Mycobacterium tuberculosis–Human Immunodeficiency Virus Infection and the Role of T Cells in Protection
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. M. tb’s Entry and Initial Response
3.2. HIV’s Entry and Systemic Immunosuppression
3.3. The Role of CD8+, Treg, and Th17 Cells in M. tb’s Immune Defense
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Tuberculosis. 17 May 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/tuberculosis (accessed on 27 June 2024).
- Teklu, A.M.; Nega, A.; Mamuye, A.T.; Sitotaw, Y.; Kassa, D.; Mesfin, G.; Belayihun, B.; Medhin, G.; Yirdaw, K. Factors associated with mortality of TB/HIV co-infected patients in Ethiopia. Ethiop. J. Health Sci. 2017, 27, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Reported Tuberculosis in the United States, 2022: Table 1. 2022. Available online: https://www.cdc.gov/tb/statistics/reports/2022/table1.htm (accessed on 27 June 2024).
- The American Lung Association. Tuberculosis; The American Lung Association: Chicago, IL, USA, 2022. [Google Scholar]
- Stamm, C.E.; Collins, A.C.; Shiloh, M.U. Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus. Immunol. Rev. 2015, 264, 204–219. [Google Scholar] [CrossRef] [PubMed]
- Heemskerk, D.; Caws, M.; Marais, B.; Farrar, J. Chapter 2, Pathogenesis. In Tuberculosis in Adults and Children; Springer: London, UK, 2015. Available online: https://www.ncbi.nlm.nih.gov/books/NBK344406/ (accessed on 20 May 2024).
- Lyadova, I.V.; Panteleev, A.V. Th1 and Th17 Cells in Tuberculosis: Protection, Pathology, and Biomarkers. Mediat. Inflamm. 2015, 2015, 854507. [Google Scholar] [CrossRef] [PubMed]
- Romagnani, S. Th1/Th2 cells. Inflamm. Bowel Dis. 1999, 5, 285–294. [Google Scholar] [CrossRef]
- Phares, T.W.; Stohlman, S.A.; Hwang, M.; Min, B.; Hinton, D.R.; Bergmann, C.C. CD4 T cells promote CD8 T cell immunity at the priming and effector site during viral encephalitis. J. Virol. 2012, 86, 2416–2427. [Google Scholar] [CrossRef]
- Laidlaw, B.J.; Craft, J.E.; Kaech, S.M. The multifaceted role of CD4+ T cells in CD8+ T cell memory. Nat. Rev. Immunol. 2016, 16, 102–111. [Google Scholar] [CrossRef]
- Bruchfeld, J.; Correia-Neves, M.; Källenius, G. Tuberculosis and HIV Coinfection. Cold Spring Harb. Perspect. Med. 2015, 5, a017871. [Google Scholar] [CrossRef]
- Jo, E.K.; Yang, C.S.; Choi, C.H.; Harding, C.V. Intracellular signaling cascades regulating innate immune responses to Mycobacteria: Branching out from Toll-like receptors. Cell. Microbiol. 2007, 9, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Nisa, A.; Kipper, F.C.; Panigrahy, D.; Tiwari, S.; Kupz, A.; Subbian, S. Different modalities of host cell death and their impact on Mycobacterium tuberculosis infection. Am. J. Physiol. Cell Physiol. 2022, 323, C1444–C1474. [Google Scholar] [CrossRef]
- Pai, M.; Behr, M. Latent Mycobacterium tuberculosis Infection and Interferon-Gamma Release Assays. Microbiol. Spectr. 2016, 4, 10–1128. [Google Scholar] [CrossRef]
- Mohan, V.P.; Scanga, C.A.; Yu, K.; Scott, H.M.; Tanaka, K.E.; Tsang, E.; Tsai, M.C.; Flynn, J.L.; Chan, J. Effects of Tumor Necrosis Factor Alpha on Host Immune Response in Chronic Persistent Tuberculosis: Possible Role for Limiting Pathology. Infect. Immun. 2001, 69, 1847–1855. [Google Scholar] [CrossRef] [PubMed]
- Keane, J.; Gershon, S.; Wise, R.P.; Mirabile-Levens, E.; Kasznica, J.; Schwieterman, W.D.; Siegel, J.N.; Braun, M.M. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N. Engl. J. Med. 2001, 345, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Mohareer, K.; Asalla, S.; Banerjee, S. Cell death at the cross roads of host-pathogen interaction in Mycobacterium tuberculosis infection. Tuberculosis 2018, 113, 99–121. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis. Nat. Rev. Immunol. 2012, 12, 352–366. [Google Scholar] [CrossRef] [PubMed]
- Diedrich, C.R.; O’Hern, J.; Wilkinson, R.J. HIV-1 and the Mycobacterium tuberculosis granuloma: A systematic review and meta-analysis. Tuberculosis 2016, 98, 62–76. [Google Scholar] [CrossRef] [PubMed]
- Adapted from “The Drug Discovery Process”, by BioRender.com. 2024. Available online: https://www.biorender.com/template/the-drug-discovery-process (accessed on 27 June 2024).
- Peddireddy, V.; Doddam, S.N.; Ahmed, N. Mycobacterial Dormancy Systems and Host Responses in Tuberculosis. Front. Immunol. 2017, 8, 84. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wilen, C.B.; Tilton, J.C.; Doms, R.W. HIV: Cell binding and entry. Cold Spring Harb. Perspect. Med. 2012, 2, a006866. [Google Scholar] [CrossRef] [PubMed]
- Vidya Vijayan, K.K.; Karthigeyan, K.P.; Tripathi, S.P.; Hanna, L.E. Pathophysiology of CD4+ T-Cell Depletion in HIV-1 and HIV-2 Infections. Front. Immunol. 2017, 8, 580. [Google Scholar] [CrossRef] [PubMed]
- Yates, A.; Stark, J.; Klein, N.; Antia, R.; Callard, R. Understanding the slow depletion of memory CD4+ T cells in HIV infection. PLoS Med. 2007, 4, e177. [Google Scholar] [CrossRef]
- Mazzuti, L.; Turriziani, O.; Mezzaroma, I. The Many Faces of Immune Activation in HIV-1 Infection: A Multifactorial Interconnection. Biomedicines 2023, 11, 159. [Google Scholar] [CrossRef]
- Badri, M.; Ehrlich, R.; Wood, R.; Pulerwitz, T.; Maartens, G. Association between tuberculosis and HIV disease progression in a high tuberculosis prevalence area. Int. J. Tuberc. Lung Dis. 2001, 5, 225–232. [Google Scholar] [PubMed]
- Costiniuk, C.T.; Jenabian, M.A. The lungs as anatomical reservoirs of HIV infection. Rev. Med. Virol. 2014, 24, 35–54. [Google Scholar] [CrossRef] [PubMed]
- Goletti, D.; Weissman, D.; Jackson, R.W.; Graham, N.M.; Vlahov, D.; Klein, R.S.; Munsiff, S.S.; Ortona, L.; Cauda, R.; Fauci, A.S. Effect of Mycobacterium tuberculosis on HIV replication. Role of immune activation. J. Immunol. 1996, 157, 1271–1278. [Google Scholar]
- Toossi, Z.; Johnson, J.L.; Kanost, R.A.; Wu, M.; Luzze, H.; Peters, P.; Okwera, A.; Joloba, M.; Mugyenyi, P.; Mugerwa, R.D.; et al. Increased replication of HIV-1 at sites of Mycobacterium tuberculosis infection: Potential mechanisms of viral activation. JAIDS J. Acquir. Immune Defic. Syndr. 2001, 28, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Shattock, R.J.; Friedland, J.S.; Griffin, G.E. Modulation of HIV transcription in and release from human monocytic cells following phagocytosis of Mycobacterium tuberculosis. Res. Virol. 1993, 144, 7–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Nakata, K.; Weiden, M.; Rom, W.N. Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication by transcriptional activation at the long terminal repeat. J. Clin. Investig. 1995, 95, 2324–2331. [Google Scholar]
- Matthews, K.; Ntsekhe, M.; Syed, F.; Scriba, T.; Russell, J.; Tibazarwa, K.; Deffur, A.; Hanekom, W.; Mayosi, B.M.; Wilkinson, R.J.; et al. HIV-1 infection alters CD4+ memory T-cell phenotype at the site of disease in extrapulmonary tuberculosis. Eur. J. Immunol. 2012, 42, 147–157. [Google Scholar] [CrossRef]
- Ngai, P.; McCormick, S.; Small, C.; Zhang, X.; Zganiacz, A.; Aoki, N.; Xing, Z. Gamma interferon responses of CD4 and CD8 T-cell subsets are quantitatively different and independent of each other during pulmonary Mycobacterium bovis BCG infection. Infect. Immun. 2007, 75, 2244–2252. [Google Scholar] [CrossRef]
- Van Pinxteren, L.H.; Cassidy, J.; Smedegaard, B.; Agger, E.; Andersen, P. Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur. J. Immunol. 2000, 30, 3689–3698. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, G.; Hu, X.; Xiao, J. High resolution radiographic and fine immunologic definition of TB disease progression in the rhesus macaque. Microbes Infect. 2006, 8, 2587–2598. [Google Scholar] [CrossRef]
- Day, C.L.; Abrahams, D.A.; Lerumo, L.; van Rensburg, E.J.; Stone, L.; O’rie, T.; Pienaar, B.; de Kock, M.; Kaplan, G.; Mahomed, H.; et al. Hanekom; Functional Capacity of Mycobacterium tuberculosis-Specific T Cell Responses in Humans Is Associated with Mycobacterial Load. J. Immunol. 2011, 187, 2222–2232. [Google Scholar] [CrossRef] [PubMed]
- Billeskov, R.; Vingsbo-Lundberg, C.; Andersen, P.; Dietrich, J. Induction of CD8 T Cells against a Novel Epitope in TB10.4: Correlation with Mycobacterial Virulence and the Presence of a Functional Region of Difference-1. J. Immunol. 2007, 179, 3973–3981. [Google Scholar] [CrossRef] [PubMed]
- Kamath, A.; Woodworth, J.S.M.; Behar, S.M. Antigen-Specific CD8+ T Cells and the Development of Central Memory during Mycobacterium tuberculosis Infection. J. Immunol. 2006, 177, 6361–6369. [Google Scholar] [CrossRef]
- Day, C.L.; Mkhwanazi, N.; Reddy, S.; Mncube, Z.; van der Stok, M.; Klenerman, P.; Walker, B.D. Detection of Polyfunctional Mycobacterium tuberculosis–Specific T Cells and Association with Viral Load in HIV-1–Infected Persons. J. Infect. Dis. 2008, 197, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Ongaya, A.; Huante, M.B.; Mwangi, P.; Keiser, P.H.; Amukoye, E.; Endsley, J.J. Mycobacterium tuberculosis-specific CD8+T cell recall in convalescing TB subjects with HIV co-infection. Tuberculosis 2013, 93, S60–S65. [Google Scholar] [CrossRef]
- Adapted from “Intrinsic and Acquired Drug Resistance”, by BioRender.com. 2024. Available online: https://www.biorender.com/template/intrinsic-and-acquired-drug-resistance (accessed on 27 June 2024).
- Cardona, P.; Cardona, P. Regulatory T Cells in Mycobacterium tuberculosis Infection. Front. Immunol. 2019, 10, 2139. [Google Scholar] [CrossRef]
- Smith, L.K.; Boukhaled, G.M.; Condotta, S.A.; Mazouz, S.; Guthmiller, J.J.; Vijay, R.; Butler, N.S.; Bruneau, J.; Shoukry, N.H.; Krawczyk, C.M.; et al. Interleukin-10 Directly Inhibits CD8+ T Cell Function by Enhancing N-Glycan Branching to Decrease Antigen Sensitivity. Immunity 2018, 48, 299–312. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, P.L.; Flynn, J.L. CD8 T cells and Mycobacterium tuberculosis infection. Semin. Immunopathol. 2015, 37, 239–249. [Google Scholar] [CrossRef]
- Ranjbar, S.; Ly, N.; Thim, S.; Reynes, J.-M.; Goldfeld, A.E. Mycobacterium tuberculosis Recall Antigens Suppress HIV-1 Replication in Anergic Donor Cells via CD8+ T Cell Expansion and Increased IL-10 Levels. J. Immunol. 2004, 172, 1953–1959. [Google Scholar] [CrossRef]
- Fatima, S.; Kumari, A.; Das, G.; Dwivedi, V.P. Tuberculosis vaccine: A journey from BCG to present. Life Sci. 2020, 252, 117594. [Google Scholar] [CrossRef]
- World Health Organization. Global Advisory Committee on Vaccine Safety: BCG Vaccines. Available online: https://www.who.int/groups/global-advisory-committee-on-vaccine-safety/topics/bcg-vaccines#:~ =WHO%20currently%20recommends%20administering%20a,children%20with%20symptomatic%20HIV%20infection (accessed on 27 June 2024).
- Kaufmann SH, E.; Winau, F. Next-Generation Vaccines Based on Bacille Calmette–Guérin. Front. Immunol. 2020, 11, 898. [Google Scholar] [CrossRef]
- Loxton, A.G.; Knaul, J.K.; Grode, L.; Gutschmidt, A.; Meller, C.; Eisele, B.; Johnstone, H.; van der Spuy, G.; Maertzdorf, J.; Kaufmann, S.H.E.; et al. Safety and Immunogenicity of the Recombinant Mycobacterium bovis BCG Vaccine VPM1002 in HIV-Unexposed Newborn Infants in South Africa. Clin. Vaccine Immunol. 2017, 24, e00439-e16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grode, L.; Ganoza, C.A.; Brohm, C.; Weiner, J.; Eisele, B.; Kaufmann, S.H.E. Safety and Immunogenicity of the Recombinant BCG Vaccine VPM1002 in a Phase 1 Open-Label Randomized Clinical Trial. J. Infect. Dis. 2013, 211, 1831–1841. [Google Scholar] [CrossRef] [PubMed]
- Grode, L.; Seiler, P.; Baumann, S.; Hess, J.; Brinkmann, V.; Eddine, A.N.; Mann, P.; Goosmann, C.; Bandermann, S.; Smith, D.; et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guérin mutants that secrete listeriolysin. Front. Microbiol. 2021, 12, 757858. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, Y.; Wang, Y.; Tong, L.; Wang, F.; Song, S.; Xu, L.; Liu, B.; Yan, H.; Sun, Z. Current state and future directions of intranasal delivery route for central nervous system disorders: A scientometric and visualization analysis. Front. Pharmacol. 2021, 12, 717192. [Google Scholar] [CrossRef]
- Nemes, E.; Scriba, T.J.; Hatherill, M. Prospects for a vaccine to prevent HIV-related tuberculosis. Curr. Opin. HIV AIDS. 2018, 13, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Contagion Live. Vaccine Targeting Tuberculosis (TB) Prevention Launches Phase 3 Trial. Available online: https://www.contagionlive.com/view/vaccine-targeting-tuberculosis-tb-prevention-launches-phase-3-trail (accessed on 19 March 2024).
- Center for Infectious Disease Research and Policy (CIDRAP). Phase 3 Trial for TB Vaccine Candidate Launches in South Africa. Available online: https://www.cidrap.umn.edu/tuberculosis/phase-3-trial-tb-vaccine-candidate-launches-south-africa (accessed on 19 March 2024).
- Tameris, M.D.; McShane, H.; Hussey, G.D. The Systematic Review and Meta-Analysis on the Immunogenicity and Safety of the Tuberculosis Subunit Vaccines M72/AS01E and MVA85A. Front. Immunol. 2020, 11, 1806. [Google Scholar] [CrossRef]
- Barouch, D.H.; Tomaka, F.L.; Wegmann, F.; Stieh, D.J.; Alter, G.; Robb, M.L.; Michael, N.L.; Peter, L.; Nkolola, J.P.; Borducchi, E.N.; et al. Evaluation of a mosaic HIV-1 vaccine in a multicentre, randomised, double-blind, placebo-controlled, phase 1/2a clinical trial (APPROACH) and in rhesus monkeys (NHP 13–19). Lancet 2018, 392, 232–243. [Google Scholar] [CrossRef]
- Sanders, R.W.; Derking, R.; Cupo, A.; Julien, J.-P.; Yasmeen, A.; de Val, N.; Kim, H.J.; Blattner, C.; de la Peña, A.T.; Korzun, J.; et al. A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but Not Non-Neutralizing Antibodies. PLoS Pathog. 2013, 9, e1003618. [Google Scholar] [CrossRef]
- Cohen, K.W.; Frahm, N. Current views on the potential for development of a HIV vaccine. Expert. Opin. Biol. Ther. 2017, 17, 295–303. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lewinsohn, D.A.; Lewinsohn, D.M.; Scriba, T.J. Polyfunctional CD4+ T Cells As Targets for Tuberculosis Vaccination. Front. Immunol. 2017, 8, 1262. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Behar, S.M. Antigen-specific CD8+ T cells and protective immunity to tuberculosis. Adv. Exp. Med. Biol. 2013, 783, 141–163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nyendak, M.; Swarbrick, G.M.; Duncan, A.; Cansler, M.; Huff, E.W.; Hokey, D.; Evans, T.; Barker, L.; Blatner, G.; Sadoff, J.; et al. Adenovirally-Induced Polyfunctional T Cells Do Not Necessarily Recognize the Infected Target: Lessons from a Phase I Trial of the AERAS-402 Vaccine. Sci. Rep. 2016, 6, 36355. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseinian, K.; Gerami, A.; Bral, M.; Venketaraman, V. Mycobacterium tuberculosis–Human Immunodeficiency Virus Infection and the Role of T Cells in Protection. Vaccines 2024, 12, 730. https://doi.org/10.3390/vaccines12070730
Hosseinian K, Gerami A, Bral M, Venketaraman V. Mycobacterium tuberculosis–Human Immunodeficiency Virus Infection and the Role of T Cells in Protection. Vaccines. 2024; 12(7):730. https://doi.org/10.3390/vaccines12070730
Chicago/Turabian StyleHosseinian, Kiana, Amir Gerami, Melody Bral, and Vishwanath Venketaraman. 2024. "Mycobacterium tuberculosis–Human Immunodeficiency Virus Infection and the Role of T Cells in Protection" Vaccines 12, no. 7: 730. https://doi.org/10.3390/vaccines12070730
APA StyleHosseinian, K., Gerami, A., Bral, M., & Venketaraman, V. (2024). Mycobacterium tuberculosis–Human Immunodeficiency Virus Infection and the Role of T Cells in Protection. Vaccines, 12(7), 730. https://doi.org/10.3390/vaccines12070730