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Abstract: Tuberculosis (TB), primarily caused by Mycobacterium tuberculosis (M. tb), remains a
widespread fatal health issue that becomes significantly detrimental when coupled with HIV. This
study explores the host’s innate and adaptive immune system response to TB in HIV immunocompro-
mised patients, highlighting the significant role of CD8+ T cells. While the crucial role of macrophages
and cytokines, like TNF-α and IFN-γ, in managing the host’s immune response to M. tb is examined,
the emphasis is on the changes that occur as a result of HIV coinfection. With the progression of HIV
infection, the primary source of IFN-γ changes from CD4+ to CD8+ T cells, especially when latent TB
advances to an active state. This study sheds light on the necessity of developing new preventative
measures such as vaccines and new treatment approaches to TB, especially for immunocompromised
patients, who are at a higher risk of life-threatening complications due to TB-HIV coinfection.

Keywords: tuberculosis; Mycobacterium tuberculosis; HIV; TB; TB-HIV coinfection; immune response;
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1. Introduction

Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (M. tb), remains
a significant global issue and is responsible for the death of millions of people annually.
In 2022, the World Health Organization (WHO) reported that 1.3 million individuals died
while infected with TB, of which 167,000 were coinfected with the human immunodefi-
ciency virus (HIV). As per the WHO, if left untreated, approximately 60% of TB-infected
individuals who are HIV-negative and nearly all of those who are HIV-positive will suc-
cumb to the disease. It has been recently noted that approximately one-third of global
acquired immunodeficiency syndrome (AIDS)-related fatalities are caused by M. tb, making
it the primary cause of death among those living with HIV. In 2022, there were an estimated
167,000 deaths due to TB-HIV coinfection, and about 13% of all new TB cases are also HIV-
coinfected [1]. According to a nationwide retrospective cohort study, 9% of HIV patients
receiving treatment also had TB [2]. In 2014, the WHO outlined several strategies in their
End TB Strategy, which aims to reduce the global mortality and incidence of TB [1]. In
America, both its incidence and mortality rates have gradually risen in recent decades [3].
While approximately 1.8 billion people worldwide are infected with TB, most undergo
complete resolution of the disease process, and only a small subset progresses to active TB
infection at some point in their lives [4]. Currently, our knowledge about TB’s pathogenesis
and infection process is developing, but there are still unclear avenues that need to be
discovered. In fact, the existence of both active and latent TB infection has been globally
accepted by experts. Interestingly, the interplay between the host defense system and M. tb
has been of great interest to scientists in recent years.

M. tb is known as a facultative intracellular pathogen that resides within macrophages
after being introduced into the host body. During the early stages of TB infection, members
of innate immunity, most notably the alveolar macrophages and dendritic cells, recognize
M. tb’s surface markers, known as pathogen-associated molecular patterns (PAMPs), via
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their own membrane-associated pattern recognition receptors, which include toll-like
receptors (TLRs). PAMPs’ chemical compositions range from carbohydrates to lipids,
lipoproteins, nucleotides, and proteins. This diversity necessitates a correspondingly
diverse set of host receptors that can be found both intracellularly and on the cell surface.
Upon interaction between PAMPs and TLRs, intracellular signaling pathways are activated,
inducing the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF-
α), interleukin-1 (IL-1), IL-12, etc. In fact, the interaction between PAMPs and their receptors
is a highly complex process. Multiple interactions occur simultaneously, in which various
PAMPs and their corresponding receptors are engaged at the same time [5]. In contrast to
other infectious agents that are engulfed by host macrophages during the primary infection,
M. tb averts the development, differentiation, and fusion of phagosomes into lysosomes.
Remarkably, the phagosome that houses the bacteria resembles an early endosome and does
not go through acidification or destruction intracellularly. Thus, the infected macrophage
can potentially undergo cell necrosis, apoptosis, or, in some instances, survival. It is only
in apoptosis that the bacteria are effectively destroyed intracellularly due to an intact cell
membrane. Otherwise, the living bacteria are released from the macrophages and have the
potential to infect neighboring cells [6]. Once the innate immune system of the host fails to
clear the initial phase of TB infection or M. tb persists, the adaptive immune system becomes
activated by specific T cells within 2–3 weeks. Dendritic cells and natural killer cells play
a crucial role as intermediaries between the innate and adaptive immune systems. These
cells, along with macrophages, present bacterial antigens to naive T cells upon translocating
to regional lymph nodes. Following this antigen presentation, CD4+ T cells are activated,
migrate to the lung tissue, and inhibit the growth of M. tb.

Among different lineages of T helper cells, Th1 and Th17 are predominantly note-
worthy for their key roles in facilitating protection and immunity during TB infection.
Various cytokines such as IL-12 and IFN-γ are crucial for the differentiation of naïve T
lymphocytes into the Th1 subtypes. These cytokines are mostly secreted from antigen-
presenting cells. In particular, the interaction between IL-12 and its receptor leads to the
induction of STAT4 and subsequently T-bet, known to be the principal regulator of Th1
cells. IFN-γ, on the other hand, induces STAT1, which, with STAT4, activates T-bet in the
Th1 cells synergically. Conversely, IL-4 and IL-10 have been shown to be inhibitors of Th1
cell differentiation [7]. As a result, Th1 cells secrete more IFN-γ, IL-2, and TNF-α. These
cytokines play crucial roles in macrophage activation and are responsible for cell-mediated
immunity and phagocyte-dependent immune responses [8].

CD4+ T cells exert regulatory control over CD8+ T cells at different stages, such as
priming, expansion, migration, effector function, survival, and the formation of memory [9].
CD4+ T cells enhance the translocation of CD8+ T cells to the mucosal tissue’s microen-
vironment. This induction effect is mediated through IFN-γ chemokines. CD8+ T cells,
in turn, are capable of recognizing and responding to essential signals crucial for their
function and prolonged residence [10]. The importance of the adaptive immune system,
especially the T cells, during TB infection becomes apparent when examining individuals
coinfected with HIV. Such patient populations are more susceptible to developing latent
TB and experiencing the reactivation of M. tb compared to their counterparts who are not
infected with HIV. As HIV infection progresses and the number of T cells declines, the
susceptibility to TB infection increases. Within the host, the interaction between M. tb and
HIV results in a decline in host immunological responses. In fact, in high-risk regions, the
coinfection of M. tb with HIV appears to be the greatest risk factor for the development of
active TB. Interestingly, this increased susceptibility is not limited to the primary infection
but also applies to reactivation and reinfection in those with a latent TB status. Lastly,
infection with M. tb adversely influences the host immune response to HIV, hastening the
progression from HIV infection to AIDS [11].
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2. Materials and Methods

Despite current preventative measures against TB, it remains a widespread fatal
disease, especially in the immunocompromised. We intend to further explore the host–
pathogen interactions, pathogenesis, and current vaccine regimens to bridge the knowledge
gap on the two disease processes and to guide efficacious vaccine development. Any
challenges that arose were initially resolved through group discussions, culminating in
a final decision by Dr. Venketaraman to ensure consistency and fluency throughout the
paper. These articles were chosen according to the relevance of the topic and the credibility
of the source. Although the majority of this paper is from past research and literature, we
tried to introduce novel concepts, such as the incorporation of current vaccine trials for TB
for the immunocompromised, as well as the factors to consider when developing these
vaccines. The keywords that were used to obtain these articles were as follows: tuberculosis,
Mycobacterium tuberculosis, HIV, TB, TB-HIV coinfection, immune response, cytokines,
IFN-γ, CD4+ T cells, CD8+ T cells, granuloma, and vaccine development. Resources
included random control, case–control studies, literature reviews, meta-analysis, and
studies conducted on individuals with known TB, immunocompromised individuals,
or those who were both. Different populations were included, regardless of age group,
ethnicity, socioeconomic status, or geographic location. Articles were excluded due to their
non-relevance, not having been peer-reviewed, or their use of a non-English language.
Articles specific to vaccination were excluded if they had a publication date before 2019.
The literature involved in this review was mainly acquired by the use of the following
databases: PubMed, CDC, WHO, and Google Scholar.

3. Results
3.1. M. tb’s Entry and Initial Response

M. tb is primarily transmitted through respiratory and aerosolized droplets. The
process begins with the inhalation of respiratory droplets, which triggers innate immune
cells, notably alveolar macrophages, to act as the first line of defense by phagocytosing
these droplets. PAMPs on M. tb are recognized via a variety of receptors to mediate
opsonic and nonopsonic bacterial uptake. M. tb expresses a variety of known or putative
TLR ligands, and TLR-2, TLR-4, and TLR-9 have been implicated in host recognition
of M. tb [12]. Subsequently, these macrophages release TNF-α, initiating the formation
of granulomas, which represent the earliest defense mechanism against this pathogen.
Various innate cytokines, including CCL2, IL-6, and TNF-α, are increased during the
initiation of mycobacterial infection. These cytokines play a role in granuloma formation,
pathophysiology, and local immunity in the lungs during M. tb infection [13].

Studies have shown that reactivation of pulmonary TB occurs in latently infected
mice upon the neutralization of TNF-α [14]. This demonstrates that TNF-α is required
throughout the life of the infected host. Upon neutralization, less defined granuloma
formation is seen, along with increased bacterial infection in the lungs and extrapulmonary
sites such as the liver and spleen. Enhanced histopathology is also observed in TNF-α-
neutralized mice, supporting the importance of regulated cellular interaction during M.
tb infection [15]. A growing issue revolves around the connection between the utilization
of TNF-α inhibitors and a heightened likelihood of M. tb reactivation. It was observed
that treatment with TNF-α inhibitors resulted in the progression of M. tb from latent to
reactivation. This explains why healthcare providers undergo extensive screening for M. tb
prior to initiating therapy in those individuals with autoimmune diseases who are subjected
to anti-TNF-α therapy [16].

Granulomas consist of monocytes, macrophages, epithelioid cells, and multinucleated
giant cells and have the role of containing bacterial spread beyond the lungs while also
establishing a site for long-term bacterial persistence. The granuloma response induces
necrosis, playing a pivotal role in the survival and spread of bacteria, therefore contributing
to the disease’s severity and morbidity [17]. Particularly in TB granulomas, the mature
macrophages can undergo a distinct transformation into epithelioid cells (also known
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as epithelioid histiocytes). TB granulomas are distinguished from granulomas of other
diseases through their characteristic regions of necrosis, known as caseum. In addition
to macrophages, many other cell types also populate the granuloma, such as neutrophils,
dendritic cells, B and T cells, natural killer cells, fibroblasts, and cells that secrete extracellu-
lar matrix components [18]. Within the granuloma, M. tb can remain dormant for several
decades, leading to latent infection, and is present in about 90% of infected individuals.
Chemokines play a pivotal role in attracting neutrophils, monocytes, and lymphocytes
to the granuloma site. The Th1 subset of CD4+ T cells releases IL-2, triggering T-cell
proliferation. These activated T cells release IFN-γ, which in turn transforms monocytes
into inflammatory macrophages, which are essential for controlling M. tb. This process is
illustrated in Figure 1.

For individuals with HIV who experience CD4+ T-cell depletion and thus alterations in
their immune response, the formation of granulomas is of particular interest. A systematic
review and meta-analysis carried out by Diedrich et al. summarized findings on how HIV-1
changes M. tb granuloma formation. They reported more poorly formed granulomas in
those with lower peripheral CD4+ counts. It is worth noting that HIV-1 has not been shown
to change the presence of caseous granulomas. The analysis also concluded that CD3+,
CD4+, or CD8+ T cells along with the macrophage counts within granulomas were highly
variable. Overall, HIV-1 increased the M. tb count in granulomas [19].
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Figure 1. The introduction of M. tb into the host cell initiates the innate immune response, involving
a coordinated effort of macrophages, natural killer cells, and dendritic cells. These immune cells
release pivotal cytokines such as TNF-α, IFN-γ, IL-1, and other chemokines, subsequently activating
CD4+ and CD8+ T cells to release their specific cytokines. This orchestrated immune cascade results
in the formation of granulomas, representing the hallmark aspect of the host’s strategy to confine and
regulate the bacterial presence [20].

IFN-γ plays a crucial role in promoting apoptosis of cells infected with M. tb. IFN-γ
is produced mainly by the CD4+ Th1 subset upon encountering M. tb antigens. This
cytokine supports and strengthens T-cell responses, particularly those aimed at fighting
infection. IFN-γ mediates the production of reactive oxygen and nitrogen intermediates,
blocks antigen presentation by downregulating the expression of major histocompatibility
complex molecules, induces dendritic cell migration, and recruits Th1 cells to the lungs
by modulating chemokine production [21]. Macrophages activated with IFN-γ induce
greater inflammasomes. M. tb mutations in the IFN-γ gene or variations in IFN-γ receptor



Vaccines 2024, 12, 730 5 of 12

expression are often associated with immune deficiencies and an increased susceptibility
to M. tb infection. Interferon-gamma release assays (IGRAs) represent blood tests per-
formed outside the body to assess the immune response of T cells, specifically testing their
release of IFN-γ. Within numerous countries, two primary commercial IGRAs exist: the
QuantiFERON-TB Gold In-Tube assay and T-SPOT. A positive indication of M. tb infec-
tion in an individual is determined when the IFN-γ reaction to TB antigens surpasses the
designated test threshold, accounting for the background IFN-γ response measured in a
negative control.

3.2. HIV’s Entry and Systemic Immunosuppression

In the context of immunodeficient susceptibility in patients with TB, coinfection with
HIV has been identified as a significant prognostic factor. HIV, a retrovirus with a single-
stranded RNA genome belonging to the Lentivirus family, triggers substantial inflammation
in the body and is mainly transmitted sexually or through sharing needles. HIV primarily
targets CD4+ T cells, compromising the body’s adaptive immune defense system. The initial
symptoms of HIV infection can range from flu-like symptoms, dementia, and depression to
ulcers, neuropathy, and encephalitis. Interestingly, it increases susceptibility to other fatal
infections such as pulmonary TB, mainly by weakening the adaptive immune response.

At the initial stage of entry, viral particles bind to the target cell, CD4+ T cells, either
through the viral envelope or other cell membrane attachment factors [22]. This interaction
exhibits varying specificity, involving the binding of specific receptors such as CCR5,
CXCR4, and α4β7 integrin to the viral envelope or nonspecific attachment to cell surface
heparan sulfate proteoglycans. Viral envelope proteins, gp120 and gp41, bind to CD4+ T
cells, inducing envelope changes that enable the fusion peptide of gp41 to attach to the
target membrane of CD4+ T cells. Moreover, different HIV strains bind to the specific
coreceptor CXCR4 on CD4+ T cells. Upon the completion of membrane fusion, the viral
genome and proteins can be transported inside the cell. After viral entry, HIV initiates
replication within CD4+ T cells, leading to a gradual decline in the T-cell subpopulation.
This process is facilitated either through direct attack or secondary immune activation and
inflammation [23]. Given that HIV accelerates both the growth and destruction of T cells,
there is a continuous replenishment of T cells from the thymus. However, as the viral load
escalates to billions, an expanding pool of infected cells exacerbates the depletion of other
subtypes, consequently heightening the turnover of T cells [24]. Moreover, it has been
observed that activated T cells have a remarkably short lifespan, quickly lost to apoptosis
or activation-induced death, further contributing to turnover.

In other words, persistent host immune activation and subsequent inflammation dur-
ing HIV infection have severe negative effects on the host immune system and patient
outcomes. This imbalance alters leukocyte activity and cytokine levels, contributing to dis-
ease progression. As mentioned earlier, HIV’s preference for targeting and killing activated
CD4+ T-helper cells results in altered cell populations and disrupts T-cell balance, impairing
the host’s ability to defend against various pathogens, including M. tb. Elevated CD4+
T-cell activation, coupled with a high HIV load, accelerates cell death and further infection.
Additionally, CD4+ T-cell depletion triggers an immune system response, stimulating the
activation and proliferation of surviving cells, which become new targets for the virus [25].

3.3. The Role of CD8+, Treg, and Th17 Cells in M. tb’s Immune Defense

Previous studies have emphasized the association between active TB infection and the
facilitation of HIV infection and its progression to AIDS. This phenomenon can be related
to their shared anatomical reservoirs, such as the lungs. Researchers have investigated the
different modalities involved in this process. As previously mentioned, active TB infection
accelerates the loss of CD4+ T cells, increasing the body’s susceptibility to opportunistic
infections such as HIV [26,27]. The inflammatory immune response against M. tb boosts
HIV’s replication in the blood and within specific host immune cells, such as lymphocytes
and macrophages. Various in vitro studies have shown that M. tb upregulates HIV repli-
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cation through cytokine-mediated pathways [28–31]. Furthermore, HIV transcription is
affected by the pro-inflammatory chemokines and cytokines released in response to M. tb
infection. More interestingly, the terminal differentiation of CD4+ T cells at TB disease sites
leads to the expression of CCR5, making these cells more susceptible to HIV infection [32].

CD4+ and CD8+ T cells are the primary sources of IFN-γ production within the host
body, with CD4+ T cells being the major contributors. Interestingly, although both cell types
play a part in enhancing the host immunological defense against intracellular bacterial
infection, the complete absence of either cell type does not significantly compromise the IFN-
γ production of the other cell type. In fact, in the absence of CD4+ T cells, activated CD8+
T cells exhibit the potential to provide immune protection against secondary mycobacterial
infections, such as reinfection or reactivation of the latent TB. Hence, the IFN-γ production,
response, and activation of CD8+ T cells can occur independently of CD4+ T cells [33].

In the host body of individuals coinfected with HIV, the predominant source of IFN-γ
production may shift to CD8+ T cells depending on the CD4+ T-cell count in the body.
In advanced disease stages, CD8+ T cells may even become the primary and/or the
only source of IFN-γ production, providing immunological protection against secondary
infections of M. tb. However, it is crucial to note that CD4+ T cells also play a crucial role in
promoting the activity and survival of effector CD8+ T cells during the primary responses.
This function is particularly critical in maintaining effective CD8+ T-cell responses during
chronic infections, which may become compromised in those with advanced HIV infection.
Therefore, the significance of CD8+ T cells in the response to TB infection becomes evident
in the context of TB-HIV coinfection. Regardless of HIV infection status, the activation of
CD8+ T cells specific to M. tb antigens would enhance immunological protective responses,
especially in those with a compromised CD4+ T-cell count.

In a study conducted by Van Pinxteren et al., it was revealed that in a mouse model,
the CD4+ subset exhibited remarkable activity during the acute phase of infection, with
limited engagement of the CD8+ cells. Conversely, the CD8+ subset emerged as the
primary active cell type among the two subsets during the latent phase of infection. This
conclusion was further supported by in vivo experiments involving the depletion of T-cell
subsets. Specifically, administering anti-CD4+ treatment during the acute phase resulted
in a 6–7-fold increase in the bacterial load in the lungs, whereas anti-CD8+ treatment
showed no effect. Similarly, during the latent phase, anti-CD8+ and anti-IFN treatment
led to a 10-fold increase in the bacterial load in the lungs, while anti-CD4+ treatment did
not significantly alter the bacterial count [34]. This increase in the CD8+ T-cell responses
and the association with the M. tb load have been established in both human and animal
models [35–38]. Following antiretroviral therapy and therefore CD4+ T-cell restoration,
Day et al. observed heightened CD8+ T-cell reactivity to M. tb antigens in HIV-positive
individuals with depleted CD4+ counts and latent TB infection, as well as in those with
active TB [39]. The enhanced CD8+ T-cell responses observed in HIV-infected individuals
could serve as an indication that there is a lack of regulation in the absence of CD4+ T
cells. This could potentially be disadvantageous for HIV-infected hosts in combating TB,
especially when compared to uninfected individuals [40]. This process is depicted in
Figure 2.
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Figure 2. Both CD4+ and CD8+ T cells contribute to IFN-γ production in the body, with CD4+ T
cells being the primary contributors. IFN-γ and other cytokines play a crucial role in macrophage
activation and are responsible for cell-mediated immunity and phagocyte-dependent immune-
protective responses in M. tb infection. In the context of coinfection with HIV, the number of CD8+
T cells increases, while CD4+ T count declines as the disease progresses. In the advanced disease
state, CD8+ T cells become the major source of IFN-γ production, which is crucial for combating TB
infection [41].

Another dynamic aspect of the host defense system worth mentioning is the in-
volvement of the balance between the Treg and Th17 subtypes of T cells. Th17 cells are
primarily known for the production of IL-17, which stimulates the production of other
pro-inflammatory cytokines and chemokines, aiding the body in mounting a protective
yet pro-inflammatory immune response against pathogens. On the other hand, Tregs have
been associated with various inflammatory and autoimmune processes, as well as some
infectious ones. Key cytokines contributing to the immunosuppressive function of Tregs
include IL-10, TGF-β, and IL-35. Tregs interfere with T-cell activation by the dendritic
cells through a CTLA-4 dependent mechanism. Maintaining balance with the Th17 cells is
widely regarded as pivotal in these conditions. In other words, Tregs and Th17 cells are
closely interconnected. In chronic infectious diseases such as TB, a delicate balance between
pro- and anti-inflammatory responses exists. While Th1 and Th17 cells are essential for
controlling M. tb infection, the inflammatory cascade can eventually become detrimental
to the host. The establishment of this balance between opposing forces could potentially
determine the extent of the damage inflicted on the lung tissue or distant organs during the
advanced stages of the disease. Coinfection with HIV could further exacerbate these pro-
cesses, delaying the establishment of equilibrium between the two sides and exacerbating
tissue destruction within the microenvironment [42].

Moreover, among the cytokines that affect CD4+ and CD8+ T-cell activities in HIV
infection, IL-10 plays a direct inhibitory role. Regarding CD8+ T cells, IL-10 has been
found to decrease their antigen sensitivity during chronic viral infections through specific
signaling pathways. Consequently, the CD8+ T cells’ function against viral infection
is reduced due to their increased activation threshold by IL-10. Thus, inhibition of the
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IL-10 regulatory pathway can be considered one of the treatment approaches to chronic
viral infections such as HIV [43]. The engineering of novel vaccines designed to promote
CD8+ T-cell responses is also critical for protecting individuals at the highest risk of TB,
particularly those coinfected with HIV [44]. M. tb’s significant role in HIV infection’s disease
progress emphasizes the necessity for new treatment approaches, especially vaccinations,
that can decelerate the disease progression to AIDS and decrease the mortality rate in
TB-HIV-coinfected patients [45].

The Bacillus Calmette–Guérin (BCG) vaccine has been a commonly used live vaccine
for TB since it was developed in 1921 [46]. However, there are limitations and drawbacks
associated with the BCG vaccine. It is contraindicated in immunocompromised patients
due to it being a live vaccine. According to the WHO, BCG-specific T-cell responses
are defective in HIV-infected individuals, and this leads to little or no immunity against
TB in these immunocompromised patients [47]. However, new research has shown that
recombinant BCG (rBCG) and different routes of administration, despite the traditional
BCG vaccine being intradermal, can be more effective against TB while being safer for the
immunocompromised.

rBCG vaccines, such as VPM1002 (also known as rBCG ∆ureC::hly), are genetically
modified versions of the traditional BCG vaccine. The VPM1002 vaccine’s genetic modifica-
tion includes the deletion of urease C (ureC) and the insertion of listeriolysin O (LLO), a
protein derived from Listeria monocytogenes. These genetic modifications make VPM1002
a beneficial vaccine for comorbid TB-HIV through enhancing antigen presentation and
CD8+ and AIM2 inflammasome activation using LLO and inducing further IFN-γ pro-
duction, which is especially beneficial for the immunocompromised [48]. This VPM1002
vaccine has shown to be promising for immunocompromised populations due to being
attenuated, besides the genetic modifications mentioned above.

According to a clinical trial in South Africa, VPM1002 is safe for newborn infants,
regardless of their HIV exposure history, and has a lower risk of side effects compared to
BCG [49]. Phase II/III trials are ongoing to further evaluate the VPM1002 vaccine’s efficacy
in preventing TB, particularly for the immunocompromised [50]. There are preclinical stud-
ies on variations of VPM1002, such as ∆nuoG, that have demonstrated further protection
against TB by increasing apoptosis of infected cells and reducing bacterial loads. However,
further clinical trials are required to assess the efficacy and safety of this variation.

Different routes of administration for BCG, instead of the traditional intradermal route,
have also shown to be successful in improving its efficacy and safety in high-risk popula-
tions. Preclinical studies on the intranasal route of administration for BCG have shown the
potential to provide improved immunization through targeting mucosal immunity and con-
sequently inducing local immunity in the respiratory tract, which is the primary site of TB
infection. This route of administration is especially beneficial for the immunocompromised
since it mainly induces local immunity and has a lower risk of the side effects associated
with systemic dissemination [51]. Researchers are currently working on several clinical
trials to further evaluate intranasal BCG in larger populations and methods to facilitate its
widespread use [52].

Another safe vaccination option against TB for HIV-infected patients may be protein
subunit or inactivated mycobacterial vaccines. M72/AS01E is a subunit candidate vaccine
that could be a potentially groundbreaking innovation, especially for HIV individuals [53].
The M72/AS01E candidate vaccine is a fusion protein, constructed from two M. tb im-
munogenic antigens Mtb39A and Mtb32A, combined with the adjuvant system AS01E. The
AS01E adjuvant enhances the immunogenicity of the M72 antigens, leading to increased
activation of the CD8+ T cells and the production of cytokines such as IFN-γ, both essential
immune system components for protection against TB [54,55]. Furthermore, according to
a meta-analysis of five randomized clinical trials, the M72/AS01E subunit vaccine had
an abundance of polyfunctional M72-specific CD4+ T cells in the vaccine group versus
the control group. This synergistic M72/AS01E-induced CD8+ and CD4+ T-cell response
induction makes M72/AS01E a promising vaccine [56]. Currently, phase 3 trials for this
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vaccine are progressing. These trials, aiming to assess the efficacy and safety of the vaccine
across diverse populations, include up to 20,000 participants from various populations,
such as those who are HIV immunocompromised, and multiple countries, such as South
Africa, Zambia, Malawi, Mozambique, Kenya, Indonesia, and Vietnam.

In 2017, the vaccine components from the APPROACH study were utilized in the
Imbokodo trial [57,58] in Southern Africa, which involved 2637 participants in a phase
IIb clinical trial. However, the Imbokodo study was terminated prematurely due to its
disappointing efficacy. Despite this setback, there is optimism surrounding the Mosaico
trial, initiated in 2019, which evaluates the effects of Ad26.Mos.HIV and an adjuvanted
clade C gp140 protein vaccination in North America, Latin America, and Europe. Although
there have been many attempts to develop an effective vaccine, Mosaico and the HVTN
702 trials are the only two HIV vaccine efficacy trials in the past decade that enrolled over
100 participants and progressed to phase III [59].

Furthermore, determining the effectiveness of vaccines targeting CD4+ T cells versus
those targeting CD8+ T cells is another question to explore in designing TB vaccines.
Although CD4+ T-cell induction is a common approach in TB vaccines, some studies have
failed to prove that polyfunctional CD4+ T cells are sufficient to protect against M. tb
infection. Various functional characteristics of T cells, such as IL-17 production, and other
major cells, such as classically restricted CD8+ T cells, might be the underlying reason for
the correlation of CD4+ T cells with immunity to M. tb in humans [60]. Since CD8+ T cells
play a significant role in fighting TB, especially in the immunocompromised population, a
vaccine that can dominantly induce a CD8+ T-cell response is worthwhile and preferred
above BCG, which mildly affects these T cells. However, these studies have been limited
because few MHC class I mycobacterial antigens have been identified [61]. Nyendak et al.
report that “some of the vaccine-elicited CD8+ T cells failed to recognize epitopes displayed
by the M. tb-infected cells due to limited access to the HLA-Ia processing machinery during
the course of M. tb infection in vivo” [62]. Finally, research demonstrates that a synergistic
combination of CD4+ and CD8+ T-cell-inducing vaccines has been the most successful for
preventing TB.

4. Conclusions

TB, caused by M. tb, remains a significant global health concern, resulting in millions
of deaths annually. Although our current understanding of the disease process of TB is
advancing, there remain unexplored aspects that require further study. M. tb’s pathogenesis
begins with invasion into the lungs and the evasion of the host immune response, triggering
granuloma formation, leading to a complex interplay between the pathogen and the host’s
defense mechanisms during TB infection. It is important to appreciate the pathogenesis
of M. tb when examining individuals coinfected with HIV. HIV patients are considered
immunocompromised and therefore are more susceptible to latent TB infection.

This depletion in the host immune response accelerates the progression from HIV to
AIDS. IFN-γ is produced by the CD4+ and CD8+ T cells and plays a vital role in macrophage
activation. It has been studied that those with M. tb and HIV coinfection have increasing
numbers of CD8+ T cells and decreasing numbers of CD4+ cells. In the later stages of
the disease, CD8+ T cells emerge as the primary suppliers of IFN-γ, playing a pivotal
role in protecting against M. tb infection. Understanding these processes is crucial for
developing effective strategies for TB prevention and treatment. This paper emphasizes
the important role of CD8+ T cells in fighting against pathogens, specifically in individuals
coinfected with TB and HIV, and suggests prophylactic vaccinations should be aimed at
increasing the number of CD8+ T cells. Because of HIV’s mechanism of depleting T cells,
it may be worthwhile to develop protein subunit or inactivated mycobacterial vaccines
that could provide a safer vaccination choice for HIV-infected individuals against TB.
Understanding the immune responses against M. tb and the impact of HIV coinfection
highlights the urgency for further research into targeted immunotherapies and vaccines.
Such advancements are necessary for battling the global crisis of M. tb and improving
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the outcomes for high-risk individuals, paving the way for more effective prevention and
treatment strategies in the future.
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