccines. Recent universal mRNA influenza vaccines are
summarized in Table 1. There are two methods being used for the development of universal
influenza mRNA vaccines, using combined antigens or conserved antigens. Combined
nucleoside-modified mRNA influenza vaccines including antigens from different subtypes
have shown promise as universal influenza vaccines.

Freyn et al. designed a multi-targeting nucleoside-modified mRNA influenza virus
vaccine that provided broad protection against influenza viruses in mice [52]. In 2021,
research published by Sudha Chivukula et al., focused on the development of multivalent
mRNA vaccine candidates for seasonal or pandemic influenza. The research team aimed to
develop a novel influenza vaccine using mRNA technology to provide broader protection
by inducing immunity against different influenza virus strains. They used mRNA lipid
nanoparticle (LNP) technology to deliver mRNA encoding influenza virus hemagglutinin
(HA) and neuraminidase (NA) to stimulate the body to mount an immune response against
these viral proteins. The immunogenicity and safety of this mRNA vaccine candidate
was evaluated through immunization experiments in mice and rhesus monkeys. The
goal of this research was to provide new strategies and methods for developing more
effective influenza vaccines [7]. McMahon and coworkers suggested that a quadrivalent
nucleoside-modified mRNA influenza vaccine contained four influenza A group 2 virus
antigens provided protection against group 2 influenza virus [53]. Pardi et al. reported
that a pentavalent nucleoside-modified mRNA vaccine conferred broad protection against
influenza B viruses [54]. These results support the concept of nucleoside-modified mRNA-
LNPs expressing multiple conserved antigens as universal influenza virus vaccines.

Table 1. Universal influenza mRNA vaccines that have been published.

Authors Published Year Antigens Animal Model Clinical Trial

Freyn et al. [52] 2020 HA stalk, NA, M2, NP, Mice

Arevalo et al. [55] 2022 HA from 20 subtypes Mice

McMahon et al. [53] 2022 HA stalk, NA, M2, NP Mice

Ven et al. [56] 2022 NP, M1, PB1 Ferret

Zhu et al. [57] 2022 HA, MI, NP Mice

Pardi et al. [54] 2022
B/Yamagata/16/1988-like lineage HA
B/Victoria/2/1987-like lineage HA, NA, NP,
and M2

Mice

Widge et al. [58] 2023 HA stabilized stem Phase 1

Lee et al. [16] 2023 HA of (A/H1N1, A/H3N2, B/Victoria, and
B/Yamagata) phase 1/2

Xiong et al. [59] 2023 M2e, HA stalk, NP, Mice
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Subsequently, on 24 November 2022, the team of Drew Weissman and Scott E. Henslsy
of the University of Pennsylvania published “A multivalent nucleoside-modified mRNA
vaccine against all known influenza virus subtypes” in the top journal Science [55]. They
developed a multivalent mRNA vaccine against all existing known subtypes of influenza
virus. Their results showed that mice inoculated with the multivalent mRNA vaccine
were able to trigger antibody responses against all 20 HA antigens, and the multivalent
mRNA vaccine elicited high levels of cross-reactivity and subtype-specific antibodies in
mice and ferrets, and maintained high levels for 4 months, thus protecting the host from
infection with matched and mismatched strains of influenza virus. This study fully confirms
that mRNA vaccines can provide protection against antigenic variants by simultaneously
inducing antibodies against multiple antigens.

In recent research, adjuvant was introduced to universal influenza virus vaccines and
enhanced the immune response. Zhu et al. designed cGAMP-adjuvanted multivalent
influenza mRNA vaccines that induced broad protective immunity through cutaneous
vaccination in mice [57].

In the last year, Li Xiuling and colleagues published their results in Emerging Microbes
& Infections with the title of “An mRNA-based broad-spectrum vaccine candidate confers
cross-protection against heterosubtypic influenza” [59]. In this study, they developed a
multivalent influenza mRNA vaccine based on influenza protective antigens, consisting of
three conserved antigens of influenza A virus, including the extracellular domain (M2e) of
the M2 ion channel, the long α helix (LAH) and nucleoprotein (NP) of the hemagglutinin
stem region, with the aim of enhancing its efficacy and facilitating the development of
future broad-spectrum influenza vaccines. The immunogenicity of this M2e-LAH-NP
influenza mRNA vaccine was evaluated in a mouse model. Their results showed that it was
effective in triggering serum antibody responses and cellular immune responses against
the three protective antigens, also induced antibody-dependent cell-mediated cytotoxic
effects and cross-reactive CD8+ T cell immune responses, and conferred broad protection
against the H1N1, H3N2, and H9N2 viruses. In addition, single-cell transcriptional analysis
of T cells in the spleen of inoculated mice showed that it significantly promoted the
differentiation of CD8+ T cells and memory T cells through prime-boost immunization.
This study illustrated that mRNA influenza vaccines encoding conserved proteins are a
very promising strategy to trigger broad protective humoral and cellular immunity against
various influenza viruses.

4. Conclusions

Since the concept of universal influenza vaccines was coined, research has advanced
dramatically in this field. The development of a universal influenza vaccine that provides
broad and durable protection against multiple epidemic and emerging influenza viruses is
a long-term goal of public health and pandemic preparedness. Universal influenza DNA
vaccines have been the subject of many studies over the past decades due to their ability to
induce humoral and cellular immune responses in various animal models. Although DNA
vaccines have shown intrinsic defects, such as integration of their DNA into the host genome
and low efficiency in large animals and humans, so far, the data available have alleviated
these concerns. Genome insertion could be controlled with modified DNA sequences
and their low immunogenicity in humans could be improved with several strategies [41].
Given these advantages, influenza DNA vaccines have the potential to provide a broader
protection as universal vaccines with the characteristics of easy preparation, simplicity of
formulation, high stability and safety by lacking infectious regents [60].

The mRNA vaccine platform holds promise to improve influenza vaccination by
improving strain matches, enclosing multivalent antigens or conserved antigens, and
inducing broader humoral and potent cellular immune responses. However, work on a
universal influenza vaccine based on mRNA technology has just begun. Furthermore, as a
new biotechnology, many regulations will be demanded and its accompanied uncertain
safety and vaccine hesitancy need to be resolved [61,62]. However, promoted by the
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success of the SARS-CoV-2 mRNA vaccines, the advent of mRNA technology has made
it possible to see the dawn of a universal influenza vaccine, despite that there are still
many technical difficulties to be overcome, whether it is a multivalent mRNA vaccine
using the exhaustive existing HA antigens or a multivalent mRNA vaccine based on
the same conserved antigen combined with other conserved antigens; for example, the
formulation of LNP formulations for encapsulated multivalent mRNA vaccines or the
structure optimization of multivalent antigen fusion proteins, the development of more
efficient delivery vectors, and the addition of novel adjuvants [63]. So far, the available
data suggest that mRNA-based universal influenza vaccines could be improved and hold
great promise. Thus, it is optimistic that under the endeavors of experts from academic
institutions and industry entities, the successful breakthrough of a universal influenza
vaccine will not only open up a new situation in the research and development of viral
vaccines, but also consolidate the cornerstone role of mRNA technology in the field of
vaccine development in the near future.
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