Optimal Timing Regularly Outperforms Higher Coverage in Preventative Measles Supplementary Immunization Campaigns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seasonality Estimation
2.2. Transmission Model and Building the SIA Calendar
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
- The following abbreviations are used in this manuscript:
EMOD | Epidemiological MODeling software |
MCV | Measles-Containing Vaccine |
RI | Routine Immunization |
SIA | Supplementary Immunization Activity |
WHO | World Health Organization |
References
- Minta, A.A.; Ferrari, M.; Antoni, S.; Portnoy, A.; Sbarra, A.; Lambert, B.; Hatcher, C.; Hsu, C.H.; Ho, L.L.; Steulet, C.; et al. Progress Toward Measles Elimination—Worldwide, 2000–2022. MMW. Morb. Mortal. Wkly. Rep. 2023, 72, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Measles vaccines: WHO position paper, April 2017—Recommendations. Vaccine 2019, 37, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Moss, W.J.; Strebel, P.M. Chapter 38 measles vaccines. In Plotkin’s Vaccines, 8th ed.; Elsevier: Philadelphia, PA, USA, 2023; pp. 629–663. [Google Scholar]
- Grassly, N.C.; Fraser, C. Seasonal infectious disease epidemiology. Proc. R. Soc. B Biol. Sci. 2006, 273, 2541–2550. [Google Scholar] [CrossRef]
- Grais, R.F.; Conlan, A.J.K.; Ferrari, M.J.; Djibo, A.; Le Menach, A.; Bjørnstad, O.N.; Grenfell, B.T. Time is of the essence: Exploring a measles outbreak response vaccination in Niamey, Niger. J. R. Soc. Interface/R. Soc. 2008, 5, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, N.; Gilani, S.S.A.; Hasan, Q.; McCarthy, K.A. Decreasing measles burden by optimizing campaign timing. Proc. Natl. Acad. Sci. USA 2019, 116, 11069–11073. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, N.; Abubakar, A.H.A.; Shube, M.; Jama, M.A.; Derow, M.; Lambach, P.; Ashmony, H.; Farid, M.; Sim, S.Y.; O’Connor, P.; et al. Estimating the Impact of Vaccination Campaigns on Measles Transmission in Somalia. Vaccines 2024, 12, 314. [Google Scholar] [CrossRef] [PubMed]
- Minetti, A.; Kagoli, M.; Katsulukuta, A.; Huerga, H.; Featherstone, A.; Chiotcha, H.; Noel, D.; Bopp, C.; Sury, L.; Fricke, R.; et al. Lessons and challenges for measles control from unexpected large outbreak, Malawi. Emerg. Infect. Dis. 2013, 19, 202. [Google Scholar] [CrossRef] [PubMed]
- WHO. Planning and Implementing High-Quality Supplementary Immunization Activities for Injectable Vaccines Using an Example of Measles and Rubella Vaccines: Field Guide; Technical report; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Measles Programmatic Risk Assessment Tool. 2017. Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/immunization-analysis-and-insights/surveillance/measles-programmatic-risk-assessment-tool (accessed on 1 July 2024).
- Lam, E.; Schluter, W.W.; Masresha, B.G.; Teleb, N.; Bravo-Alcántara, P.; Shefer, A.; Jankovic, D.; McFarland, J.; Elfakki, E.; Takashima, Y.; et al. Development of a District-Level Programmatic Assessment Tool for Risk of Measles Virus Transmission. Risk Anal. 2017, 37, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Cutts, F.; Dansereau, E.; Ferrari, M.; Hanson, M.; McCarthy, K.; Metcalf, C.; Takahashi, S.; Tatem, A.; Thakkar, N.; Truelove, S.; et al. Using models to shape measles control and elimination strategies in low- and middle-income countries: A review of recent applications. Vaccine 2020, 38, 979–992. [Google Scholar] [CrossRef]
- Verguet, S.; Johri, M.; Morris, S.K.; Gauvreau, C.L.; Jha, P.; Jit, M. Controlling measles using supplemental immunization activities: A mathematical model to inform optimal policy. Vaccine 2015, 33, 1291–1296. [Google Scholar] [CrossRef]
- Kisangau, N.; Sergon, K.; Ibrahim, Y.; Yonga, F.; Langat, D.; Nzunza, R.; Borus, P.; Galgalo, T.; Lowther, S.A. Progress towards elimination of measles in Kenya, 2003-2016. Pan Afr. Med. J. 2018, 31, 65. [Google Scholar] [CrossRef]
- Cutts, F.T.; Lessler, J.; Metcalf, C.J. Measles elimination: Progress, challenges and implications for rubella control. Expert Rev. Vaccines 2013, 12, 917–932. [Google Scholar] [CrossRef]
- Fine, P.; Clarkson, J. Measles in England and Wales—I: An Analysis of Factors Underlying Seasonal Patterns. Int. J. Epidemiol. 1982, 11, 5–14. [Google Scholar] [CrossRef]
- Duncan, C.J.; Duncan, S.R.; Scott, S. The Dynamics of Measles Epidemics. Theor. Popul. Biol. 1997, 52, 155–163. [Google Scholar] [CrossRef]
- Ferrari, M.J.; Grais, R.F.; Bharti, N.; Conlan, A.J.K.; Bjørnstad, O.N.; Wolfson, L.J.; Guerin, P.J.; Djibo, A.; Grenfell, B.T. The dynamics of measles in sub-Saharan Africa. Nature 2008, 451, 679–684. [Google Scholar] [CrossRef]
- Bharti, N.; Tatem, A.J.; Ferrari, M.J.; Grais, R.F.; Djibo, A.; Grenfell, B.T. Explaining Seasonal Fluctuations of Measles in Niger Using Nighttime Lights Imagery. Science 2011, 334, 1424–1427. [Google Scholar] [CrossRef]
- Thakkar, N.; Jindal, S.; Rosenfeld, K. Seasonality and susceptibility from measles time series. arXiv 2024, arXiv:2405.09664. [Google Scholar]
- Beck, H.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Lutsko, N.J.; Dufour, A.; Zeng, Z.; Jiang, X.; van Dijk, A.I.J.M.; Miralles, D.G. High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections. Sci. Data 2023, 10, 724. [Google Scholar] [CrossRef] [PubMed]
- Bershteyn, A.; Gerardin, J.; Bridenbecker, D.; Lorton, C.W.; Bloedow, J.; Baker, R.S.; Chabot-Couture, G.; Chen, Y.; Fischle, T.; Frey, K.; et al. Implementation and applications of EMOD, an individual-based multi-disease modeling platform. Pathog. Dis. 2018, 76, fty059. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.; Frey, K.; Hagedorn, B.; Oteri, A.J.; Yahya, A.; Hamisu, M.; Mogekwu, F.; Shuaib, F.; McCarthy, K.A.; Chabot-Couture, G. Optimization of frequency and targeting of measles supplemental immunization activities in Nigeria: A cost-effectiveness analysis. Vaccine 2019, 37, 6039–6047. [Google Scholar] [CrossRef]
- McCarthy, K.A.; Chabot-Couture, G.; Shuaib, F. A spatial model of Wild Poliovirus Type 1 in Kano State, Nigeria: Calibration and assessment of elimination probability. BMC Infect. Dis. 2016, 16, 521. [Google Scholar] [CrossRef] [PubMed]
- Gerardin, J.; Bever, C.A.; Bridenbecker, D.; Hamainza, B.; Silumbe, K.; Miller, J.M.; Eisele, T.P.; Eckhoff, P.A.; Wenger, E.A. Effectiveness of reactive case detection for malaria elimination in three archetypical transmission settings: A modelling study. Malar. J. 2017, 16, 248. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.; Frey, K.; Mwamba, G.N.; McCarthy, K.A.; Hoff, N.A.; Rimoin, A.W. Examination of scenarios introducing rubella vaccine in the Democratic Republic of the Congo. Vaccine X 2021, 9, 100127. [Google Scholar] [CrossRef] [PubMed]
- Earn, D.J.D.; Rohani, P.; Bolker, B.M.; Grenfell, B.T. A Simple Model for Complex Dynamical Transitions in Epidemics. Science 2000, 287, 667–670. [Google Scholar] [CrossRef] [PubMed]
- Portnoy, A.; Jit, M.; Helleringer, S.; Verguet, S. Impact of measles supplementary immunization activities on reaching children missed by routine programs. Vaccine 2018, 36, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Sbarra, A.N.; Rolfe, S.; Nguyen, J.Q.; Earl, L.; Galles, N.C.; Marks, A.; Abbas, K.M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; et al. Mapping routine measles vaccination in low- and middle-income countries. Nature 2021, 589, 415–419. [Google Scholar] [CrossRef]
- Measles Elimination by 2020: A Strategy for the African Region; Technical Report AFR/RC61/R1; World Health Organization Regional Office for Africa: Brazzaville, Congo, 2011; p. 2.
- World Health Organization Regional Office for South-East Asia. Measles and Rubella Elimination by 2023; Technical Report SEA/RC72/R3; World Health Organization Regional Office for South-East Asia: New Delhi, India, 2019. [Google Scholar]
- Nic Lochlainn, L.M.; de Gier, B.; van der Maas, N.; Strebel, P.M.; Goodman, T.; van Binnendijk, R.S.; de Melker, H.E.; Hahné, S.J.M. Immunogenicity, effectiveness, and safety of measles vaccination in infants younger than 9 months: A systematic review and meta-analysis. Lancet Infect. Dis. 2019, 19, 1235–1245. [Google Scholar] [CrossRef] [PubMed]
- Durrheim, D.N.; Andrus, J.K.; Tabassum, S.; Bashour, H.; Githanga, D.; Pfaff, G. A dangerous measles future looms beyond the COVID-19 pandemic. Nat. Med. 2021, 27, 360–361. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, M.; Ong, K.L.; Aali, A.; Ababneh, H.S.; Abate, Y.H.; Abbafati, C.; Abbasgholizadeh, R.; Abbasian, M.; Abbasi-Kangevari, M.; Abbastabar, H.; et al. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2100–2132. [Google Scholar] [CrossRef]
- Metcalf, C.J.E.; Tatem, A.; Bjornstad, O.N.; Lessler, J.; O’Reilly, K.; Takahashi, S.; Cutts, F.; Grenfell, B. Transport networks and inequities in vaccination: Remoteness shapes measles vaccine coverage and prospects for elimination across Africa. Epidemiol. Infect. 2015, 143, 1457–1466. [Google Scholar] [CrossRef]
- Grundy, J.; Biggs, B.A. The Impact of Conflict on Immunisation Coverage in 16 Countries. Int. J. Health Policy Manag. 2018, 8, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Shearer, J.C.; Nava, O.; Prosser, W.; Nawaz, S.; Mulongo, S.; Mambu, T.; Mafuta, E.; Munguambe, K.; Sigauque, B.; Cherima, Y.J.; et al. Uncovering the Drivers of Childhood Immunization Inequality with Caregivers, Community Members and Health System Stakeholders: Results from a Human-Centered Design Study in DRC, Mozambique and Nigeria. Vaccines 2023, 11, 689. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, J. Periodicities of Epidemics of Measles in the Large Towns of Great Britain and Ireland. Proc. R. Soc. Med. 1919, 12, 77–120. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, M.S. Measles Periodicity and Community Size. J. R. Stat. Soc. Ser. A 1957, 120, 48–70. [Google Scholar] [CrossRef]
- Immunization Agenda 2030: A Global Strategy to Leave No One Behind; Technical report; World Health Organization: Geneva, Switzerland, 2020.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenfeld, K.A.; Frey, K.; McCarthy, K.A. Optimal Timing Regularly Outperforms Higher Coverage in Preventative Measles Supplementary Immunization Campaigns. Vaccines 2024, 12, 820. https://doi.org/10.3390/vaccines12070820
Rosenfeld KA, Frey K, McCarthy KA. Optimal Timing Regularly Outperforms Higher Coverage in Preventative Measles Supplementary Immunization Campaigns. Vaccines. 2024; 12(7):820. https://doi.org/10.3390/vaccines12070820
Chicago/Turabian StyleRosenfeld, Katherine A., Kurt Frey, and Kevin A. McCarthy. 2024. "Optimal Timing Regularly Outperforms Higher Coverage in Preventative Measles Supplementary Immunization Campaigns" Vaccines 12, no. 7: 820. https://doi.org/10.3390/vaccines12070820
APA StyleRosenfeld, K. A., Frey, K., & McCarthy, K. A. (2024). Optimal Timing Regularly Outperforms Higher Coverage in Preventative Measles Supplementary Immunization Campaigns. Vaccines, 12(7), 820. https://doi.org/10.3390/vaccines12070820