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Abstract: Background: Routine childhood vaccination, e.g., for diphtheria, tetanus, and pertussis
(DTP), might provide additional protection against SARS-CoV-2 infection. This concept of heterolo-
gous immunity was explored in healthy children receiving both DTP and inactivated SARS-CoV-2
vaccines. Methods: A cross-sectional study was performed on 154 healthy children aged 6–8 years old
in Jakarta, Indonesia. Their vaccination status for the DTP (including a diphtheria–tetanus booster
vaccine at 5 years old) and CoronaVac (from 6 years old) vaccines were recorded. Peripheral blood
samples were collected from all participants, in which anti-diphtheria toxoid IgG and anti-SARS-CoV-
2 S-RBD antibodies and T cell-derived IFN-γ were measured. Results: The study participants with
complete DTP vaccination had significantly higher titers of anti-diphtheria toxoid IgG than the ones
without (median = 0.9349 versus 0.2113 IU/mL; p < 0.0001). Upon stratification based on DTP and
CoronaVac vaccination statuses, the participants with complete DTP and CoronaVac vaccinations
had the highest titer of anti-SARS-CoV-2 S-RBD antibodies (median = 1196 U/mL) and the highest
concentration of SARS-CoV-2-specific T cell-derived IFN-γ (median = 560.9 mIU/mL) among all
the groups. Conclusions: Healthy children aged 6–8 years old with complete DTP and CoronaVac
vaccinations exhibited stronger SARS-CoV-2-specific T cell immune responses. This might suggest an
additional benefit of routine childhood vaccination in generating protection against novel pathogens,
presumably via heterologous immunity.

Keywords: children; SARS-CoV-2-specific immune response; heterologous immunity; diphtheria–
tetanus–pertussis vaccine; inactivated COVID-19 vaccine

1. Introduction

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) infection, is now globally endemic. From early 2020
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until June 2024, the cumulative number of COVID-19 cases in the world and Indonesia
has risen to 775,583,309 and 6,829,057 confirmed cases, respectively [1]. Furthermore,
the COVID-19-associated mortality in the world and Indonesia by early June 2024 was
already at 7,050,691 and 162,058 deaths, respectively [1], emphasizing the need for effective
prevention and treatment methods for COVID-19. With regard to preventive measures,
vaccination is one of the most important public health tools. Various types of vaccines are
available against symptomatic SARS-CoV-2 infection, including, but not limited to, inacti-
vated virus vaccines (Sinovac’s CoronaVac, Sinopharm’s Covilo BBIBP-CorV, and Bharat
Biotech’s Covaxin), messenger RNA-based vaccines (Moderna’s Spikevax mRNA-1273
and Pfizer–BioNTech’s Comirnaty BNT162b2), adenovirus vector–based vaccines (As-
traZeneca’s Vaxzevria and Covishield ChAdOx1 as well as Johnson & Johnson–Janssen’s
Ad26.COV2.S), and adjuvanted protein vaccines (Novavax’s Nuvaxovid and Covovax
NVX-CoV2373) [2]. The widespread disparity in vaccine distribution, however, impedes
the collective effort to mitigate the severity of COVID-19 by administering the vaccines,
with populations from low- and middle-income countries disproportionately suffering due
to this inequality [3,4].

One sub-group of those populations is children under 12 years old. This age group
is less prioritized in many countries for vaccination because of the limited availability
of COVID-19 vaccines, the presumed milder symptoms of SARS-CoV-2 infection among
children, as well as the incomplete knowledge on the risks and benefits offered by pediatric
COVID-19 vaccines [5–9]. However, this does not exclude a risk that SARS-CoV-2 infection
could cause a severe disease or multisystem inflammatory syndrome in children (MIS-
C) [10–12]. Indeed, several low- and middle-income countries, including Indonesia, have
reported relatively high incidences of severe COVID-19 among children, particularly prior
to the circulation of the Omicron variant [13–17], stressing an urgent need for COVID-19
vaccination for this age group in these countries. In addition, SARS-CoV-2-infected children,
despite their asymptomatic status, could become a potential reservoir for transmission
to vulnerable family members and the evolution of SARS-CoV-2 variants [18]. Taken
together, policies to vaccinate children under 12 years old against SARS-CoV-2 infection
are arguably prudent.

Various types of COVID-19 vaccines have been used to vaccinate healthy children
under 12 years old, including the mRNA-based (e.g., BNT162b2 and mRNA-1273), recombi-
nant adenovirus vector-based (e.g., ChAdOX1), and inactivated SARS-CoV-2 vaccines (e.g.,
CoronaVac and BBIBP-CorV) [19,20]. To date, most studies on COVID-19 vaccination in
children focused on the administration of the BNT162b2 and CoronaVac vaccines as these
two vaccines are arguably the most common COVID-19 vaccines used in children [20,21].
Nonetheless, a recent meta-analysis was performed to assess the immunogenicity and
effectiveness of all the COVID-19 vaccines (including BNT162b2 and CoronaVac) used in
children and adolescents; it reported that those who were vaccinated with the mRNA-based
vaccines had a higher seroconversion rate than the those who received inactivated vaccines
(98.8 versus 92.8%). Interestingly, the seroconversion rate was higher in vaccinated children
aged 5–11 years than in adolescents aged 12–18 years (97.6 versus 91.3%) [20]. This study
also calculated the pooled vaccine effectiveness (by combining the results of all the vaccines)
and found that the fully vaccinated group exhibited higher effectiveness against SARS-CoV-
2 infection (63.3 versus 42.9%), COVID-19 (75.8 versus 60.7%), and hospitalization due to
COVID-19 (82.8 versus 72.7%) compared to the partially vaccinated group. Of note, within
the fully vaccinated group, the pooled vaccine effectiveness of the COVID-19 vaccines
against hospitalization due to COVID-19 (82.8%) was higher than the effectiveness against
SARS-CoV-2 infection (63.3%) or against COVID-19 (75.8%). Intriguingly, the pooled vac-
cine effectiveness against SARS-CoV-2 infection (66.8 versus 38.7%), COVID-19 (74.9 versus
59.6%), as well hospitalization due to COVID-19 (90.1 vs. 65.9%) were higher in children
and adolescents aged 12–18 than in children under 11 years, suggesting that the efficacies
of COVID-19 vaccines in children aged 5–11 years old might not be as high as the ones
observed in adolescents [20].
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Upon administration of a new vaccine to children, parental concerns are commonly
observed regarding safety and potential adverse events. For the mRNA-based vaccines,
rare instances of myocarditis and pericarditis have been observed in adolescents and
young adults, which appear to be dependent on the dosage and timing. Nonetheless, the
risk of myocarditis in children aged six months to five years is expected to be minimal,
considering the lower vaccine doses for the younger age group and the relatively low
rates of myocarditis in young children. Other adverse events have been recorded as
being lower in children under 11 years than in adolescents aged 12 to 17 years, with mild
local and systemic reactions being the most reported ones, including injection site pain,
tiredness, headache, myalgia, and chills [22–25]. For the inactivated SARS-CoV-2 vaccines,
the adverse events were generally less pronounced in younger children, consistent with
the observations for the mRNA-based vaccines [19,24,26,27], suggesting that the safety
and tolerability profiles of the inactivated vaccines are acceptable. Of note, a subgroup
analysis showed that the incidence rate of adverse events upon administration of the mRNA
vaccines was higher than that of the inactivated SARS-CoV-2 vaccines [20]. In addition,
over 65% of the side effects from COVID-19 vaccination in children resolved or diminished
within 1–3 days [19]. Taken together, these reinforce the notion that the current COVID-19
vaccines, particularly the mRNA-based and inactivated vaccines, are safe to be prescribed
for healthy children.

As the clinical trials on COVID-19 vaccines mainly tested healthy pediatric popula-
tions, there is an interest to assess the immunogenicity and safety of COVID-19 vaccines
in pediatric patients with underlying chronic diseases, including immunodeficiencies. Al-
though it was observed that immunocompromised children did not have a higher risk
of contracting COVID-19 compared to healthy controls, high-risk immunocompromised
pediatric patients tended to contract severe COVID-19, including the ones receiving intense
chemotherapy or high doses of steroid medications [28]. As expected, children receiving
immunosuppressive agents exhibited lower immunogenicity than immunocompetent pe-
diatric patients upon vaccination with two doses of BNT162b2 or CoronaVac, suggesting
that they would require additional vaccinations to confer sufficient protection against
SARS-CoV-2 infection [29–34]. Nonetheless, both the BNT162b2 and CoronaVac vaccines
were observed to be safe for pediatric patients with underlying diseases [29,30,33].

The Ministry of Health of Republic of Indonesia has recommended two COVID-19
vaccines for children aged 6–11 years old: CoronaVac and BNT162b2. However, the pedi-
atric COVID-19 vaccination program in Indonesia is facing significant hurdles, including
parental hesitancy and a shortage of vaccines [35,36]. As a part of the national COVID-19
vaccination program, the CoronaVac vaccine has been administered to Indonesian chil-
dren aged 6 years old and above since December 2021. Until 28 August 2024, there were
approximately 26.4 million children aged 6–11 years old who had received two doses of
CoronaVac [37]. However, its availability has become scarce in Indonesia since October
2022 [38,39], prompting the need for improvised methods to keep protecting the pediatric
population in Indonesia against SARS-CoV-2 infection.

One of the proposed methods is by investigating the protection against COVID-
19 offered by routine vaccines against unrelated pathogens. This concept is known as
heterologous immunity, which is an induction of adaptive immune responses using a
certain pathogen or vaccine against an unrelated pathogen [40]. Three vaccines have been
hypothesized to generate heterologous immunity due to their association with reductions
in all-cause infant mortality: bacillus Calmette–Guérin, measles-containing vaccines, as
well as the diphtheria–tetanus–pertussis (DTP) vaccine. DTP vaccination is of interest
due to several reasons: (i) an in silico investigation reported high similarities between the
antigens targeted by the SARS-CoV-2 and DTP vaccines [41]; (ii) diphtheria and tetanus
vaccination has been associated with a lower risk of COVID-19 hospitalization among older
populations in the UK [42]; and (iii) DTP booster vaccination (using a diphtheria–tetanus
vaccine in Indonesia) is administered at 5 years old [43], which is a relatively short time
before the start of CoronaVac vaccination at 6 years old. If heterologous immunity does
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exist, the immunological memory created by DTP vaccination and boosters will increase
the efficacy of CoronaVac vaccination.

We therefore investigated the potential heterologous immunity induced by DTP (in-
cluding diphtheria-tetanus booster) and CoronaVac vaccinations in healthy children aged
6–8 years old living in Jakarta, Indonesia. Peripheral blood samples were collected from
all the study participants. Anti-diphtheria immunoglobulin G was quantified as an in-
dicator of successful DTP vaccination. SARS-CoV-2-specific adaptive immune responses
were assessed as well, i.e., the levels of anti-SARS-CoV-2 S-RBD antibodies and T cell-
derived interferon gamma were measured to reflect the humoral and cellular immune
responses, respectively.

2. Materials and Methods
2.1. Study Design and Participants

A cross-sectional study on healthy children aged 6–8 years old was conducted between
November 2022 and October 2023, which was preceded by questionnaire-based data
collection from parents of eligible subjects living in the Senen district, Central Jakarta,
Indonesia. The questionnaire-based results have been published [36]. Pertaining to the
status of DTP vaccination among the study participants, their titers of anti-diphtheria
toxoid antibodies have been published as well (manuscript was accepted).

The inclusion criteria were (i) healthy children aged 6–8 years old and (ii) no con-
firmed history of COVID-19. The exclusion criteria were (i) obese and having a poor
nutrition status; (ii) received less than three doses of the primary DTP immunization;
(iii) received less than two doses of a COVID-19 vaccine (CoronaVac vaccine, an inacti-
vated SARS-CoV-2, or aluminum hydroxide-adjuvanted vaccine [Sinovac Life Sciences,
Beijing, China]); (iv) received a different type of immunization less than a month prior
to the commencement of the study; (v) have primary immunodeficiency disease, autoim-
mune disease, cancer, or a chronic or congenital disease; and (vi) took medication that
could alter the immune response in the past 4 weeks, e.g., long-term corticosteroid, in-
travenous immunoglobulin drugs, or blood products. The minimum number of subjects
was estimated to be 110 individuals. This study was approved by the Ethics Committee
of the Faculty of Medicine, Universitas Indonesia and Cipto Mangunkusumo Hospital
(KET-1160/UN2.F1/ETIK/PPM.00.02/2022). All parents of the recruited study participants
provided their consent for their children to participate.

This study was conducted following the Ministry of Health’s mandatory national
vaccination program for school-age children in Indonesia for DTP and COVID-19 vacci-
nations. The DTP vaccine (using whole-cell pertussis) as well as DT booster vaccine were
produced by BioFarma, Indonesia, in which the concentrations of diphtheria, pertussis,
and tetanus were 30, 4, and 40 IU, respectively, per dose. The CoronaVac vaccine was
produced by Sinovac Life Sciences, China, in which its concentration was 3 µg per dose.
In this routine vaccination program for school-age children, the vaccines were distributed
via the Province Deputy of the Ministry of Health and were transported and stored strictly
adhering to the recommended cold chain management. Trained medical staff intramus-
cularly administered the vaccines using a sterile 0.5 mL syringe to the deltoid area of the
children. An aseptic procedure was always properly performed prior to the administration.
Parents were provided with letters advising them on how to manage any adverse reactions
post-immunization, such as fever or pain at the site of injection [44]. It is well known
that upon DTP (using whole-cell pertussis) vaccination, mild side effects are commonly
observed in infants and children, including local reactions (50%) and systemic reactions,
e.g., fever above 38 ◦C and irritability (40–75%), drowsiness (33–62%), loss of appetite
(20–35%), and vomiting (6–13%) [45]. Severe adverse events upon DTP vaccination (using
whole-cell pertussis) are uncommon, but they could include a temperature exceeding
40.5 ◦C (occurring in 0.3% of vaccine recipients), febrile seizures (8 per 100,000 vaccinated
subjects), or hypotonic–hyporesponsive episodes (ranging from 0 to 291 per 100,000 vacci-
nated subjects) [45]. No serious adverse events following CoronaVac vaccination among
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children have been reported in Indonesia to date. Of note, the timing of the administration
of the DTP vaccine, DT booster vaccine, and CoronaVac vaccine were obtained from the
official vaccination records.

2.2. Humoral Immune Response Assays

The blood collected from all the participants was assessed for serum anti-diphtheria
immunoglobulin G (IgG) and SARS-CoV-2 S-RBD antibodies. The titers of anti-diphtheria
IgG were assessed using a commercial enzyme-linked immunosorbent assay (ELISA) (anti-
diphtheria toxoid IgG ELISA, EUROIMMUN, Lübeck, Germany). This method utilizes
inactivated diphtheria toxin as a tracer antigen for the quantitative assessment of anti-
diphtheria toxoid IgG in serum [46]. The total antibodies (including IgG) against the
SARS-CoV-2 spike protein receptor-binding domain (S-RBD) were assessed using an elec-
trochemiluminescence assay from Roche (Elecsys® anti-SARS-CoV-2) with the Cobas e
411 analyzer (Roche Diagnostic, Rotkreuz, Switzerland). According to the manufacturer,
the measuring range is between 0.4 and 250 U/mL in undiluted samples, with a value
below 0.8 U/mL considered negative and a value equal to or above 0.8 U/mL considered
positive [47]. If an undiluted sample exhibited a value above 2500 U/mL, it would be
diluted 1:10 until it exhibited a value below 2500 U/mL.

2.3. Cellular Immune Response Assay

The specific cellular immunity was assessed by measuring SARS-CoV-2-specific T
cell-derived interferon gamma (IFN-γ) levels using the EUROIMMUN SARS-CoV-2 Quan-T
cell interferon gamma-release assay (IGRA) (EUROIMMUN, Lübeck, Germany). The assay
was used to assess the specific production of IFN-γ by CD4+ and CD8+ T lymphocytes
upon stimulation with SARS-CoV-2 spike protein-derived peptides [48]. Briefly, 500 µL of
whole blood in a lithium heparin tube was transferred within an hour to three tubes: (i) a
SARS-CoV-2 IGRA BLANK with no T cell activating component, reflecting the background
T cell activity, (ii) a SARS-CoV-2 IGRA TUBE coated with a pool of SARS-CoV-2 spike
protein-derived peptides that are able to stimulate specific CD4+ and CD8+ T lymphocytes,
and (iii) a SARS-CoV-2 IGRA STIM tube coated with a mitogen for non-specific T cell
stimulation, which was used as a control for the viability and stimulation ability of the T
cells. After six inversions, these tubes were incubated at 37 ◦C for 20–24 h and subsequently
centrifuged at room temperature for 10 min at 12,000× g. The supernatant was stored at
−20 ◦C until the measurements were performed. The IFN-γ measurements were performed
using ELISA (EUROIMMUN, Lübeck, Germany). The supernatant was diluted 1:5 with a
dilution buffer. Six calibrators and two controls were used in each run. The specific IFN-γ
concentrations were obtained after subtracting the BLANK value from the TUBE/STIM
value, and the concentrations were expressed in mIU/mL. Results < 100 and >200 mIU/mL
were considered negative and positive, respectively. The upper limit of detection was
2500 mIU/mL.

2.4. Statistical Analysis

The statistical analyses were performed using the IBM SPSS Statistics for Windows
version 26.0 (IBM Corp., Armonk, NY, USA). Descriptive data are presented as median
values with minimum and maximum values for continuous variables, while categorical
variables are presented as a frequency and percentage. Differences in anti-diphtheria
toxoid IgG or anti-SARS-CoV-2 S-RBD antibody titers between study participants who
had and had not received a DT booster were analyzed using the Mann–Whitney test.
Differences in anti-SARS-CoV-2 S-RBD titers or SARS-CoV-2-specific T cell-derived IFN-
γ concentrations among the groups was assessed using the Kruskal–Wallis test. If the
difference was significant (p-value less than 0.05), Dunn’s multiple comparisons test was
performed to analyze the differences between the two groups. The data were visualized
using GraphPad Prism version 10.2.3 (GraphPad Software, Boston, MA, USA).
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3. Results
3.1. Characteristic of Study Participants

One hundred and fifty four children were recruited for this study (Table 1), with a
median age of 92 months and BMI of 14.8 kg/m2, which is considered underweight [49].
The proportion of boys and girls were 39% and 61%, respectively. Most study participants
came from lower-income families. Although a prior diagnosis of COVID-19 excluded
eligible subjects from this study, most study participants reported a history of unknown
acute respiratory infection in the past 6 months, of whom, 31.2% experience a respiratory
infection more than three times. Many of them also had family members who had been
diagnosed with COVID-19.

Table 1. Characteristics of study participants (n = 154).

Variable Value

Age, months [median (minimum–maximum)] 92 (81–103)
BMI, kg/m2 [median (minimum–maximum)] 14.8 (12.3–19.7)

Sex [n (%)]
Male 60 (39)
Female 94 (61)

Parental occupation [n (%)]
Working 71 (46.1)
Not working 83 (53.9)

Parental income [n (%)]
Equal or above the minimum wage 24 (15.6)
Below the minimum wage 130 (84.4)

History of acute respiratory infection in last 6 months [n (%)]
<3 times 106 (68.8)
≥3 times 48 (31.2)

History of COVID-19 disease in other family members [n (%)]
No 73 (47.4)
Yes 81 (52.6)

Classification based on vaccination statuses [n (%)]
Group A (COVID-19 yes/DTP yes) 39 (25.3)
Group B (COVID-19 yes/DTP no) 38 (24.7)
Group C (COVID-19 no/DTP yes) 38 (24.7)
Group D (COVID-19 no/DTP no) 39 (25.3)

The minimum wage in Jakarta in 2024 was IDR 5,067,381 (approximately USD 325). COVID-19 vaccination status
was recorded as a yes if the subject received 2 doses of CoronaVac. DTP vaccination status was recorded as a yes
if the subject received 3 doses of the DTP vaccine and a booster DT vaccine at five years old (with or without
receiving an additional DTP vaccine before two years old). BMI, body mass index; COVID-19, coronavirus disease
2019; DTP, diphtheria–tetanus–pertussis; DT, diphtheria–tetanus.

The study participants were subsequently classified based on their COVID-19 and
DTP vaccination statuses. The study participants were categorized as “yes” for COVID-19
vaccination if they had received two doses of the CoronaVac vaccine; the participants
were categorized as “yes” for DTP vaccination if they had received three doses of the DTP
vaccine and one dose of the DT booster vaccine at 5 years old, irrespective of whether
they had received an additional dose of the DTP vaccine before 2 years old. The study
participants were subsequently grouped into four groups: there were 39 children in group A
(“COVID-19 yes/DTP yes”), 38 children in group B (“COVID-19 yes/DTP no”), 38 children
in group C (“COVID-19 no/DTP yes”), and 39 children in group D (“COVID-19 no/DTP
no”). The frequency of acute respiratory infection as well as incidence of COVID-19 among
their family members were evenly distributed among these four groups (Supplementary
Table S1).

3.2. Humoral Immune Response Following DTP and/or COVID-19 Vaccination

DTP primary vaccination (using whole-cell pertussis) along with DT booster vaccina-
tion are included in the mandatory national vaccination program in Indonesia. In order to
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assess whether DTP vaccination could enhance the efficacy of CoronaVac vaccination in
generating COVID-19-specific immune responses, the study participants were classified
into two groups, i.e., “DTP yes” and “DTP no” (i.e., only received three doses of the DTP
vaccine). There were 77 children in each group. As a surrogate marker of DTP vaccination +
booster status, the titer of anti-diphtheria toxoid IgG was measured in all study participants
(Supplementary Figure S1). As expected, the study participants in the group “DTP yes”
had a significantly higher titer (median = 0.9349 IU/mL) compared to the ones in the group
“DTP no” (median = 0.2113 IU/mL). Of note, a further sub-stratification of group “DTP yes”
based on whether they received an additional dose of the DTP vaccine before 2 years old
(“Full”; n = 63; median = 0.9349 IU/mL) or not (“Partial”; n = 14; median = 0.6290 IU/mL)
did not show any significant difference (p = 0.2630; Supplementary Figure S2). The group
“DTP yes” in the subsequent analyses consisted of all study participants receiving the DT
booster vaccine, irrespective of whether they had received an additional dose of the DTP
vaccine before two years old.

The study participants were subsequently assessed based on their COVID-19 vacci-
nation status; they were classified into four groups based on their DTP and COVID-19
vaccination statuses (Supplementary Table S2). Regarding the subjects who had received
COVID-19 vaccination (n = 77), the interval between the second dose of CoronaVac and the
laboratory measurements of their humoral and cellular immune responses varied between
12 and 20 months, with the time intervals of 18 (n = 27), 17 (n = 15) and 19 (n = 13) months
being frequently observed (Figure 1).
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Figure 1. Time interval between the second dose of CoronaVac vaccine and laboratory assays
measuring SARS-CoV-2-specific humoral and cellular immune responses. The data were obtained
from 77 subjects who received DTP vaccination + booster and CoronaVac vaccination. The vertical
axis is the time interval in months, and the horizontal axis is the absolute number of participants.

The overall findings suggested that there was no statistical difference in the titers
of anti-SARS-CoV-2 S-RBD antibodies among the four groups (p = 0.089). Nonetheless,
as expected, group A (“COVID-19 yes/DTP yes”) had the highest median titer of anti-S-
RBD antibodies (median = 1196 U/mL), while group D (“COVID-19 no/DTP no”) had the
lowest median titer of anti-S-RBD antibodies (median = 527.9 U/mL). Group C (“COVID-19
no/DTP yes”) surprisingly had the second highest median titer of anti-S-RBD antibodies
(median = 1163 U/mL), despite the participants not receiving two doses of the CoronaVac
vaccine. Interestingly, group A had a higher median titer than group B (“COVID-19
yes/DTP no”; median = 771.2 U/mL), suggesting an enhancing effect of DTP vaccination
on the CoronaVac vaccine in generating COVID-19-specific humoral immunity. A follow-up
analysis was performed by stratifying the titers of anti-SARS-CoV-2 S-RBD antibodies based
on their DTP vaccination status. Interestingly, Table 2 shows that the study participants from
the group of “DTP yes” had a higher median titer of anti-SARS-CoV-2 S-RBD antibodies
than the ones from the group of “DTP no”.
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Table 2. Titers of anti-SARS-CoV-2 S-RBD antibodies based on DTP vaccination status.

DTP Vaccination Status n Anti-SARS-CoV-2 S-RBD (U/mL)
Median (Min–Max) p-Value

Yes 77 1182 (0.3–22,269)
0.026No 77 612.5 (0.3–14,589)

Mann–Whitney test was performed with p-values < 0.05 considered statistically significant.

3.3. Cellular Immune Response Following DTP and COVID-19 Vaccinations

Upon the observation that DTP vaccination might be able to modulate COVID-19-
specific humoral immunity, it was of interest to assess the COVID-19-specific cellular
immunity as well. The interferon gamma-release assay following ex vivo whole blood stim-
ulation with a pool of SARS-CoV-2 spike protein-derived peptides was deployed because
this approach is relatively simple but reliable and it allows for an unbiased analysis of the
T cell response to SARS-CoV-2-specific antigens using limited amounts of blood [48,50]. As
shown in Figure 2, the stratification of the study participants based on their COVID-19 and
DTP vaccination statuses provided a clear assessment of their COVID-19-specific cellular
immunity. Group A had the highest median concentration of T cell-derived IFN-γ, followed
by groups B, C, and D. The IFN-γ concentration in group A (median = 560.9 mIU/mL)
was significantly higher than that of group C (median = 230.8 mIU/mL; p = 0.0003) or D
(median = 187.9 mIU/mL; p = 0.0027), suggesting a potential synergism between DTP and
CoronaVac vaccinations to generate COVID-19-specific T cell immunity in these pediatric
subjects. Despite no significant difference in the IFN-γ concentration between groups A
and B (median = 560.9 versus 318.0 mIU/mL; p = 0.6634), it was interesting to note that
there was an increasing trend in IFN-γ production among the study participants who had
received both COVID-19 and DTP vaccinations. This finding suggests that complete DTP
vaccination might be able to boost the SARS-CoV-2-specific cellular immunity generated
by CoronaVac vaccination.
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participants. The study participants were classified into four groups based on their COVID-19 and
DTP vaccination statuses: A (“COVID-19 yes/DTP yes”), B (“COVID-19 yes/DTP no”), C (“COVID-
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it was significant (p < 0.05), Dunn’s multiple comparisons test was subsequently performed. The ***
and ** indicate p < 0.001 and p < 0.01, respectively.
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4. Discussion

Here, we reported a potential synergistic impact of DTP vaccination + booster on SARS-
CoV-2-specific adaptive immune responses among 154 healthy children aged 6–8 years old
who had received two doses of the CoronaVac vaccine in Indonesia. Our findings can be
summarized in three points. First, despite DTP vaccination + booster being included in
the national pediatric immunization program in Indonesia since 2017 [51], we noticed that
only 50% of the study participants had received three doses of the DTP primary vaccine
and one dose of the DT booster vaccine at 5 years old, resulting in a substantial difference
in the anti-diphtheria toxoid IgG titers between children with a complete DTP vaccination
status and the ones with an incomplete status. Several factors contributed to the low
coverage of DTP vaccination, including inadequate health services across Indonesia, vaccine
hesitancy, and the COVID-19 pandemic [52,53]. This low coverage is alarming because
Indonesia had recently encountered several outbreaks of diphtheria and pertussis [52,54,55].
Furthermore, it has been postulated that the DTP vaccine can generate trained immunity
in innate immune cells and activate heterologous adaptive immunity against unrelated
pathogens [40]. It is unlikely that the heterologous immunity could be sufficiently created if
the coverage of DTP vaccination + booster is below the required level for mass vaccination.

Second, we observed that the administration of two doses of the CoronaVac vaccine
was effective in generating B and T cell-mediated immune responses against SARS-CoV-2
among the study participants. To date, two pediatric COVID-19 vaccines for 6-year-old
children and above are approved in Indonesia: CoronaVac and BNT162b2 [26,56]. However,
as the latter vaccine has not yet been included in the national childhood vaccination
program in Indonesia thus far, we focused our analysis on healthy children who received
the former vaccine. In Indonesia, the CoronaVac vaccine is administered twice (at 3 µg
per 0.5 mL) with an interval of 28 days for children aged 6–17 years old without any
boosters. We indeed observed that the CoronaVac-vaccinated study participants had
noticeably higher levels of anti-SARS-CoV-2 S-RBD antibodies and T cell-derived IFN-γ
compared to the ones who did not receive COVID-19 vaccination. These findings are in
accordance with previous studies on healthy children and adults, showing that CoronaVac,
an inactivated SARS-CoV-2 vaccine, could generate both humoral and cellular immune
responses [26,47,57–59]. While the induced titers of anti-SARS-CoV-2 S-RBD antibodies
were relatively low (presumably due to the lower immunogenicity of inactivated SARS-
CoV-2 vaccines [20] and a long duration between the second dose of CoronaVac and the
blood testing because a substantial waning of the specific antibodies commonly occurs
3 months post-vaccination), the T cell-specific response upon stimulation with peptides
of the SARS-CoV-2 spike protein was well maintained in this study, suggesting that an
inactivated SARS-CoV-2 vaccine was better at generating specific cellular immunity that
would help to protect against the development of severe COVID-19 compared to inducing
specific humoral immunity that could prevent a symptomatic SARS-CoV-2 infection [58,60].
Of note, it was recently published that upon administration of two doses of BNT162b2,
healthy children aged 5–12 years old mounted antibody, B cell, and T cell responses,
in which they had stronger antibody and T cell responses than adults 6 months after
vaccination. Importantly, that study also suggested that the T cell response was the most
important predictor of protection against COVID-19 in children [61].

Third, we suggest that complete DTP vaccination + booster (i.e., three doses of the
DTP primary vaccine and one dose of the DT booster vaccine at 5 years old, irrespective
of whether they received an additional dose of the DTP vaccine before 2 years old) might
be able to enhance SARS-CoV-2-specific humoral and cellular immune responses. Despite
the low coverage of DTP vaccination among the study cohort, we observed that children
with complete DTP vaccination + booster exhibited higher titers of anti-SARS-CoV-2 S-RBD
antibodies than the ones with an incomplete DTP vaccination + booster status (p = 0.026).
Although the subsequent stratification based on the COVID-19 and DTP vaccination sta-
tuses did not show any significant differences in the anti-SARS-CoV-2 S-RBD antibody
titers among the four groups, we speculate that the insignificant difference was presumably
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due to the relatively weak ability of CoronaVac vaccination to generate higher titers of
anti-SARS-CoV-2 S-RBD antibodies, as well as the substantial waning of specific antibodies
several months post-vaccination, as was reported by our group and others in healthy
children and adults [26,47,62–66]. Another possibility was that some study participants
might have been recently be infected with SARS-CoV-2, and hence anti-SARS-CoV-2 S-RBD
antibodies were detected in the unvaccinated groups, contributed to the insignificant differ-
ence among the four groups. Although we excluded children with a confirmed diagnosis
of COVID-19, we could not exclude a possibility that asymptomatic COVID-19 subjects
were recruited into this study [5,67]. A future study should be conducted with a large
cohort to validate the current findings. In contrast, we observed a significant difference in
the T cell-specific IFN-γ concentrations among the four groups, suggesting that a combi-
nation of COVID-19 and DTP vaccinations (i.e., group A) could enhance T cell immunity
against SARS-CoV-2. The potential role of heterologous immunity was supported by our
observation that the IFN-γ concentrations among groups B (“COVID-19 yes/DTP no”),
C (“COVID-19 no/DTP yes”), and D (“COVID-19 no/DTP no”) were not significantly
different. This idea aligns with published studies, which reported an association between a
recent history of DTP vaccination and protection against COVID-19 [42,68]. However, as the
IFN-γ concentrations of groups A and B in this study did not differ significantly, this also
suggests that either (i) the heterologous immune response due to DTP and CoronaVac vac-
cinations might not be strong enough to substantially enhance the T cell immunity against
SARS-CoV-2 [40,69,70] and receiving the DT vaccine (instead of DTP) as a booster at 5 years
old might not be the most optimum choice to generate a heterologous immune response
against SARS-CoV-2 [41,68], or (ii) the longer and varied duration between the DT booster
vaccination, CoronaVac vaccination, and the immunological assays might have decreased
the impact of heterologous immunity in this study [68]. Although several findings of this
study were contradictory, we nevertheless suggest that there might be a potential role of
heterologous immunity, which could explain the synergistic effect of DTP and CoronaVac
vaccinations on SARS-CoV-2-specific adaptive immune responses. In particular, the ex vivo
whole blood stimulation assay with SARS-CoV-2 spike protein-derived peptides provided
an opportunity to observe the specific production of T cell-derived IFN-γ among the study
participants. Group A had the highest median IFN-γ concentration among all the groups
in this study; this suggests a usefulness of the childhood routine vaccination program (i.e.,
DTP vaccination) in inducing heterologous immunity against SARS-CoV-2 antigens, which
might be able to enhance the T cell immune responses generated upon vaccination with an
inactivated SARS-CoV-2 vaccine in healthy children (Figure 3).

Heterologous immunity is mediated by memory T cell responses induced by a partic-
ular pathogen, which could be also directed against another pathogen. This could result in
enhanced cellular and humoral adaptive immunities against a novel pathogen [71,72]. This
hypothesis is an attractive concept especially when there is an outbreak of a novel pathogen
and there is a lack of effective vaccines to control the outbreak due to ongoing research
and development or due to global distribution inequality of vaccines [3,4]. Since routine
vaccination (particularly childhood vaccinations) has become an integral part of national
public health programs across the globe, including Indonesia, the capability of routine
vaccines (e.g., DTP, BCG, or MMR) to generate heterologous immunity against COVID-19
has been investigated. Several in silico studies reported that certain pathogenic bacteria,
including those that cause diphtheria, tetanus, and pertussis, could generate cross-reactive
immunity to SARS-CoV-2 because these bacteria and SARS-CoV-2 share multiple epitopes,
including numerous epitopes recognized by CD8+ and CD4+ T cells, generating broad
protection coverage [41,73]. These findings were substantiated by other studies, which
reported that elderly people with registered diphtheria or tetanus vaccinations were less
likely to develop severe COVID-19 in the UK and USA [42,68]. The in vitro data also sug-
gested a strong correlation between T cell responses to Tdap and SARS-CoV-2 antigens [68].
However, another study reported a conflicting result, showing that DTP vaccination was
not associated with a lower incidence of SARS-CoV-2 infection across various age groups
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in the USA [69]. This difference could be attributed to (i) T cell immunity, as the primary
result of heterologous immune response is protection against the development of severe
COVID-19 instead of preventing SARS-CoV-2 infection [58,60]; (ii) the Tdap vaccine is
commonly used as a booster every 10 years in developed countries despite the recent
finding that acellular pertussis antigens (in contrast to whole-cell pertussis antigens) only
share a few epitopes with SARS-CoV-2 antigens [41]; (iii) the time interval between routine
vaccination, COVID-19 vaccination (or even SARS-CoV-2 infection), and immunological
testing; and (iv) the selected age groups (e.g., older individuals might have lower immunity
than younger individuals).
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Figure 3. Proposed mechanism of heterologous immunity induced by diphtheria–tetanus–pertussis
vaccination in enhancing immune responses generated by inactivated SARS-CoV-2 vaccines in
healthy children. (A) There are similar epitopes shared by the diphtheria–tetanus–pertussis vaccine
and inactivated SARS-CoV-2 vaccine targets, particularly the SARS-CoV-2 spike protein. (B) Upon
administration of the diphtheria–tetanus–pertussis vaccine or diphtheria–tetanus booster, certain
peptide antigens will form peptide–MHC complexes to stimulate diphtheria-/tetanus-/pertussis-
specific T cells. (C) Subsequently, upon administration of an inactivated SARS-CoV-2 vaccine, certain
diphtheria-/tetanus-/pertussis-specific T cells will respond to certain antigens of the SARS-CoV-2
spike protein. This will generate a secondary immune response, resulting in heterologous immunity.
(D) The heterologous immunity would also stimulate SARS-CoV-2 spike protein-specific T cells to
produce various cytokines, including interferon gamma, at higher concentrations. (E) The activated
CD4+ T cells would stimulate specific B cells to mature and release immunoglobulins. This figure
was created with BioRender.com.

Our study therefore had an advantage by focusing on DTP and CoronaVac vaccina-
tions among healthy children aged 6–8 years old. As DTP vaccination and a DT booster
at 5 years old are part of the national childhood vaccination program, we were able to
narrow the time interval between the DT booster and CoronaVac vaccination (administered
as early as 6 years old) to increase the probability of inducing heterologous immunity. Our
study demonstrated additional benefits of the routine childhood vaccination program, i.e.,
vaccination against certain bacteria might be able to boost immune responses against a
novel virus. This emphasizes the rationale for and the importance of continuing vaccinating
programs against common pathogens, despite the disruption of routine childhood vaccina-
tion program due to the pandemic [74]. Furthermore, our study compared the production
of specific antibodies and IFN-γ against SARS-CoV-2 to discern any enhancement of DTP
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vaccination on CoronaVac vaccination efficacy in generating SARS-CoV-2-specific adaptive
immunity. This is important because many published studies only measured humoral
immunity (e.g., titers of specific antibodies) against COVID-19, resulting in an incomplete
analysis and understanding of adaptive immune responses against SARS-CoV-2.

Our study had several limitations. The nature of the cross-sectional study did not allow
us to determine any causality between DTP and CoronaVac vaccinations. We also did not
measure any clinical outcomes of the study participants pertaining to SARS-CoV-2 infection
and/or COVID-19 severity. Nevertheless, two published studies in Chile reported the
effectiveness of CoronaVac vaccination among children aged 3–16 years old in protecting
against severe COVID-19 due to either the Delta or Omicron variant [75,76], suggesting
that CoronaVac vaccination among healthy children in Indonesia might result in a similar
efficacy. In addition, the relatively long duration between the second dose of a COVID-
19 vaccine and the immunological testing in this study might obscure the distinction of
COVID-19 vaccine-related effects among the tested groups, particularly on the titers of
anti-SARS-CoV-2 S-RBD antibodies. Although we only recruited healthy children aged
6–8 years old without any confirmed history of COVID-19, we could not exclude the
possibility that the study participants might have contracted COVID-19 without exhibiting
any serious symptoms or without being diagnosed. This was possible because SARS-CoV-2
infection among pediatric patients is usually milder than the infection in adults [5,67]. Next,
CoronaVac, as an inactivated SARS-CoV-2 vaccine, would generate spike-, membrane-, as
well as nucleoprotein-specific T cells (particularly CD4+ T cells) [58,59]. Thus, by only using
peptide pools from the spike protein, we were not be able to assess the overall T cell immune
response against all SARS-CoV-2 antigens. Lastly, our study only measured secreted IFN-γ
as a marker of the T cell response in vaccinated children. This mono-functionality overlooks
the complete capability of virus-specific T cells because SARS-CoV-2-specific T cells appear
to be multi-functional, secreting various cytokines (e.g., IL-2 or TNF-α in addition to IFN-
γ) [50,77]. The limited blood volume from the children also did not allow us to investigate
antigen-specific T cells using flow cytometry. Nonetheless, a recent study on healthy
children aged 5–12 years old vaccinated with the BNT162b2 vaccine reported that the T cell
response, as indicated by IFN-γ release, was the most important predictor for protection
against symptomatic SARS-CoV-2 infection [61].

5. Conclusions

In this study, we analyzed the potential of complete DTP vaccination + booster in
generating heterologous immunity that could enhance the SARS-CoV-2-specific adaptive
immunity that was induced by an administration of an inactivated SARS-CoV-2 vaccine
among healthy children aged 6–8 years old. Upon stimulation with peptides of the SARS-
CoV-2 spike protein, we observed higher concentrations of IFN-γ secreted by T cells in
study participants with complete DTP and CoronaVac vaccination statuses, which could
provide protection against COVID-19 in pediatric populations. Our findings support
the usefulness of pediatric COVID-19 vaccination as it generated SARS-CoV-2-specific
adaptive immune responses, and could therefore serve as an impetus for policymakers
in Indonesia to continuously provide COVID-19 vaccines for children. Our results sug-
gest that DTP vaccination + booster might be useful in enhancing SARS-CoV-2-specific
immune responses among children who received an inactivated COVID-19 vaccine. This
generation of protection against novel pathogens could become an additional benefit of
routine childhood vaccination (e.g., DTP vaccination). However, this finding needs to be
confirmed in prospective studies using larger pediatric cohorts. Our study also emphasizes
the importance of policymakers maintaining routine childhood immunization despite an
epidemic. Further studies will be required to confirm and elucidate the exact mechanism
of this heterologous adaptive immunity (including determining the exact cross-reactive
epitopes) and to enhance it in order to provide protection against novel pathogens.
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