mRNA Technology and Mucosal Immunization
Abstract
:1. Introduction
2. The Mucosal Immune System
3. Mucosal Immunization
4. Extracellular Vesicles as Carriers of mRNA Vaccines
- (a)
- Natural Cell-to-Cell Communication: EVs are involved in normal physiological processes as mediators of cell-to-cell communication. Exploiting this natural communication system for vaccine delivery may be advantageous in terms of the body’s response to the introduced mRNA. EVs may also modulate immune responses [37,38].
- (b)
- (c)
- Targeted Delivery: EVs can be engineered to express specific surface proteins that allow them to target specific cell types or tissues, thus enhancing the precision of vaccine delivery. Several methods have been developed to engineer EVs by modifying their surface with the purpose of targeting drug delivery [43,44]. For a systematic review, see the study by Raghav and colleagues [45].
- (d)
- Reduced Reactogenicity: EVs may help reduce inflammatory reactions associated with mRNA vaccines, making them safer and more acceptable for therapeutic applications.
- (e)
5. mRNA Vaccines Encapsulated into Extracellular Vesicles from Edible Plants
6. Design of mRNA Constructs Encoding Antigenic Proteins
6.1. Five-Prime Cap Structure
6.2. Three-Prime Poly (A) Tail
6.3. Codon Usage
6.4. Self-Amplifying RNA Vaccines (saRNA)
6.5. Circular mRNA Constructs (circmRNA)
7. Conclusions
8. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Karikó, K.; Buckstein, M.; Ni, H.; Weissman, D. Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA. Immunity 2005, 23, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Karikó, K.; Muramatsu, H.; Welsh, F.A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of Pseudouridine Into MRNA Yields Superior Nonimmunogenic Vector With Increased Translational Capacity and Biological Stability. Mol. Ther. 2008, 16, 1833–1840. [Google Scholar] [CrossRef] [PubMed]
- Venkatraman, V. The MRNA Enthusiast’s Memoirs Breaking Through: My Life in Science Katalin Karikó Crown. Science 2023, 382, 45. [Google Scholar] [CrossRef] [PubMed]
- Offord, C.; Cohen, J. Award Honors Pair for MRNA Work Key to COVID-19 Vaccines. Science 2023, 382, 22. [Google Scholar] [CrossRef] [PubMed]
- Hoecke, V.; Med, R.J.T.; Van Hoecke, L.; Roose, K. How MRNA Therapeutics Are Entering the Monoclonal Antibody Field. J. Transl. Med. 2019, 2019, 17. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Zhang, C.; Walker, P.G.; Dong, Y. Formulation and Delivery Technologies for MRNA Vaccines. In mRNA Vaccines; Springer: Cham, Switzerland, 2020; pp. 71–110. [Google Scholar]
- Gorochov, G.; Ropers, J.; Launay, O.; Dorgham, K.; Da Mata-Jardin, O.; Lebbah, S.; Durier, C.; Bauer, R.; Radenne, A.; Desaint, C.; et al. Serum and Salivary IgG and IgA Response After COVID-19 Messenger RNA Vaccination. JAMA Netw. Open 2024, 7, e248051. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Boribong, B.P.; Swank, Z.N.; Demokritou, M.; Luban, M.A.F.; Fasano, A.; Du, M.; Wolf, R.L.; Griffiths, J.; Shultz, J.; et al. COVID-19 mRNA Vaccines Induce Robust Levels of IgG but Limited Amounts of IgA within the Oronasopharynx of Young Children. medRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Tada, R.; Yamazaki, H.; Nagai, Y.; Takeda, Y.; Ohshima, A.; Kunisawa, J.; Negishi, Y. Intranasal Administration of Sodium Nitroprusside Augments Antigen-Specific Mucosal and Systemic Antibody Production in Mice. Int. Immunopharmacol. 2023, 119, 110262. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, M.; Garn, H.; Buhl, T. Epithelial–Immune Cell Interactions in Allergic Diseases. Eur. J. Immunol. 2024, 54, 2249982. [Google Scholar] [CrossRef]
- Olivares-Villagómez, D.; Van Kaer, L. Intestinal Intraepithelial Lymphocytes: Sentinels of the Mucosal Barrier. Trends Immunol. 2018, 39, 264–275. [Google Scholar] [CrossRef]
- Al-Talib, M.; Dimonte, S.; Humphreys, I.R. Mucosal T-Cell Responses to Chronic Viral Infections: Implications for Vaccine Design. Cell Mol. Immunol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, A.; Mucida, D.; Bilate, A.M. Intraepithelial Lymphocytes of the Intestine. Annu. Rev. Immunol. 2024, 42. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.J.Y.; Loh, J.M.S.; Fujihashi, K.; Kiyono, H. Mucosal Vaccination: Onward and Upward. Expert. Rev. Vaccines 2023, 22, 885–899. [Google Scholar] [CrossRef] [PubMed]
- Vashishtha, V.M.; Kumar, P. The Durability of Vaccine-Induced Protection: An Overview. Expert. Rev. Vaccines 2024, 23, 389–408. [Google Scholar] [CrossRef] [PubMed]
- Dubois, V.; Locht, C. Mucosal Immunization Against Pertussis: Lessons from the Past and Perspectives. Front. Immunol. 2021, 12, 701285. [Google Scholar] [CrossRef]
- Tang, J.; Zeng, C.; Cox, T.M.; Li, C.; Son, Y.M.; Cheon, I.S.; Wu, Y.; Behl, S.; Taylor, J.J.; Chakaraborty, R.; et al. Respiratory Mucosal Immunity against SARS-CoV-2 after mRNA Vaccination. Sci. Immunol. 2022, 7, eadd4853. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Lin, A.; Xu, C.; Li, Z.; Liu, K.; Liu, B.; Ma, X.; Zhao, F.; Jiang, H.; et al. Algorithm for Optimized MRNA Design Improves Stability and Immunogenicity. Nature 2023, 621, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.L.; Reily, C.; Novak, J.; Renfrow, M.B. Immunoglobulin A Glycosylation and Its Role in Disease. In Antibody Glycosylation; Pezer, M., Ed.; Experientia Supplementum; Springer International Publishing: Cham, Switzerland, 2021; Volume 112, pp. 433–477. ISBN 978-3-030-76911-6. [Google Scholar]
- Steffen, U.; Koeleman, C.A.; Sokolova, M.V.; Bang, H.; Kleyer, A.; Rech, J.; Unterweger, H.; Schicht, M.; Garreis, F.; Hahn, J.; et al. IgA Subclasses Have Different Effector Functions Associated with Distinct Glycosylation Profiles. Nat. Commun. 2020, 11, 120. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jin, L.; Chen, T. The Effects of Secretory IgA in the Mucosal Immune System. BioMed Res. Int. 2020, 2020, 2032057. [Google Scholar] [CrossRef] [PubMed]
- Kumar Bharathkar, S.; Parker, B.W.; Malyutin, A.G.; Haloi, N.; Huey-Tubman, K.E.; Tajkhorshid, E.; Stadtmueller, B.M. The Structures of Secretory and Dimeric Immunoglobulin A. eLife 2020, 9, e56098. [Google Scholar] [CrossRef]
- Sun, L.; Kallolimath, S.; Palt, R.; Stiasny, K.; Mayrhofer, P.; Maresch, D.; Eidenberger, L.; Steinkellner, H. Increased in Vitro Neutralizing Activity of SARS-CoV-2 IgA1 Dimers Compared to Monomers and IgG. Proc. Natl. Acad. Sci. USA 2021, 118, e2107148118. [Google Scholar] [CrossRef]
- Kirtane, A.R.; Tang, C.; Freitas, D.; Bernstock, J.D.; Traverso, G. Challenges and Opportunities in the Development of Mucosal mRNA Vaccines. Curr. Opin. Immunol. 2023, 85, 102388. [Google Scholar] [CrossRef] [PubMed]
- Mochida, Y.; Uchida, S. mRNA Vaccine Designs for Optimal Adjuvanticity and Delivery. RNA Biol. 2024, 21, 1–27. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, P.S.; Scott, M.K.D.; Hagan, T.; Li, C.; Feng, Y.; Wimmers, F.; Grigoryan, L.; Trisal, M.; Edara, V.V.; Lai, L.; et al. Systems Vaccinology of the BNT162b2 mRNA Vaccine in Humans. Nature 2021, 596, 410–416. [Google Scholar] [CrossRef]
- McMahan, K.; Wegmann, F.; Aid, M.; Sciacca, M.; Liu, J.; Hachmann, N.P.; Miller, J.; Jacob-Dolan, C.; Powers, O.; Hope, D.; et al. Mucosal Boosting Enhances Vaccine Protection against SARS-CoV-2 in Macaques. Nature 2024, 626, 385–391. [Google Scholar] [CrossRef]
- Bhavsar, D.; Singh, G.; Sano, K.; Gleason, C.; Srivastava, K.; PARIS Study Group; Carreno, J.M.; Simon, V.; Krammer, F.; Oostenink, A.; et al. Mucosal Antibody Responses to SARS-CoV-2 Booster Vaccination and Breakthrough Infection. mBio 2023, 14, e02280-23. [Google Scholar] [CrossRef]
- Heida, R.; Frijlink, H.W.; Hinrichs, W.L.J. Inhalation of Vaccines and Antiviral Drugs to Fight Respiratory Virus Infections: Reasons to Prioritize the Pulmonary Route of Administration. mBio 2023, 14, e01295-23. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Sun, Y.; Gao, N.; Ling, G.; Zhang, P. Nanotechnology of Inhalable Vaccines for Enhancing Mucosal Immunity. Drug Deliv. Transl. Res. 2024, 14, 597–620. [Google Scholar] [CrossRef]
- Laghlali, G.; Wiest, M.J.; Karadag, D.; Warang, P.; O’Konek, J.J.; Chang, L.A.; Park, S.; Farazuddin, M.; Landers, J.J.; Janczak, K.W.; et al. Enhanced Mucosal B- and T-Cell Responses against SARS-CoV-2 after Heterologous Intramuscular mRNA Prime/Intranasal Protein Boost Vaccination with a Combination Adjuvant. bioRxiv 2024. [Google Scholar] [CrossRef]
- Zhu, J.; Tao, P.; Chopra, A.K.; Rao, V.B. Bacteriophage T4 as a Protein-Based, Adjuvant- and Needle-Free, Mucosal Pandemic Vaccine Design Platform. Annu. Rev. Virol. 2024. ahead of print. [Google Scholar] [CrossRef]
- Quesenberry, P.J.; Aliotta, J.; Deregibus, M.C.; Camussi, G. Role of Extracellular RNA-Carrying Vesicles in Cell Differentiation and Reprogramming. Stem Cell Res. Ther. 2015, 6, 153. [Google Scholar] [CrossRef]
- Deregibus, M.C.; Cantaluppi, V.; Calogero, R.; Lo Iacono, M.; Tetta, C.; Biancone, L.; Bruno, S.; Bussolati, B.; Camussi, G. Endothelial Progenitor Cell Derived Microvesicles Activate an Angiogenic Program in Endothelial Cells by a Horizontal Transfer of MRNA. Blood 2007, 110, 2440–2448. [Google Scholar] [CrossRef]
- Lehmann, T.P.; Golik, M.; Olejnik, J.; Łukaszewska, M.; Markowska, D.; Drożdżyńska, M.; Kotecki, A.; Głowacki, M.; Jagodziński, P.P. Potential Applications of Using Tissue-Specific EVs in Targeted Therapy and Vaccinology. Biomed. Pharmacother. 2023, 166, 115308. [Google Scholar] [CrossRef]
- Gould, S.J.; Raposo, G. As We Wait: Coping with an Imperfect Nomenclature for Extracellular Vesicles. J. Extracell. Vesicles 2013, 2, 20389. [Google Scholar] [CrossRef]
- Robbins, P.D.; Morelli, A.E. Regulation of Immune Responses by Extracellular Vesicles. Nat. Rev. Immunol. 2014, 2014, 14. [Google Scholar] [CrossRef]
- Guduric-Fuchs, J.; O’Connor, A.; Camp, B.; O’Neill, C.L.; Medina, R.J.; Simpson, D.A. Selective Extracellular Vesicle-Mediated Export of an Overlapping Set of MicroRNAs from Multiple Cell Types. BMC Genom. 2012, 13, 357. [Google Scholar] [CrossRef]
- Fischer, S.; Cornils, K.; Speiseder, T.; Badbaran, A.; Reimer, R.; Indenbirken, D.; Grundhoff, A.; Brunswig-Spickenheier, B.; Alawi, M.; Lange, C. Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles. PLoS ONE 2016, 11, e0163665. [Google Scholar] [CrossRef]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-Mediated Transfer of MRNAs and MicroRNAs Is a Novel Mechanism of Genetic Exchange between Cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef]
- Ratajczak, J.; Miekus, K.; Kucia, M.; Zhang, J.; Reca, R.; Dvorak, P.; Ratajczak, M.Z.E.S.C.-D.M.R.H. Progenitors: Evidence for Horizontal Transfer of MRNA and Protein Delivery. Leukemia 2006, 2006, 20. [Google Scholar] [CrossRef]
- Tsai, S.J.; Atai, N.A.; Cacciottolo, M.; Nice, J.; Salehi, A.; Guo, C.; Sedgwick, A.; Kanagavelu, S.; Gould, S.J. Exosome-Mediated MRNA Delivery in Vivo Is Safe and Can Be Used to Induce SARS-CoV-2 Immunity. J. Biol. Chem. 2021, 297, 101266. [Google Scholar] [CrossRef]
- Ambrosone, A.; Barbulova, A.; Cappetta, E.; Cillo, F.; De Palma, M.; Ruocco, M.; Pocsfalvi, G. Plant Extracellular Vesicles: Current Landscape and Future Directions. Plants 2023, 12, 4141. [Google Scholar] [CrossRef]
- Raghav, A.; Jeong, G.B.A. Systematic Review on the Modifications of Extracellular Vesicles: A Revolutionized Tool of Nano-Biotechnology. J. Nanobiotechnol. 2021, 19, 459. [Google Scholar] [CrossRef]
- Massaro, C.; Sgueglia, G.; Frattolillo, V.; Baglio, S.R.; Altucci, L.; Dell’aversana, C. Extracellular Vesicle-Based Nucleic Acid Delivery: Current Advances and Future Perspectives in Cancer Therapeutic Strategies. Pharmaceutics 2020, 12, 980. [Google Scholar] [CrossRef]
- Beetler, D.J.; Di Florio, D.N.; Bruno, K.A.; Ikezu, T.; March, K.L.; Cooper, L.T.; Wolfram, J.; Fairweather, D.L. Extracellular Vesicles as Personalized Medicine. Mol. Asp. Med. 2023, 91, 101155. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, Z.; Li, J. Pharmacokinetic Analyses of a Lipid Nanoparticle-Encapsulated MRNA-Encoded Antibody against Rift Valley Fever Virus. Molecular Pharm. 2024, 21, 1342–1352. [Google Scholar] [CrossRef]
- Al-Jipouri, A.; Eritja, À.; Bozic, M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int. J. Mol. Sci. 2023, 25, 485. [Google Scholar] [CrossRef]
- Jung, I.; Shin, S.; Baek, M.-C.; Yea, K. Modification of Immune Cell-Derived Exosomes for Enhanced Cancer Immunotherapy: Current Advances and Therapeutic Applications. Exp. Mol. Med. 2024, 56, 19–31. [Google Scholar] [CrossRef]
- Tapparo, M.; Bruno, S.; Collino, F.; Togliatto, G.; Deregibus, M.C.; Provero, P.; Wen, S.; Quesenberry, P.J.; Camussi, G. Renal Regenerative Potential of Extracellular Vesicles Derived from miRNA-Engineered Mesenchymal Stromal Cells. Int. J. Mol. Sci. 2019, 20, 2381. [Google Scholar] [CrossRef]
- Kwon, S.; Shin, S.; Do, M.; Oh, B.H.; Song, Y.; Bui, V.D.; Lee, E.S.; Jo, D.-G.; Cho, Y.W.; Kim, D.-H.; et al. Engineering Approaches for Effective Therapeutic Applications Based on Extracellular Vesicles. J. Control. Release 2021, 330, 15–30. [Google Scholar] [CrossRef]
- Sadeghi, S.; Tehrani, F.R.; Tahmasebi, S.; Shafiee, A.; Hashemi, S.M. Exosome Engineering in Cell Therapy and Drug Delivery. Inflammopharmacology 2023, 31, 145–169. [Google Scholar] [CrossRef]
- Yong, T.; Li, X.; Wei, Z.; Gan, L.; Yang, X. Extracellular Vesicles-Based Drug Delivery Systems for Cancer Immunotherapy. J. Control. Release 2020, 328, 562–574. [Google Scholar] [CrossRef]
- Hagiwara, K.; Katsuda, T.; Gailhouste, L.; Kosaka, N.; Ochiya, T. Commitment of Annexin A2 in Recruitment of microRNAs into Extracellular Vesicles. FEBS Lett. 2015, 589, 4071–4078. [Google Scholar] [CrossRef]
- Iavello, A.; Frech, V.S.L.; Gai, C.; Deregibus, M.C.; Quesenberry, P.J.; Camussi, G. Role of Alix in miRNA Packaging during Extracellular Vesicle Biogenesis. Int. J. Mol. Med. 2016, 37, 958–966. [Google Scholar] [CrossRef]
- Brossa, A.; Tapparo, M.; Fonsato, V.; Papadimitriou, E.; Delena, M.; Camussi, G.; Bussolati, B. Coincubation as miR-Loading Strategy to Improve the Anti-Tumor Effect of Stem Cell-Derived EVs. Pharmaceutics 2021, 13, 76. [Google Scholar] [CrossRef]
- O’Loughlin, A.J.; Mäger, I.; De Jong, O.G.; Varela, M.A.; Schiffelers, R.M.; El Andaloussi, S.; Wood, M.J.A.; Vader, P. Functional Delivery of Lipid-Conjugated siRNA by Extracellular Vesicles. Mol. Ther. 2017, 25, 1580–1587. [Google Scholar] [CrossRef]
- Didiot, M.-C.; Haraszti, R.A.; Aronin, N.; Khvorova, A. Loading of Extracellular Vesicles with Hydrophobically Modified siRNAs. In Extracellular RNA; Patel, T., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2018; Volume 1740, pp. 199–214. ISBN 978-1-4939-7651-5. [Google Scholar]
- Roerig, J.; Schulz-Siegmund, M. Standardization Approaches for Extracellular Vesicle Loading with Oligonucleotides and Biologics. Small 2023, 19, 2301763. [Google Scholar] [CrossRef]
- Baek, G.; Choi, H.; Kim, Y.; Lee, H.-C.; Choi, C. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Therapeutics and as a Drug Delivery Platform. Stem Cells Transl. Med. 2019, 8, 880–886. [Google Scholar] [CrossRef]
- Aschmann, D.; Knol, R.A.; Kros, A. Lipid-Based Nanoparticle Functionalization with Coiled-Coil Peptides for In Vitro and In Vivo Drug Delivery. Acc. Chem. Res. 2024, 57, 1098–1110. [Google Scholar] [CrossRef]
- Evers, M.J.W.; Van De Wakker, S.I.; De Groot, E.M.; De Jong, O.G.; Gitz-François, J.J.J.; Seinen, C.S.; Sluijter, J.P.G.; Schiffelers, R.M.; Vader, P. Functional siRNA Delivery by Extracellular Vesicle–Liposome Hybrid Nanoparticles. Adv. Healthc. Mater. 2022, 11, 2101202. [Google Scholar] [CrossRef]
- Van Niel, G.; D’Angelo, G.; Raposo, G. Shedding Light on the Cell Biology of Extracellular Vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef]
- Möbs, C.; Jung, A.L. Extracellular Vesicles: Messengers of Allergic Immune Responses and Novel Therapeutic Strategy. Eur. J. Immunol. 2024, 54, e2350392. [Google Scholar] [CrossRef]
- Wolfers, J.; Lozier, A.; Raposo, G.; Regnault, A.; Théry, C.; Masurier, C.; Flament, C.; Pouzieux, S.; Faure, F.; Tursz, T.; et al. Tumor-Derived Exosomes Are a Source of Shared Tumor Rejection Antigens for CTL Cross-Priming. Nat. Med. 2001, 7, 297–303. [Google Scholar] [CrossRef]
- Kashyap, D.; Panda, M.; Baral, B.; Varshney, N.R.S.; Bhandari, V.; Parmar, H.S.; Prasad, A.; Jha, H.C. Outer Membrane Vesicles: An Emerging Vaccine Platform. Vaccines 2022, 10, 1578. [Google Scholar] [CrossRef]
- Léger, J.L.; Soucy, M.N.; Veilleux, V.; Foulem, R.D.; Robichaud, G.A.; Surette, M.E.; Allain, E.P.; Boudreau, L.H. Functional Platelet-derived Mitochondria Induce the Release of Human Neutrophil Microvesicles. EMBO Rep. 2022, 23, e54910. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Shao, L.; Zhou, A.; Zhao, M.; Li, P.; Zhang, Z.; Wu, J. Both Extracellular Vesicles from Helicobacter Pylori-Infected Cells and Helicobacter Pylori Outer Membrane Vesicles Are Involved in Gastric/Extragastric Diseases. Eur. J. Med. Res. 2023, 28, 484. [Google Scholar] [CrossRef]
- Huynh, D.T.; Nolfi, E.; Medfai, L.; Van Ulsen, P.; Jong, W.S.P.; Sijts, A.J.A.M.; Luirink, J. Intranasal Delivery of Salmonella OMVs Decorated with Chlamydia Trachomatis Antigens Induces Specific Local and Systemic Immune Responses. Hum. Vaccines Immunother. 2024, 20, 2330768. [Google Scholar] [CrossRef]
- Gai, C.; Pomatto, M.A.C.; Deregibus, M.C.; Dieci, M.; Piga, A.; Camussi, G. Edible Plant-Derived Extracellular Vesicles for Oral mRNA Vaccine Delivery. Vaccines 2024, 12, 200. [Google Scholar] [CrossRef]
- Zamani, P.; Mashreghi, M.; Rezazade Bazaz, M.; Zargari, S.; Alizadeh, F.; Dorrigiv, M.; Abdoli, A.; Aminianfar, H.; Hatamipour, M.; Zarqi, J.; et al. Characterization of Stability, Safety and Immunogenicity of the mRNA Lipid Nanoparticle Vaccine Iribovax® against COVID-19 in Nonhuman Primates. J. Control. Release 2023, 360, 316–334. [Google Scholar] [CrossRef]
- Neutra, M.R.; Kozlowski, P.A. Mucosal Vaccines: The Promise and the Challenge. Nat. Rev. Immunol. 2006, 6, 148–158. [Google Scholar] [CrossRef]
- Miteva, D.; Peshevska-Sekulovska, M.; Snegarova, V.; Batselova, H.; Alexandrova, R.; Velikova, T. Mucosal COVID-19 Vaccines: Risks, Benefits and Control of the Pandemic. World J. Virol. 2022, 11, 221–236. [Google Scholar] [CrossRef]
- O’Leary, L.F.; Tomko, A.M.; Dupré, D.J. Polarity Scaffolds Signaling in Epithelial Cell Permeability. Inflamm. Res. 2021, 70, 525–538. [Google Scholar] [CrossRef]
- Rubio-Tapia, A.; Hill, I.D.; Semrad, C.; Kelly, C.P.; Greer, K.B.; Limketkai, B.N.; Lebwohl, B. American College of Gastroenterology Guidelines Update: Diagnosis and Management of Celiac Disease. Am. J. Gastroenterol. 2023, 118, 59–76. [Google Scholar] [CrossRef]
- Ossendorp, F.; Ho, N.I.; Van Montfoort, N. How B Cells Drive T-Cell Responses: A Key Role for Cross-Presentation of Antibody-Targeted Antigens. In Advances in Immunology; Elsevier: Amsterdam, The Netherlands, 2023; Volume 160, pp. 37–57. ISBN 978-0-443-22236-8. [Google Scholar]
- Halsey, N.A.; Talaat, K.R.; Greenbaum, A.; Mensah, E.; Dudley, M.Z.; Proveaux, T.; Salmon, D.A. The Safety of Influenza Vaccines in Children: An Institute for Vaccine Safety White Paper. Vaccine 2015, 33, F1–F67. [Google Scholar] [CrossRef]
- Jiang, L.; Driedonks, T.A.P.; Jong, W.S.P.; Dhakal, S.; Bart Van Den Berg Van Saparoea, H.; Sitaras, I.; Zhou, R.; Caputo, C.; Littlefield, K.; Lowman, M.; et al. A Bacterial Extracellular Vesicle-based Intranasal Vaccine against SARS-CoV-2 Protects against Disease and Elicits Neutralizing Antibodies to Wild-type and Delta Variants. J. Extracell. Vesicle 2022, 11, e12192. [Google Scholar] [CrossRef]
- Young Chung, J.; Thone, M.N.; Davies, J.E.; Gach, J.S.; Huw Davies, D.; Forthal, D.N.; Kwon, Y.J. Vaccination against SARS-CoV-2 Using Extracellular Blebs Derived from Spike Protein-Expressing Dendritic Cells. Cell. Immunol. 2023, 386, 104691. [Google Scholar] [CrossRef]
- Wang, Z.; Popowski, K.D.; Zhu, D.; de Juan Abad, B.L.; Wang, X.; Liu, M.; Lutz, H.; De Naeyer, N.; DeMarco, C.T.; Denny, T.N.; et al. Exosomes Decorated with a Recombinant SARS-CoV-2 Receptor-Binding Domain as an Inhalable COVID-19 Vaccine. Nat. Biomed. Eng. 2022, 2022, 6. [Google Scholar] [CrossRef]
- Popowski, K.D.; López de Juan Abad, B.; George, A.; Silkstone, D.; Belcher, E.; Chung, J.; Ghodsi, A.; Lutz, H.; Davenport, J.; Flanagan, M.; et al. Inhalable Exosomes Outperform Liposomes as MRNA and Protein Drug Carriers to the Lung. Extracell. Vesicle 2022, 1, 100002. [Google Scholar] [CrossRef]
- Popowski, K.D.; Moatti, A.; Scull, G.; Silkstone, D.; Lutz, H.; López de Juan Abad, B.; George, A.; Belcher, E.; Zhu, D.; Mei, X.; et al. Inhalable Dry Powder MRNA Vaccines Based on Extracellular Vesicles. Matter 2022, 5, 2960–2974. [Google Scholar] [CrossRef]
- Pomatto, M.A.C.; Gai, C.; Negro, F.; Massari, L.; Deregibus, M.C.; De Rosa, F.G.; Camussi, G. Oral Delivery of MRNA Vaccine by Plant-Derived Extracellular Vesicle Carriers. Cells 2023, 12, 1826. [Google Scholar] [CrossRef]
- Orefice, N.S. Development of New Strategies Using Extracellular Vesicles Loaded with Exogenous Nucleic Acid. Pharmaceutics 2020, 12, 705. [Google Scholar] [CrossRef]
- Pomatto, M.A.C.; Gai, C.; Negro, F.; Massari, L.; Deregibus, M.C.; Grange, C.; De Rosa, F.G.; Camussi, G. Plant-Derived Extracellular Vesicles as a Delivery Platform for RNA-Based Vaccine: Feasibility Study of an Oral and Intranasal SARS-CoV-2 Vaccine. Pharmaceutics 2023, 15, 974. [Google Scholar] [CrossRef]
- Wallace, M.; Rosenblum, H.G.; Moulia, D.L.; Broder, K.R.; Shimabukuro, T.T.; Taylor, C.A.; Havers, F.P.; Meyer, S.A.; Dooling, K.; Oliver, S.E.; et al. A Summary of the Advisory Committee for Immunization Practices (ACIP) Use of a Benefit-Risk Assessment Framework during the First Year of COVID-19 Vaccine Administration in the United States. Vaccine 2023, 41, 6456–6467. [Google Scholar] [CrossRef]
- Bitounis, D.; Jacquinet, E.; Rogers, M.A.; Amiji, M.M. Strategies to Reduce the Risks of MRNA Drug and Vaccine Toxicity. Nat. Rev. Drug Discov. 2024, 23, 281–300. [Google Scholar] [CrossRef]
- Schober, G.B.; Story, S.; Arya, D.P.A. Careful Look at Lipid Nanoparticle Characterization: Analysis of Benchmark Formulations for Encapsulation of RNA Cargo Size Gradient. Sci. Rep. 2024, 14, 2403. [Google Scholar] [CrossRef]
- Schramm, C.A.; Moon, D.; Peyton, L.; Lima, N.S.; Wake, C.; Boswell, K.L.; Henry, A.R.; Laboune, F.; Ambrozak, D.; Darko, S.W.; et al. Interaction Dynamics between Innate and Adaptive Immune Cells Responding to SARS-CoV-2 Vaccination in Non-Human Primates. Nat. Commun. 2023, 14, 7961. [Google Scholar] [CrossRef]
- Corbett, K.S.; Edwards, D.K.; Leist, S.R.; Abiona, O.M.; Boyoglu-Barnum, S.; Gillespie, R.A.; Himansu, S.; Schäfer, A.; Ziwawo, C.T.; DiPiazza, A.T.; et al. SARS-CoV-2 MRNA Vaccine Design Enabled by Prototype Pathogen Preparedness. Nature 2020, 586, 567–571. [Google Scholar] [CrossRef]
- Kasprzyk, R.; Jemielity, J. Enzymatic Assays to Explore Viral MRNA Capping Machinery. ChemBioChem 2021, 22, 3236–3253. [Google Scholar] [CrossRef]
- Grudzien-Nogalska, E.; Jemielity, J.; Kowalska, J.; Darzynkiewicz, E.; Rhoads, R.E.P. Cap Analogs Stabilize MRNA and Increase Translational Efficiency in Mammalian Cells. RNA 2007, 13, 1745–1755. [Google Scholar] [CrossRef]
- Shanmugasundaram, M.; Senthilvelan, A.; Kore, A.R. Recent Advances in Modified Cap Analogs: Synthesis, Biochemical Properties, and mRNA Based Vaccines. Chem. Rec. 2022, 22, e202200005. [Google Scholar] [CrossRef]
- Bradrick, S.S.; Dobrikova, E.Y.; Kaiser, C.; Shveygert, M.; Gromeier, M. Poly(A)-Binding Protein Is Differentially Required for Translation Mediated by Viral Internal Ribosome Entry Sites. RNA 2007, 13, 1582–1593. [Google Scholar] [CrossRef]
- Borodulina, O.R.; Golubchikova, J.S.; Ustyantsev, I.G.; Kramerov, D.A.P. of R.N.A. Transcribed from Mammalian SINEs by RNA Polymerase III: Complex Requirements for Nucleotide Sequences. Biochim. Biophys. Acta (BBA)—Gene Regul. Mech. 1859, 2016, 355–365. [Google Scholar] [CrossRef]
- Edmonds, M.; Vaughan, M.H.; Nakazato, H.P.A. Sequences in the Heterogeneous Nuclear RNA and Rapidly-Labeled Polyribosomal RNA of HeLa Cells: Possible Evidence for a Precursor Relationship. Proc. Natl. Acad. Sci. USA 1971, 68, 1336–1340. [Google Scholar] [CrossRef]
- Linares-Fernández, S.; Lacroix, C.; Exposito, J.-Y.; Verrier, B. Tailoring MRNA Vaccine to Balance Innate/Adaptive Immune Response. Trends Mol. Med. 2020, 26, 311–323. [Google Scholar] [CrossRef]
- Trepotec, Z.; Geiger, J.; Plank, C.; Aneja, M.K.; Rudolph, C. Segmented Poly(A) Tails Significantly Reduce Recombination of Plasmid DNA without Affecting MRNA Translation Efficiency or Half-Life. RNA 2019, 25, 507–518. [Google Scholar] [CrossRef]
- Stadler, C.R.; Bähr-Mahmud, H.; Celik, L.; Hebich, B.; Roth, A.S.; Roth, R.P.; Karikó, K.; Türeci, Ö.; Sahin, U. Elimination of Large Tumors in Mice by MRNA-Encoded Bispecific Antibodies. Nat. Med. 2017, 23, 815–817. [Google Scholar] [CrossRef]
- Li, M.; Fang, E.; Wang, Y.; Shi, L.; Li, J.; Peng, Q.; Li, X.; Zhao, D.; Liu, X.; Liu, X.; et al. An MRNA Vaccine against Rabies Provides Strong and Durable Protection in Mice. Front. Immunol. 2023, 14, 1288879. [Google Scholar] [CrossRef]
- Brule, C.E.; Grayhack, E.J. Synonymous Codons: Choose Wisely for Expression. Trends Genet. 2017, 33, 283. [Google Scholar] [CrossRef]
- Kudla, G.; Lipinski, L.; Caffin, F.; Helwak, A.; Zylicz, M. High Guanine and Cytosine Content Increases MRNA Levels in Mammalian Cells. PLoS Biol. 2006, 4, e180. [Google Scholar] [CrossRef]
- Hernandez-Alias, X.; Benisty, H.; Schaefer, M.H.; Serrano, L. Translational Adaptation of Human Viruses to the Tissues They Infect. Cell Rep. 2021, 34, 108872. [Google Scholar] [CrossRef]
- Cannarozzi, G.; Schraudolph, N.N.; Faty, M.; von Rohr, P.; Friberg, M.T.; Roth, A.C.; Gonnet, P.; Gonnet, G.; Barral, Y.A. Role for Codon Order in Translation Dynamics. Cell 2010, 141, 355–367. [Google Scholar] [CrossRef]
- Alagar Boopathy, L.R.; Jacob-Tomas, S.; Alecki, C.; Vera, M. Mechanisms Tailoring the Expression of Heat Shock Proteins to Proteostasis Challenges. J. Biol. Chem. 2022, 298, 101796. [Google Scholar] [CrossRef]
- Rodnina, M.V.; Korniy, N.; Klimova, M.; Karki, P.; Peng, B.-Z.; Senyushkina, T.; Belardinelli, R.; Maracci, C.; Wohlgemuth, I.; Samatova, E.; et al. Translational Recoding: Canonical Translation Mechanisms Reinterpreted. Nucleic Acids Res. 2020, 48, 1056–1067. [Google Scholar] [CrossRef]
- Tan, S.; Chen, Y.; Gao, Y.; He, J.; Guo, X.; Zhang, S.; Zhang, J.; Zeng, F. β-Galactosidase Gene Codon Optimization Results in Post-Transcriptional Enhancement of Expression. Gene 2020, 748, 144676. [Google Scholar] [CrossRef]
- Mueller, S.; Stauft, C.B.; Kalkeri, R.; Koidei, F.; Kushnir, A.; Tasker, S.; Coleman, J.R. A Codon-Pair Deoptimized Live-Attenuated Vaccine against Respiratory Syncytial Virus Is Immunogenic and Efficacious in Non-Human Primates. Vaccine 2020, 38, 2943–2948. [Google Scholar] [CrossRef]
- Correia, S.; Bridges, R.; Wegner, F.; Venturini, C.; Palser, A.; Middeldorp, J.M.; Cohen, J.I.; Lorenzetti, M.A.; Bassano, I.; White, R.E.; et al. Sequence Variation of Epstein-Barr Virus: Viral Types, Geography, Codon Usage, and Diseases. J. Virol. 2018, 92, e01132-18. [Google Scholar] [CrossRef]
- Jain, R.; Jain, A.; Mauro, E.; LeShane, K.; Densmore, D. ICOR: Improving Codon Optimization with Recurrent Neural Networks. BMC Bioinform. 2023, 24, 132. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Hu, Q. Advances in SaRNA Vaccine Research against Emerging/Re-Emerging Viruses. Vaccines 2023, 11, 1142. [Google Scholar] [CrossRef]
- Wagner, A.; Mutschler, H. Design Principles and Applications of Synthetic Self-Replicating RNAs. Wiley Interdiscip. Rev. RNA 2023, 14, e1803. [Google Scholar] [CrossRef]
- Pateev, I.; Seregina, K.; Ivanov, R.; Reshetnikov, V. Biodistribution of RNA Vaccines and of Their Products: Evidence from Human and Animal Studies. Biomedicines 2023, 12, 59. [Google Scholar] [CrossRef]
- Domingo, E.; Soria, M.E.; Gallego, I.; de Ávila, A.I.; García-Crespo, C.; Martínez-González, B.; Gómez, J.; Briones, C.; Gregori, J.; Quer, J.; et al. A New Implication of Quasispecies Dynamics: Broad Virus Diversification in Absence of External Perturbations. Infect. Genet. Evol. 2020, 82, 104278. [Google Scholar] [CrossRef] [PubMed]
- Volff, J.-N.; Brosius, J. Modern Genomes with Retro-Look: Retrotransposed Elements, Retroposition and the Origin of New Genes. Gene Protein Evol. 2007, 3, 175–190. [Google Scholar]
- Loan Young, T.; Chang Wang, K.; James Varley, A.; Li, B. Clinical Delivery of Circular RNA: Lessons Learned from RNA Drug Development. Adv. Drug Deliv. Rev. 2023, 197, 114826. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.; Yamada, T.; Nakatani, K. Utility of Oligonucleotide in Upregulating Circular RNA Production in a Cellular Model. Sci. Rep. 2024, 14, 8096. [Google Scholar] [CrossRef] [PubMed]
- Bryll, A.R.; Peterson, C.L. The Circular Logic of mRNA Homeostasis. Transcription 2023, 14, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Niu, D.; Wu, Y.; Lian, J. Circular RNA Vaccine in Disease Prevention and Treatment. Signal Transduct. Target. Ther. 2023, 8, 341. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, C. Gene Product Diversity: Adaptive or Not? Trends Genet. 2022, 38, 1112–1122. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.Y.; Kook, T.L.; Paulus, S.M.; Park, J.W. Translation of Circular RNAs: Functions of Translated Products andRelated Bioinformatics Approaches. Curr. Bioinform. 2024, 19, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Wang, Z.; Wang, L.; Wu, L.; Zhang, C.; Zhou, M.; Fu, Z.F.; Zhao, L. Circular RNA Vaccines with Long-Term Lymph Node-Targeting Delivery Stability after Lyophilization Induce Potent and Persistent Immune Responses. mBio 2024, 15, e01775-23. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Chen, S.; He, Q.; Bai, Y.; Liu, J.; Wang, Z.; Liang, Z.; Chen, L.; Mao, Q.; et al. Progress and Challenges in the Clinical Evaluation of Immune Responses to Respiratory Mucosal Vaccines. Expert Rev. Vaccines 2024, 23, 362–370. [Google Scholar] [CrossRef]
- Agbayani, G.; Akache, B.; Renner, T.M.; Tran, A.; Stuible, M.; Dudani, R.; Harrison, B.A.; Duque, D.; Bavananthasivam, J.; Deschatelets, L.; et al. Intranasal Administration of Unadjuvanted SARS-CoV-2 Spike Antigen Boosts Antigen-specific Immune Responses Induced by Parenteral Protein Subunit Vaccine Prime in Mice and Hamsters. Eur. J. Immunol. 2024, 54, 2350620. [Google Scholar] [CrossRef] [PubMed]
- Lusso, P. The Quest for an HIV-1 Vaccine: Will mRNA Deliver Us from Evil? Expert Rev. Vaccines 2023, 22, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda-Pachón, I.T.; Dunne, E.M.; Hanquet, G.; Baay, M.; Menon, S.; Jodar, L.; Gessner, B.D.; Theilacker, C. Effect of Pneumococcal Conjugate Vaccines on Viral Respiratory Infections: A Systematic Literature Review. J. Infect. Dis. 2024, jiae125, ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Benedicto-Matambo, P.; Bines, J.E.; Malamba-Banda, C.; Shawa, I.T.; Barnes, K.; Kamng’ona, A.W.; Hungerford, D.; Jambo, K.C.; Iturriza-Gomara, M.; Cunliffe, N.A.; et al. Leveraging Beneficial Off-Target Effects of Live-Attenuated Rotavirus Vaccines. Vaccines 2022, 10, 418. [Google Scholar] [CrossRef]
- Ponne, S.; Kumar, R.; Vanmathi, S.M.; Brilhante, R.S.N.; Kumar, C.R. Reverse Engineering Protection: A Comprehensive Survey of Reverse Vaccinology-Based Vaccines Targeting Viral Pathogens. Vaccine 2024, 42, 2503–2518. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toniolo, A.; Maccari, G.; Camussi, G. mRNA Technology and Mucosal Immunization. Vaccines 2024, 12, 670. https://doi.org/10.3390/vaccines12060670
Toniolo A, Maccari G, Camussi G. mRNA Technology and Mucosal Immunization. Vaccines. 2024; 12(6):670. https://doi.org/10.3390/vaccines12060670
Chicago/Turabian StyleToniolo, Antonio, Giuseppe Maccari, and Giovanni Camussi. 2024. "mRNA Technology and Mucosal Immunization" Vaccines 12, no. 6: 670. https://doi.org/10.3390/vaccines12060670
APA StyleToniolo, A., Maccari, G., & Camussi, G. (2024). mRNA Technology and Mucosal Immunization. Vaccines, 12(6), 670. https://doi.org/10.3390/vaccines12060670