Chagas Disease Diagnosis with Trypanosoma cruzi-Exclusive Epitopes in GFP
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations for the Use of Human Serum
2.2. Serological Samples
2.3. Cloning, Expression, and Purification
2.4. Enzyme-Linked Immunosorbent Assays
2.5. Spot Synthesis Analysis
2.6. Statistics
3. Results
3.1. Design and Production of DxCruziV1
3.2. Design and Production of DxCruziV1
3.3. Conditions for Performing In-House ELISAs
3.4. Epitope Contribution to Signal
3.5. Design, Production, and Performance of DxCruziV2
3.6. Analytical Sensitivity of DxCruziV1 and DxCruziV2
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chagas, C. Nova tripanossomíase humana. Mem. Inst. Oswaldo Cruz 1909, 1, 159–219. [Google Scholar] [CrossRef]
- Hotez, P.J.; Bottazzi, M.E.; Franco-Paredes, C.; Ault, S.K.; Periago, M.R. The neglected tropical diseases of Latin America and the Caribbean: A review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl. Trop. Dis. 2008, 2, e300. [Google Scholar] [CrossRef]
- WHO Chagas Disease (American Trypanosomiasis). 2024. Available online: https://www.who.int/en/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (accessed on 7 April 2024).
- Coura, J.R. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions—A comprehensive review. Mem. Inst. Oswaldo Cruz 2015, 110, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.J.; Havelaar, A.H.; Keddy, K.H.; Devleesschauwer, B.; Sripa, B.; Torgerson, P.R. The importance of estimating the burden of disease from foodborne transmission of Trypanosoma cruzi. PLoS Negl. Trop. Dis. 2024, 18, e0011898. [Google Scholar] [CrossRef] [PubMed]
- Coura, J.R.; Vinas, P.A. Chagas disease: A new worldwide challenge. Nature 2010, 465, S6–S7. [Google Scholar] [CrossRef]
- Schmunis, G.A. Epidemiology of Chagas disease in non-endemic countries: The role of international migration. Memórias Inst. Oswaldo Cruz 2007, 102, 75–85. [Google Scholar] [CrossRef]
- Andrade, D.V.; Gollob, K.J.; Dutra, W.O. Acute chagas disease: New global challenges for an old neglected disease. PLoS Negl. Trop. Dis. 2014, 8, e3010. [Google Scholar] [CrossRef]
- Kirchhoff, L.V.; Votava, J.R.; Ochs, D.E.; Moser, D.R. Comparison of PCR and microscopic methods for detecting Trypanosoma cruzi. J. Clin. Microbiol. 1996, 34, 1171–1175. [Google Scholar] [CrossRef]
- Teixeira, A.R.; Nitz, N.; Guimaro, M.C.; Gomes, C.; Santos-Buch, C.A. Chagas disease. Postgrad. Med. J. 2006, 82, 788–798. [Google Scholar] [CrossRef]
- Rassi, A.; Marcondes de Rezende, J. American trypanosomiasis (Chagas disease). Infect. Dis. Clin. 2012, 26, 275–291. [Google Scholar] [CrossRef]
- Rassi, A.J.; Rassi, A.; Little, W.C. Chagas’ heart disease. Clin. Cardiol. 2000, 23, 883–889. [Google Scholar] [PubMed]
- Prata, A. Clinical and epidemiological aspects of Chagas disease. Lancet Infect. Dis. 2001, 1, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Lescure, F.X.; Le Loup, G.; Freilij, H.; Develoux, M.; Paris, L.; Brutus, L.; Pialoux, G. Chagas disease: Changes in knowledge and management. Lancet Infect. Dis. 2010, 10, 556–570. [Google Scholar] [CrossRef] [PubMed]
- Knierim, F.; Rubinstein, P. The detection of Chagas’ disease. A rapid hemagglutination test for special use in blood banks and epidemiological studies. Vox Sang. 1970, 18, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Fife, E.H.; Muschel, L.H. Fluorescent-antibody technic for serodiagnosis of Trypanosoma cruzi infection. Proc. Soc. Exp. Biol. Med. 1959, 101, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Camargo, M.E. Fluorescent antibody test for the serodiagnosis of American trypanosomiasis. Technical modification employing preserved culture forms of Trypanosoma cruzi in a slide test. Rev. Inst. Med. Trop. Sao Paulo 1966, 8, 227–235. [Google Scholar]
- Voller, A.; Draper, C.; Bidwell, D.E.; Bartlett, A. Microplate enzyme-linked immunosorbent assay for chagas’ disease. Lancet 1975, 1, 426–428. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.W.; Belem, Z.R.; Lemos, E.A.; Reed, S.G.; Campos-Neto, A. Enzyme-linked immunosorbent assay for serological diagnosis of Chagas’ disease employing a Trypanosoma cruzi recombinant antigen that consists of four different peptides. J. Clin. Microbiol. 2001, 39, 4390–4395. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.D.; Cheng, K.Y.; Jiang, L.X.; Salbilla, V.A.; Haller, A.S.; Yem, A.W.; Bryant, J.D.; Kirchhoff, L.V.; Leiby, D.A.; Schochetman, G.; et al. Evaluation of a prototype Trypanosoma cruzi antibody assay with recombinant antigens on a fully automated chemiluminescence analyzer for blood donor screening. Transfusion 2006, 46, 1737–1744. [Google Scholar] [CrossRef] [PubMed]
- Coura, J.R.; Marquez, M.H.P.; Guerra, J.A.D.O.; Zauza, P.L.; Miguel, J.C.; Pereira, J.B. A new survey of the serology of human Trypanosoma cruzi infection in the Rio Negro microregion, Brazilian Amazon: A critical analysis. Mem. Inst. Oswaldo Cruz 2013, 108, 909–913. [Google Scholar] [CrossRef]
- Pereiro, A.C. Guidelines for the diagnosis and treatment of Chagas disease. Lancet. 2019, 393, 1486–1487. [Google Scholar] [CrossRef]
- Dias, J.C.; Ramos, A.N.; Gontijo, E.D.; Luquetti, A.; Shikanai-Yasuda, M.A.; Coura, J.R.; Torres, R.M.; Melo, J.R.; Almeida, E.A.; Oliveira, W.; et al. Brazilian consensus on Chagas Disease, 2015. Epidemiol. Serv. Saude 2016, 25, 7–86. [Google Scholar] [CrossRef]
- Umezawa, E.S.; Bastos, S.F.; Coura, J.R.; Levin, M.J.; Gonzalez, A.; Rangel-Aldao, R.; Zingales, B.; Luquetti, A.O.; da Silveira, J.F. An improved serodiagnostic test for Chagas’ disease employing a mixture of Trypanosoma cruzi recombinant antigens. Transfusion 2003, 43, 91–97. [Google Scholar] [CrossRef]
- Umezawa, E.S.; Bastos, S.F.; Camargo, M.E.; Yamauchi, L.M.; Santos, M.R.; Gonzalez, A.; Zingales, B.; Levin, M.J.; Sousa, O.; Rangel-Aldao, R.; et al. Evaluation of recombinant antigens for serodiagnosis of Chagas’ disease in South and Central America. J. Clin. Microbiol. 1999, 37, 1554–1560. [Google Scholar] [CrossRef]
- Gomes, Y.M.; Lorena, V.M.; Luquetti, A.O. Diagnosis of Chagas disease: What has been achieved? What remains to be done with regard to diagnosis and follow up studies? Mem. Inst. Oswaldo Cruz 2009, 104, 115–121. [Google Scholar] [CrossRef]
- Daltro, R.T.; Leony, L.M.; Freitas, N.E.M.; Silva, Â.A.O.; Santos, E.F.; Del-Rei, R.P.; Brito, M.E.F.; Brandão-Filho, S.P.; Gomes, Y.M.; Silva, M.S.; et al. Cross-Reactivity Using Chimeric Trypanosoma cruzi Antigens: Diagnostic Performance in Settings Where Chagas Disease and American Cutaneous or Visceral Leishmaniasis are coendemic. J. Clin. Microbiol. 2019, 57, e00762-19. [Google Scholar] [CrossRef]
- Sela, M.; Schechter, B.; Schechter, I.; Borek, F. Antibodies to sequential and conformational determinants. Cold Spring Harb. Symp. Quant. Biol. 1967, 32, 537–545. [Google Scholar] [CrossRef]
- Studier, F.W.; Rosenberg, A.H.; Dunn, J.J.; Dubendorff, J.W. Use of T7 RNA polymerase to direct expression of cloned genes. Meth. Enzymol. 1990, 185, 60–89. [Google Scholar] [CrossRef]
- Studier, F.W.; Moffatt, B.A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 1986, 189, 113–130. [Google Scholar] [CrossRef]
- Rosenberg, A.H.; Lade, B.N.; Chui, D.S.; Lin, S.W.; Dunn, J.J.; Studier, F.W. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 1987, 56, 125–135. [Google Scholar] [CrossRef]
- World Health Organization; WHO Expert Committee on Biological Standardization; Otani, M.; Hockley, J.; Guzmán Bracho, C.; Sjoerd, R.; Luquetti, A.O.; Duncan, R.; Rigsby, P.; Albajar-Viñas, P.; et al. Evaluation of two international reference standards for antibodies to Trypanosoma cruzi in a WHO collaborative study. 2011. Available online: https://iris.who.int/handle/10665/152895 (accessed on 18 April 2022).
- De-Simone, S.G.; Gomes, L.R.; Napoleão-Pêgo, P.; Lechuga, G.C.; de Pina, J.S.; da Silva, F.R. Epitope mapping of the Diphtheria Toxin and development of an ELISA-specific diagnostic assay. Vaccines 2021, 9, 313. [Google Scholar] [CrossRef]
- Thomas, M.C.; Longobardo, M.V.; Carmelo, E.; Maranon, C.; Planelles, L.; Patarroyo, M.E.; Alonso, C.; Lopez, M.C. Mapping of the antigenic determinants of the T. cruzi kinetoplastid membrane protein-11. Identification of a linear epitope specifically recognized by human Chagasic sera. Clin. Exp. Immunol. 2001, 123, 465–471. [Google Scholar] [CrossRef]
- Rabello, A.; Luquetti, A.O.; Moreira, E.F.; Gadelha Mde, F.; dos Santos, J.A.; de Melo, L.; Schwind, P. Serodiagnosis of Trypanosoma cruzi infection using the new particle gel immunoassay—ID-PaGIA Chagas. Mem. Inst. Oswaldo Cruz 1999, 94, 77–82. [Google Scholar] [CrossRef]
- Houghton, R.L.; Benson, D.R.; Reynolds, L.D.; McNeill, P.D.; Sleath, P.R.; Lodes, M.J.; Skeiky, Y.A.; Leiby, D.A.; Badaro, R.; Reed, S.G. A multi-epitope synthetic peptide and recombinant protein for the detection of antibodies to Trypanosoma cruzi in radioimmunoprecipitation-confirmed and consensus-positive sera. J. Infect. Dis. 1999, 179, 1226–1234. [Google Scholar] [CrossRef]
- Ibanez, C.F.; Affranchino, J.L.; Macina, R.A.; Reyes, M.B.; Leguizamon, S.; Camargo, M.E.; Aslund, L.; Pettersson, U.; Frasch, A.C. Multiple Trypanosoma cruzi antigens containing tandemly repeated amino acid sequence motifs. Mol. Biochem. Parasitol. 1988, 30, 27–33. [Google Scholar] [CrossRef]
- Gruber, A.; Zingales, B. Trypanosoma cruzi: Characterization of two recombinant antigens with potential application in the diagnosis of Chagas’ disease. Exp. Parasitol. 1993, 76, 1–12. [Google Scholar] [CrossRef]
- Peralta, J.M.; Teixeira, M.G.; Shreffler, W.G.; Pereira, J.B.; Burns JM, J.; Sleath, P.R.; Reed, S.G. Serodiagnosis of Chagas’ disease by enzyme-linked immunosorbent assay using two synthetic peptides as antigens. J. Clin. Microbiol. 1994, 32, 971–974. [Google Scholar] [CrossRef]
- Levin, M.J.; Mesri, E.; Benarous, R.; Levitus, G.; Schijman, A.; Levy-Yeyati, P.; Chiale, P.A.; Ruiz, A.M.; Kahn, A.; Rosenbaum, M.B. Identification of major Trypanosoma cruzi antigenic determinants in chronic Chagas’ heart disease. Am. J. Trop. Med. Hyg. 1989, 41, 530–538. [Google Scholar] [CrossRef]
- Lafaille, J.J.; Linss, J.; Krieger, M.A.; Souto-Padron, T.; de Souza, W.; Goldenberg, S. Structure and expression of two Trypanosoma cruzi genes encoding antigenic proteins bearing repetitive epitopes. Mol. Biochem. Parasitol. 1989, 35, 127–136. [Google Scholar] [CrossRef]
- Bottino, C.; Gomes, L.P.; Coura, J.B.; Provance DW, J.; De-Simone, S.G. Chagas disease-specific antigens: Characterization of epitopes in CRA/FRA by synthetic peptide mapping and evaluation by ELISA-peptide assay. BMC Infect. Dis. 2013, 13, 568. [Google Scholar] [CrossRef]
- Affranchino, J.L.; Ibañez, C.F.; Luquetti, A.O.; Rassi, A.; Reyes, M.B.; Macina, R.A.; Aslund, L.; Pettersson, U.; Frasch, A.C. Identification of a Trypanosoma cruzi antigen that is shed during the acute phase of Chagas’ disease. Mol. Biochem. Parasitol. 1989, 34, 221–228. [Google Scholar] [CrossRef]
- Buscaglia, C.A.; Alfonso, J.; Campetella, O.; Frasch, A.C. Tandem amino acid repeats from Trypanosoma cruzi shed antigens increase the half-life of proteins in blood. Blood 1999, 93, 2025–2032. [Google Scholar] [CrossRef]
- Thomas, M.C.; Fernández-Villegas, A.; Carrilero, B.; Marañón, C.; Saura, D.; Noya, O.; Segovia, M.; Alarcón de Noya, B.; Alonso, C.; López, M.C. Characterization of an immunodominant antigenic epitope from Trypanosoma cruzi as a biomarker of chronic Chagas’ disease pathology. Clin. Vaccine Immunol. 2012, 19, 167–173. [Google Scholar] [CrossRef]
- Balouz, V.; Cámara, M.L.; Cánepa, G.E.; Carmona, S.J.; Volcovich, R.; Gonzalez, N.; Altcheh, J.; Agüero, F.; Buscaglia, C.A. Mapping antigenic motifs in the trypomastigote small surface antigen from Trypanosoma cruzi. Clin. Vaccine Immunol. 2015, 22, 304–312. [Google Scholar] [CrossRef]
- Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinform. 2008, 9, 40. [Google Scholar] [CrossRef]
- Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc. 2010, 5, 725–738. [Google Scholar] [CrossRef]
- Saez-Alquezar, A.; Junqueira, A.C.; Durans, A.M.; Guimarães, A.V.; Corrêa, J.A.; Provance, J.D.W.; Cabello, P.H.; Coura, J.R.; Viñas, P.A. Application of WHO International Biological Standards to evaluate commercial serological tests for chronic Chagas disease. Mem. Inst. Oswaldo Cruz 2020, 115, e200214. [Google Scholar] [CrossRef]
- Bern, C.; Montgomery, S.P.; Herwaldt, B.L.; Rassi, A.J.; Marin-Neto, J.A.; Dantas, R.O.; Maguire, J.H.; Acquatella, H.; Morillo, C.; Kirchhoff, L.V.; et al. Evaluation and treatment of chagas disease in the United States: A systematic review. JAMA 2007, 298, 2171–2181. [Google Scholar] [CrossRef]
- Bartsch, S.M.; Avelis, C.M.; Asti, L.; Hertenstein, D.L.; Ndeffo-Mbah, M.; Galvani, A.; Lee, B.Y. The economic value of identifying and treating Chagas disease patients earlier and the impact on Trypanosoma cruzi transmission. PLoS Negl. Trop. Dis. 2018, 12, e0006809. [Google Scholar] [CrossRef]
- Sáez-Alquezar, A.; Junqueira, A.C.V.; Durans, A.M.; Guimarães, A.V.; Corrêa, J.A.; Borges-Pereira, J.; Zauza, P.L.; Cabello, P.H.; Albajar-Vinãs, P.; Provance, J.D.W.; et al. Geographical origin of chronic Chagas disease patients in Brazil impacts the performance of commercial tests for anti-T. cruzi IgG. Mem. Inst. Oswaldo Cruz 2021, 116, e210032. [Google Scholar] [CrossRef]
- Crameri, A.; Whitehorn, E.A.; Tate, E.; Stemmer, W.P. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 1996, 14, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.C.; DeLisa, M.P. Laboratory evolution of fast-folding green fluorescent protein using secretory pathway quality control. PLoS ONE 2008, 3, e2351. [Google Scholar] [CrossRef]
- Ormo, M.; Cubitt, A.B.; Kallio, K.; Gross, L.A.; Tsien, R.Y.; Remington, S.J. Crystal structure of the Aequorea victoria green fluorescent protein. Science 1996, 273, 1392–1395. [Google Scholar] [CrossRef]
- Pedelacq, J.D.; Cabantous, S.; Tran, T.; Terwilliger, T.C.; Waldo, G.S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 2006, 24, 79–88. [Google Scholar] [CrossRef]
- Abedi, M.R.; Caponigro, G.; Kamb, A. Green fluorescent protein as a scaffold for intracellular presentation of peptides. Nucleic Acids Res. 1998, 26, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Kiss, C.; Fisher, H.; Pesavento, E.; Dai, M.; Valero, R.; Ovecka, M.; Nolan, R.; Phipps, M.L.; Velappan, N.; Chasteen, L.; et al. Antibody binding loop insertions as diversity elements. Nucleic Acids Res. 2006, 34, e132. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sierra, A.M.; Ai, H.W.; Campbell, R.E. Identification of sites within a monomeric red fluorescent protein that tolerate peptide insertion and testing of corresponding circular permutations. Photochem. Photobiol. 2008, 84, 111–119. [Google Scholar] [CrossRef]
- Paramban, R.I.; Bugos, R.C.; Su, W.W. Engineering green fluorescent protein as a dual functional tag. Biotechnol. Bioeng. 2004, 86, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Paschke, M.; Tiede, C.; Hohne, W. Engineering a circularly permuted GFP scaffold for peptide presentation. J. Mol. Recognit. 2007, 20, 367–378. [Google Scholar] [CrossRef]
- Pavoor, T.V.; Cho, Y.K.; Shusta, E.V. Development of GFP-based biosensors possessing the binding properties of antibodies. Proc. Natl. Acad. Sci. USA 2009, 106, 11895–11900. [Google Scholar] [CrossRef]
- Peelle, B.; Gururaja, T.L.; Payan, D.G.; Anderson, D.C. Characterization and use of green fluorescent proteins from Renilla mulleri and Ptilosarcus guernyi for the human cell display of functional peptides. J. Protein Chem. 2001, 20, 507–519. [Google Scholar] [CrossRef]
- Wang, R.; Xiang, S.; Zhang, Y.; Chen, Q.; Zhong, Y.; Wang, S. Development of a functional antibody by using a green fluorescent protein frame as the template. Appl. Environ. Microbiol. 2014, 80, 4126–4137. [Google Scholar] [CrossRef]
- Zhong, J.Q.; Freyzon, Y.; Ehrlich, D.J.; Matsudaira, P. Enhanced detection sensitivity using a novel solid-phase incorporated affinity fluorescent protein biosensor. Biomol. Eng. 2004, 21, 67–72. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, X.; Wang, R.; Wang, S.; Shi, N. The structure of a GFP-based antibody (fluorobody) to TLH, a toxin from Vibrio parahaemolyticus. Acta Crystallogr. F Struct Biol. Commun. 2015, 71, 913–918. [Google Scholar] [CrossRef]
- Grayson, K.J.; Anderson, J.L.R. Designed for life: Biocompatible de novo designed proteins and components. J. R. Soc. Interface 2018, 15, 20180472. [Google Scholar] [CrossRef]
- Yang, C.; Sesterhenn, F.; Bonet, J.; van Aalen, E.A.; Scheller, L.; Abriata, L.A.; Cramer, J.T.; Wen, X.; Rosset, S.; Georgeon, S.; et al. Bottom-up de novo design of functional proteins with complex structural features. Nat. Chem. Biol. 2021, 17, 492–500. [Google Scholar] [CrossRef]
- De-Simone, S.G.; Napoleão-Pêgo, P.; Gonçalves, P.S.; Lechuga, G.C.; Mandonado, A., Jr.; Graeff-Teixeira, C.; Provance, D.W., Jr. Angiostrongylus cantonensis an atypical presenilin: Epitope mapping, characterization, and development of an ELISA peptide assay for specific diagnostic of Angiostrongyliasis. Membranes 2022, 12, 108. [Google Scholar] [CrossRef]
- Cormack, B.P.; Valdivia, R.H.; Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 1996, 173, 33–38. [Google Scholar] [CrossRef]
- Cabantous, S.; Nguyen, H.B.; Pedelacq, J.D.; Koraichi, F.; Chaudhary, A.; Ganguly, K.; Lockard, M.A.; Favre, G.; Terwilliger, T.C.; Waldo, G.S. A new protein-protein interaction sensor based on tripartite split-GFP association. Sci. Rep. 2013, 3, 2854. [Google Scholar] [CrossRef]
Epitope | Sequence | Insertion Site a | AA Duplication b | Protein Origin | Refs. | |
---|---|---|---|---|---|---|
DxCruzV1 | 1 | KFAELLEQQKNAQFPGK | 20 | - | KMP11 | [34] |
2 | KAAAAPA c | 74 | KL | TcE | [35,36] | |
3 | KAAIAPA d | 124 | DV | TcE | [35,36] | |
4 | GDKPSPFGQAAAADK | 139 | GT | PEP-2; B13; Ag2 | [37,38,39] | |
5 | KQKAAEATK | 161 | LK | CRA | [40,41,42] | |
6 | AEPKPAEPKS | 178 | TAD | TcD-2 | [36,39] | |
7 | AEPKSAEPKP | 199 | GS | TcD-1 | [36,39] | |
8 | GTSEEGSRGGSSMPS | 215 | DGP | TcLo 1.2 | [36] | |
9 | SPFGQAAAGDK | 238 | EL | PEP-2; B13; Ag2 | [37,38,39] | |
10 | KQRAAEATK | C-term | - | CRA | [40,41,42] | |
DxCruziV2 | 1 | KFAELLEQQKNAQFPGK | 1 | - | KMP11 | [34] |
11 | DSSAHSTPSTPA | 74 | KL | SAPA | [43,44] | |
4 | GDKPSPFGQAAAADK | 139 | GT | PEP-2; B13; Ag2 | [37,38,39] | |
12 | FGQAAAGDKPS | 162 | KLK | 3973 (TcCA-2) | [45] | |
6 | AEPKPAEPKS | 178 | TAD | TcD-2 | [36] | |
13 | PPSGTENNKPATG | 199 | GSGTSWKGS | TSSA | [46] | |
8 | GTSEEGSRGGSSMPS | 215 | DGP | TcLo1.2 | [36] | |
9 | SPFGQAAAGDK | 238 | EL | PEP-2; B13; Ag2 | [37,38,39] | |
3 | KAAIAPA | C-term | GTSWKGD | TcE | [35,36] | |
10 | KQRAAEATK | C-term | - | CRA | [40,41,42] |
Parameter | DxCruziV1 | DxCruziV2 | ||
---|---|---|---|---|
O.D. 405 | >0.2635 | >0.3170 | >0.2600 | >0.3065 |
Sensitivity (95% CI a) | 100.0% (93.98 to 100.0%) | 100.0% (93.98 to 100.0%) | 96.67% (88.64 to 99.41%) | 96.67% (88.64 to 99.41%) |
Specificity (95%CI) | 98.68% (93.98 to 100.0%) | 100.0% (95.19 to 100.0%) | 98.68% (92.92 to 99.93%) | 100.0% (95.19 to 100.0%) |
Kappa Index | 0.97 | 1.00 | 0.94 | 0.96 |
Likelihood Ratio | 76.0 | - | 73.47 | - |
False Positive | 2.7% | 0.0% | 1.3% | 1.3% |
False Negative | 0.0% | 0.0% | 3.3% | 5.0% |
PPV b | 96.8 | 100.0 | 98.3 | 98.3 |
NPV c | 100.0 | 100.0 | 97.4 | 96.1 |
Concordance | 98.5% | 100.0% | 97.8% | 97.0% |
Non-Concordance | 1.5% | 0.0 | 2.2% | 3.0% |
Area Under Curve | 1 | 0.998 | ||
Std. Error | 0 | 0.001661 | ||
95% CI | 1.00 to 1.00 | 0.995 to 1.00 | ||
p value | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durans, A.d.M.; Napoleão-Pêgo, P.; Reis, F.C.G.; Dias, E.R.; Machado, L.E.S.F.; Lechuga, G.C.; Junqueira, A.C.V.; De-Simone, S.G.; Provance, D.W., Jr. Chagas Disease Diagnosis with Trypanosoma cruzi-Exclusive Epitopes in GFP. Vaccines 2024, 12, 1029. https://doi.org/10.3390/vaccines12091029
Durans AdM, Napoleão-Pêgo P, Reis FCG, Dias ER, Machado LESF, Lechuga GC, Junqueira ACV, De-Simone SG, Provance DW Jr. Chagas Disease Diagnosis with Trypanosoma cruzi-Exclusive Epitopes in GFP. Vaccines. 2024; 12(9):1029. https://doi.org/10.3390/vaccines12091029
Chicago/Turabian StyleDurans, Andressa da M., Paloma Napoleão-Pêgo, Flavia C. G. Reis, Evandro R. Dias, Luciana E. S. F. Machado, Guilherme C. Lechuga, Angela C. V. Junqueira, Salvatore G. De-Simone, and David W. Provance, Jr. 2024. "Chagas Disease Diagnosis with Trypanosoma cruzi-Exclusive Epitopes in GFP" Vaccines 12, no. 9: 1029. https://doi.org/10.3390/vaccines12091029
APA StyleDurans, A. d. M., Napoleão-Pêgo, P., Reis, F. C. G., Dias, E. R., Machado, L. E. S. F., Lechuga, G. C., Junqueira, A. C. V., De-Simone, S. G., & Provance, D. W., Jr. (2024). Chagas Disease Diagnosis with Trypanosoma cruzi-Exclusive Epitopes in GFP. Vaccines, 12(9), 1029. https://doi.org/10.3390/vaccines12091029