Newcastle Disease Virus as a Vaccine Vector for 20 Years: A Focus on Maternally Derived Antibody Interference
Abstract
:1. Introduction
2. Biological Characteristics of NDV as a Vaccine Vector
3. A Brief History of NDV as a Vector
4. Recent Advances in the Development of NDV-vectored Vaccines and Therapeutics
5. MDA Interference: A Major Bottleneck for NDV-Vectored Vaccines
5.1. MDA: Friend and Foe
5.2. Mechanisms and Hypotheses of Inhibition of Vaccination by MDA
5.2.1. Virus Neutralization
5.2.2. Antibody-Dependent Effector Functions
5.2.3. B Cell Inhibition by Cross-linking of BCR and FcγRIIB
5.2.4. Epitope Masking
5.2.5. Shaping the Early-Life B Cell Repertoire in Germinal Centers by MDA
6. Efforts to Circumvent the Interference of MDA with the NDV Vector
6.1. Generation of Chimeric NDV Vectors
6.2. Restoration of B Cell Response by Cytokine Stimulation
6.3. Overcoming MDA Interference by Increasing Antigen Dose
7. Conclusions
8. Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Kuiken, T.; Fouchier, R.A.; Schutten, M.; Rimmelzwaan, G.F.; van Amerongen, G.; van Riel, D.; Laman, J.D.; de Jong, T.; van Doornum, G.; Lim, W.; et al. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 2003, 362, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Baize, S.; Pannetier, D.; Oestereich, L.; Rieger, T.; Koivogui, L.; Magassouba, N.; Soropogui, B.; Sow, M.S.; Keita, S.; De Clerck, H.; et al. Emergence of Zaire Ebola virus disease in Guinea. N. Engl. J. Med. 2014, 371, 1418–1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, M.A.; Siegfried, W.; Yoshimura, K.; Yoneyama, K.; Fukayama, M.; Stier, L.E.; Paakko, P.K.; Gilardi, P.; Stratford-Perricaudet, L.D.; Perricaudet, M.; et al. Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo. Science 1991, 252, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Blancou, J.; Kieny, M.P.; Lathe, R.; Lecocq, J.P.; Pastoret, P.P.; Soulebot, J.P.; Desmettre, P. Oral vaccination of the fox against rabies using a live recombinant vaccinia virus. Nature 1986, 322, 373–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willemse, M.J.; van Schooneveld, S.H.; Chalmers, W.S.; Sondermeijer, P.J. Vaccination against feline leukaemia using a new feline herpesvirus type 1 vector. Vaccine 1996, 14, 1511–1516. [Google Scholar] [CrossRef]
- Lundstrom, K. RNA Viruses as Tools in Gene Therapy and Vaccine Development. Genes 2019, 10, 189. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Samal, S.K. Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines. Viruses 2016, 8, 183. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Xu, H.; Ji, X.; Zhao, J. Recombinant Newcastle disease virus-vectored vaccines against human and animal infectious diseases. Future Microbiol. 2015, 10, 1307–1323. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Huang, Z.; Samal, S.K. Recovery of a virulent strain of newcastle disease virus from cloned cDNA: Expression of a foreign gene results in growth retardation and attenuation. Virology 2000, 278, 168–182. [Google Scholar] [CrossRef] [Green Version]
- Yusoff, K.; Tan, W.S. Newcastle disease virus: Macromolecules and opportunities. Avian Pathol. 2001, 30, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Li, Y.; Dimitrov, K.; Afonso, C.L.; Spatz, S.; Zsak, L. Genetic stability of a Newcastle disease virus vectored infectious laryngotracheitis virus vaccine after serial passages in chicken embryos. Vaccine 2020, 38, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Peeters, B.P.; de Leeuw, O.S.; Koch, G.; Gielkens, A.L. Rescue of Newcastle disease virus from cloned cDNA: Evidence that cleavability of the fusion protein is a major determinant for virulence. J. Virol. 1999, 73, 5001–5009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romer-Oberdorfer, A.; Mundt, E.; Mebatsion, T.; Buchholz, U.J.; Mettenleiter, T.C. Generation of recombinant lentogenic Newcastle disease virus from cDNA. J. Gen. Virol. 1999, 80, 2987–2995. [Google Scholar] [CrossRef]
- Nakaya, T.; Cros, J.; Park, M.S.; Nakaya, Y.; Zheng, H.; Sagrera, A.; Villar, E.; García-Sastre, A.; Palese, P. Recombinant Newcastle disease virus as a vaccine vector. J. Virol. 2001, 75, 11868–11873. [Google Scholar] [CrossRef] [Green Version]
- Swayne, D.E.; Suarez, D.L.; Schultz-Cherry, S.; Tumpey, T.M.; King, D.J.; Nakaya, T.; Palese, P.; Garcia-Sastre, A. Recombinant paramyxovirus type 1-avian influenza-H7 virus as a vaccine for protection of chickens against influenza and Newcastle disease. Avian Dis. 2003, 47, 1047–1050. [Google Scholar] [CrossRef]
- Chen, H.; Bu, Z. Development and application of avian influenza vaccines in China. Curr. Top. Microbiol. Immunol. 2009, 333, 153–162. [Google Scholar] [CrossRef]
- Lozano-Dubernard, B.; Soto-Priante, E.; Sarfati-Mizrahi, D.; Castro-Peralta, F.; Flores-Castro, R.; Loza-Rubio, E.; Gay-Gutierrez, M. Protection and differentiation of infected from vaccinated animals by an inactivated recombinant Newcastle disease virus/avian influenza H5 vaccine. Avian Dis. 2010, 54, 242–245. [Google Scholar] [CrossRef]
- Sarfati-Mizrahi, D.; Lozano-Dubernard, B.; Soto-Priante, E.; Castro-Peralta, F.; Flores-Castro, R.; Loza-Rubio, E.; Gay-Gutierrez, M. Protective dose of a recombinant Newcastle disease LaSota-avian influenza virus H5 vaccine against H5N2 highly pathogenic avian influenza virus and velogenic viscerotropic Newcastle disease virus in broilers with high maternal antibody levels. Avian Dis. 2010, 54, 239–241. [Google Scholar] [CrossRef]
- Han, G.Z.; Liu, X.P.; Li, S.S. Caution about Newcastle disease virus-based live attenuated vaccine. J. Virol. 2008, 82, 6782. [Google Scholar] [CrossRef] [Green Version]
- Han, G.Z.; He, C.Q.; Ding, N.Z.; Ma, L.Y. Identification of a natural multi-recombinant of Newcastle disease virus. Virology 2008, 371, 54–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Z.; Sun, L.; Ma, B.; Cui, Z.; Zhu, Y.; Kitamura, Y.; Liu, W. F gene recombination between genotype II and VII Newcastle disease virus. Virus Res. 2008, 131, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.L.; Bukreyev, A.; Murphy, B.R. What are the risks—Hypothetical and observed—Of recombination involving live vaccines and vaccine vectors based on nonsegmented negative-strain RNA viruses? J. Virol. 2008, 82, 9805–9806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Q.; Cao, Y.; Li, Q.; Gu, M.; Zhong, L.; Hu, S.; Wan, H.; Liu, X. Artificial recombination may influence the evolutionary analysis of Newcastle disease virus. J. Virol. 2011, 85, 10409–10414. [Google Scholar] [CrossRef] [Green Version]
- Steglich, C.; Grund, C.; Ramp, K.; Breithaupt, A.; Hoper, D.; Keil, G.; Veits, J.; Ziller, M.; Granzow, H.; Mettenleiter, T.C.; et al. Chimeric newcastle disease virus protects chickens against avian influenza in the presence of maternally derived NDV immunity. PLoS ONE 2013, 8, e72530. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Krishnamurthy, S.; Panda, A.; Samal, S.K. High-level expression of a foreign gene from the most 3’-proximal locus of a recombinant Newcastle disease virus. J. Gen. Virol. 2001, 82, 1729–1736. [Google Scholar] [CrossRef]
- Zhao, H.; Peeters, B.P.H. Recombinant Newcastle disease virus as a viral vector: Effect of genomic location of foreign gene on gene expression and virus replication. J. Gen. Virol. 2003, 84, 781–788. [Google Scholar] [CrossRef]
- Ramp, K.; Skiba, M.; Karger, A.; Mettenleiter, T.C.; Romer-Oberdorfer, A. Influence of insertion site of the avian influenza virus haemagglutinin (HA) gene within the Newcastle disease virus genome on HA expression. J. Gen. Virol. 2011, 92, 355–360. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Z.; Zsak, L.; Yu, Q. P and M gene junction is the optimal insertion site in Newcastle disease virus vaccine vector for foreign gene expression. J. Gen. Virol. 2015, 96, 40–45. [Google Scholar] [CrossRef]
- Yoshida, A.; Samal, S.K. Avian Paramyxovirus Type-3 as a Vaccine Vector: Identification of a Genome Location for High Level Expression of a Foreign Gene. Front. Microbiol. 2017, 8, 693. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Park, M.S.; Palese, P. Expression of transgenes from newcastle disease virus with a segmented genome. J. Virol. 2008, 82, 2692–2698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, G.; Chen, C.; Guo, J.; Zhang, Z.; Shang, Y.; Shao, H.; Luo, Q.; Yang, J.; Wang, H.; Zhang, T.; et al. Development of a novel thermostable Newcastle disease virus vaccine vector for expression of a heterologous gene. J. Gen. Virol. 2015, 96, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhao, W.; Li, D.; Yang, J.; Zsak, L.; Yu, Q. Development of a Newcastle disease virus vector expressing a foreign gene through an internal ribosomal entry site provides direct proof for a sequential transcription mechanism. J. Gen. Virol. 2015, 96, 2028–2035. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Roth, J.P.; Zsak, L.; Yu, Q. Engineered Newcastle disease virus expressing the F and G proteins of AMPV-C confers protection against challenges in turkeys. Sci. Rep. 2017, 7, 4025. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Roth, J.P.; Yu, Q. Generation of a recombinant Newcastle disease virus expressing two foreign genes for use as a multivalent vaccine and gene therapy vector. Vaccine 2018, 36, 4846–4850. [Google Scholar] [CrossRef]
- Choi, K.S. Newcastle disease virus vectored vaccines as bivalent or antigen delivery vaccines. Clin. Exp. Vaccine Res. 2017, 6, 72–82. [Google Scholar] [CrossRef]
- Kim, S.H.; Samal, S.K. Innovation in Newcastle Disease Virus Vectored Avian Influenza Vaccines. Viruses 2019, 11, 300. [Google Scholar] [CrossRef] [Green Version]
- Ge, J.; Deng, G.; Wen, Z.; Tian, G.; Wang, Y.; Shi, J.; Wang, X.; Li, Y.; Hu, S.; Jiang, Y.; et al. Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses. J. Virol. 2007, 81, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Nayak, B.; Rout, S.N.; Kumar, S.; Khalil, M.S.; Fouda, M.M.; Ahmed, L.E.; Earhart, K.C.; Perez, D.R.; Collins, P.L.; Samal, S.K. Immunization of chickens with Newcastle disease virus expressing H5 hemagglutinin protects against highly pathogenic H5N1 avian influenza viruses. PLoS ONE 2009, 4, e6509. [Google Scholar] [CrossRef]
- Ma, J.; Lee, J.; Liu, H.; Mena, I.; Davis, A.S.; Sunwoo, S.Y.; Lang, Y.; Duff, M.; Morozov, I.; Li, Y.; et al. Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a highly pathogenic H5N2 avian influenza virus. NPJ Vaccines 2017, 2, 33. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Mena, I.; Ma, J.; Bawa, B.; Krammer, F.; Lyoo, Y.S.; Lang, Y.; Morozov, I.; Mahardika, G.N.; Ma, W.; et al. Newcastle Disease Virus-Vectored H7 and H5 Live Vaccines Protect Chickens from Challenge with H7N9 or H5N1 Avian Influenza Viruses. J. Virol. 2015, 89, 7401–7408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Y.; Lamichhane, B.; Nagy, A.; Chowdhury, I.R.; Samal, S.K.; Kim, S.H. Co-expression of the Hemagglutinin and Neuraminidase by Heterologous Newcastle Disease Virus Vectors Protected Chickens against H5 Clade 2.3.4.4 HPAI Viruses. Sci. Rep. 2018, 8, 16854. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Paldurai, A.; Samal, S.K. A novel chimeric Newcastle disease virus vectored vaccine against highly pathogenic avian influenza virus. Virology 2017, 503, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Samal, S.K. Heterologous prime-boost immunization of Newcastle disease virus vectored vaccines protected broiler chickens against highly pathogenic avian influenza and Newcastle disease viruses. Vaccine 2017, 35, 4133–4139. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Qin, Z.; Qiao, L.; Wen, J.; Shao, H.; Wen, G.; Pan, Z. Characterization of thermostable Newcastle disease virus recombinants expressing the hemagglutinin of H5N1 avian influenza virus as bivalent vaccine candidates. Vaccine 2020, 38, 1690–1699. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, H.L.; Pirlot, J.F.; Reynard, F.; van den Berg, T.; Bublot, M.; Lambrecht, B. Immune responses and protection against H5N1 highly pathogenic avian influenza virus induced by the Newcastle disease virus H5 vaccine in ducks. Avian Dis. 2012, 56, 940–948. [Google Scholar] [CrossRef]
- DiNapoli, J.M.; Yang, L.; Suguitan, A., Jr.; Elankumaran, S.; Dorward, D.W.; Murphy, B.R.; Samal, S.K.; Collins, P.L.; Bukreyev, A. Immunization of primates with a Newcastle disease virus-vectored vaccine via the respiratory tract induces a high titer of serum neutralizing antibodies against highly pathogenic avian influenza virus. J. Virol. 2007, 81, 11560–11568. [Google Scholar] [CrossRef] [Green Version]
- Nagy, A.; Lee, J.; Mena, I.; Henningson, J.; Li, Y.; Ma, J.; Duff, M.; Lang, Y.; Yang, J.; Abdallah, F.; et al. Recombinant Newcastle disease virus expressing H9 HA protects chickens against heterologous avian influenza H9N2 virus challenge. Vaccine 2016, 34, 2537–2545. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Xue, C.; Liu, X.; Li, J.; Fei, Y.; Liu, Z.; Mu, J.; Bi, Y.; Qian, J.; Yin, R.; et al. A novel recombinant attenuated Newcastle disease virus expressing H9 subtype hemagglutinin protected chickens from challenge by genotype VII virulent Newcastle disease virus and H9N2 avian influenza virus. Vet. Microbiol. 2019, 228, 173–180. [Google Scholar] [CrossRef]
- Liu, J.; Xue, L.; Hu, S.; Cheng, H.; Deng, Y.; Hu, Z.; Wang, X.; Liu, X. Chimeric Newcastle disease virus-vectored vaccine protects chickens against H9N2 avian influenza virus in the presence of pre-existing NDV immunity. Arch. Virol. 2018, 163, 3365–3371. [Google Scholar] [CrossRef]
- Park, M.S.; Steel, J.; Garcia-Sastre, A.; Swayne, D.; Palese, P. Engineered viral vaccine constructs with dual specificity: Avian influenza and Newcastle disease. Proc. Natl. Acad. Sci. USA 2006, 103, 8203–8208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroer, D.; Veits, J.; Grund, C.; Dauber, M.; Keil, G.; Granzow, H.; Mettenleiter, T.C.; Romer-Oberdorfer, A. Vaccination with Newcastle disease virus vectored vaccine protects chickens against highly pathogenic H7 avian influenza virus. Avian Dis. 2009, 53, 190–197. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, X.; Jiao, X. Newcastle disease virus (NDV) recombinant expressing the hemagglutinin of H7N9 avian influenza virus protects chickens against NDV and highly pathogenic avian influenza A (H7N9) virus challenges. Vaccine 2017, 35, 6585–6590. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Hu, Z.; Hu, J.; Liu, D.; He, L.; Liu, J.; Gu, H.; Gan, J.; Wang, X.; Liu, X. Single Immunization with Newcastle Disease Virus-Vectored H7N9 Vaccine Confers a Complete Protection Against Challenge with Highly Pathogenic Avian Influenza H7N9 Virus. Avian Dis. 2019, 63, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Goff, P.H.; Krammer, F.; Hai, R.; Seibert, C.W.; Margine, I.; Garcia-Sastre, A.; Palese, P. Induction of cross-reactive antibodies to novel H7N9 influenza virus by recombinant Newcastle disease virus expressing a North American lineage H7 subtype hemagglutinin. J. Virol. 2013, 87, 8235–8240. [Google Scholar] [CrossRef] [Green Version]
- Roy Chowdhury, I.; Yeddula, S.G.R.; Pierce, B.G.; Samal, S.K.; Kim, S.H. Newcastle disease virus vectors expressing consensus sequence of the H7 HA protein protect broiler chickens and turkeys against highly pathogenic H7N8 virus. Vaccine 2019, 37, 4956–4962. [Google Scholar] [CrossRef] [PubMed]
- Schroer, D.; Veits, J.; Keil, G.; Romer-Oberdorfer, A.; Weber, S.; Mettenleiter, T.C. Efficacy of Newcastle disease virus recombinant expressing avian influenza virus H6 hemagglutinin against Newcastle disease and low pathogenic avian influenza in chickens and turkeys. Avian Dis. 2011, 55, 201–211. [Google Scholar] [CrossRef]
- Huang, Z.; Elankumaran, S.; Yunus, A.S.; Samal, S.K. A recombinant Newcastle disease virus (NDV) expressing VP2 protein of infectious bursal disease virus (IBDV) protects against NDV and IBDV. J. Virol. 2004, 78, 10054–10063. [Google Scholar] [CrossRef] [Green Version]
- Dey, S.; Chellappa, M.M.; Pathak, D.C.; Gaikwad, S.; Yadav, K.; Ramakrishnan, S.; Vakharia, V.N. Newcastle Disease Virus Vectored Bivalent Vaccine against Virulent Infectious Bursal Disease and Newcastle Disease of Chickens. Vaccines 2017, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Ge, J.; Wang, X.; Tian, M.; Wen, Z.; Feng, Q.; Qi, X.; Gao, H.; Bu, Z. Novel in-ovo chimeric recombinant Newcastle disease vaccine protects against both Newcastle disease and infectious bursal disease. Vaccine 2014, 32, 1514–1521. [Google Scholar] [CrossRef]
- Zhao, W.; Spatz, S.; Zhang, Z.; Wen, G.; Garcia, M.; Zsak, L.; Yu, Q. Newcastle disease virus (NDV) recombinants expressing infectious laryngotracheitis virus (ILTV) glycoproteins gB and gD protect chickens against ILTV and NDV challenges. J. Virol. 2014, 88, 8397–8406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanabagatte Basavarajappa, M.; Kumar, S.; Khattar, S.K.; Gebreluul, G.T.; Paldurai, A.; Samal, S.K. A recombinant Newcastle disease virus (NDV) expressing infectious laryngotracheitis virus (ILTV) surface glycoprotein D protects against highly virulent ILTV and NDV challenges in chickens. Vaccine 2014, 32, 3555–3563. [Google Scholar] [CrossRef] [PubMed]
- Abozeid, H.H.; Paldurai, A.; Varghese, B.P.; Khattar, S.K.; Afifi, M.A.; Zouelfakkar, S.; El-Deeb, A.H.; El-Kady, M.F.; Samal, S.K. Development of a recombinant Newcastle disease virus-vectored vaccine for infectious bronchitis virus variant strains circulating in Egypt. Veterinary Res. 2019, 50, 12. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Sun, J.; Qi, T.; Zhao, W.; Han, Z.; Yang, X.; Liu, S. Recombinant Newcastle disease virus expressing the infectious bronchitis virus S1 gene protects chickens against Newcastle disease virus and infectious bronchitis virus challenge. Vaccine 2017, 35, 2435–2442. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Wen, G.; Qiu, X.; Yuan, Y.; Meng, C.; Sun, Y.; Liao, Y.; Song, C.; Liu, W.; Shi, Y.; et al. A Recombinant La Sota Vaccine Strain Expressing Multiple Epitopes of Infectious Bronchitis Virus (IBV) Protects Specific Pathogen-Free (SPF) Chickens against IBV and NDV Challenges. Vaccines 2019, 7, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.; Roth, J.P.; Estevez, C.N.; Zsak, L.; Liu, B.; Yu, Q. Generation and evaluation of a recombinant Newcastle disease virus expressing the glycoprotein (G) of avian metapneumovirus subgroup C as a bivalent vaccine in turkeys. Vaccine 2011, 29, 8624–8633. [Google Scholar] [CrossRef]
- Tian, K.Y.; Guo, H.F.; Li, N.; Zhang, Y.H.; Wang, Z.; Wang, B.; Yang, X.; Li, Y.T.; Zhao, J. Protection of chickens against hepatitis-hydropericardium syndrome and Newcastle disease with a recombinant Newcastle disease virus vaccine expressing the fowl adenovirus serotype 4 fiber-2 protein. Vaccine 2020, 38, 1989–1997. [Google Scholar] [CrossRef]
- Xu, D.; Li, C.; Liu, G.; Chen, Z.; Jia, R. Generation and evaluation of a recombinant goose origin Newcastle disease virus expressing Cap protein of goose origin avastrovirus as a bivalent vaccine in goslings. Poult. Sci. 2019, 98, 4426–4432. [Google Scholar] [CrossRef]
- Wang, J.; Cong, Y.; Yin, R.; Feng, N.; Yang, S.; Xia, X.; Xiao, Y.; Wang, W.; Liu, X.; Hu, S.; et al. Generation and evaluation of a recombinant genotype VII Newcastle disease virus expressing VP3 protein of Goose parvovirus as a bivalent vaccine in goslings. Virus Res. 2015, 203, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Dong, J.; Li, L.; Lin, Q.; Sun, J.; Liu, Z.; Shen, H.; Zhang, J.; Ren, T.; Zhang, C. Recombinant Newcastle disease virus (NDV) expressing Duck Tembusu virus (DTMUV) pre-membrane and envelope proteins protects ducks against DTMUV and NDV challenge. Vet. Microbiol. 2018, 218, 60–69. [Google Scholar] [CrossRef]
- Olbert, M.; Romer-Oberdorfer, A.; Herden, C.; Malberg, S.; Runge, S.; Staeheli, P.; Rubbenstroth, D. Viral vector vaccines expressing nucleoprotein and phosphoprotein genes of avian bornaviruses ameliorate homologous challenge infections in cockatiels and common canaries. Sci. Rep. 2016, 6, 36840. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ge, J.; Wen, Z.; Chen, W.; Wang, X.; Liu, R.; Bu, Z. Characterization of a recombinant Newcastle disease virus expressing the glycoprotein of bovine ephemeral fever virus. Arch. Virol. 2017, 162, 359–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khattar, S.K.; Collins, P.L.; Samal, S.K. Immunization of cattle with recombinant Newcastle disease virus expressing bovine herpesvirus-1 (BHV-1) glycoprotein D induces mucosal and serum antibody responses and provides partial protection against BHV-1. Vaccine 2010, 28, 3159–3170. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Wang, X.; Tian, M.; Gao, Y.; Wen, Z.; Yu, G.; Zhou, W.; Zu, S.; Bu, Z. Recombinant Newcastle disease viral vector expressing hemagglutinin or fusion of canine distemper virus is safe and immunogenic in minks. Vaccine 2015, 33, 2457–2462. [Google Scholar] [CrossRef]
- Ge, J.; Wang, X.; Tao, L.; Wen, Z.; Feng, N.; Yang, S.; Xia, X.; Yang, C.; Chen, H.; Bu, Z. Newcastle disease virus-vectored rabies vaccine is safe, highly immunogenic, and provides long-lasting protection in dogs and cats. J. Virol. 2011, 85, 8241–8252. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Kumar, V.; Kekungu, P.; Barman, N.N.; Kumar, S. Evaluation of surface glycoproteins of classical swine fever virus as immunogens and reagents for serological diagnosis of infections in pigs: A recombinant Newcastle disease virus approach. Arch. Virol. 2019, 164, 3007–3017. [Google Scholar] [CrossRef]
- Zhang, H.; Nan, F.; Li, Z.; Zhao, G.; Xie, C.; Ha, Z.; Zhang, J.; Han, J.; Xiao, P.; Zhuang, X.; et al. Construction and immunological evaluation of recombinant Newcastle disease virus vaccines expressing highly pathogenic porcine reproductive and respiratory syndrome virus GP3/GP5 proteins in pigs. Vet. Microbiol. 2019, 239, 108490. [Google Scholar] [CrossRef]
- Zhang, M.; Ge, J.; Li, X.; Chen, W.; Wang, X.; Wen, Z.; Bu, Z. Protective efficacy of a recombinant Newcastle disease virus expressing glycoprotein of vesicular stomatitis virus in mice. Virol. J. 2016, 13, 31. [Google Scholar] [CrossRef] [Green Version]
- Carnero, E.; Li, W.; Borderia, A.V.; Moltedo, B.; Moran, T.; Garcia-Sastre, A. Optimization of human immunodeficiency virus gag expression by newcastle disease virus vectors for the induction of potent immune responses. J. Virol. 2009, 83, 584–597. [Google Scholar] [CrossRef] [Green Version]
- Maamary, J.; Array, F.; Gao, Q.; Garcia-Sastre, A.; Steinman, R.M.; Palese, P.; Nchinda, G. Newcastle disease virus expressing a dendritic cell-targeted HIV gag protein induces a potent gag-specific immune response in mice. J. Virol. 2011, 85, 2235–2246. [Google Scholar] [CrossRef] [Green Version]
- Khattar, S.K.; Manoharan, V.; Bhattarai, B.; LaBranche, C.C.; Montefiori, D.C.; Samal, S.K. Mucosal Immunization with Newcastle Disease Virus Vector Coexpressing HIV-1 Env and Gag Proteins Elicits Potent Serum, Mucosal, and Cellular Immune Responses That Protect against Vaccinia Virus Env and Gag Challenges. mBio 2015, 6, e01005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manoharan, V.K.; Khattar, S.K.; LaBranche, C.C.; Montefiori, D.C.; Samal, S.K. Modified Newcastle Disease virus as an improved vaccine vector against Simian Immunodeficiency virus. Sci. Rep. 2018, 8, 8952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiNapoli, J.M.; Yang, L.; Samal, S.K.; Murphy, B.R.; Collins, P.L.; Bukreyev, A. Respiratory tract immunization of non-human primates with a Newcastle disease virus-vectored vaccine candidate against Ebola virus elicits a neutralizing antibody response. Vaccine 2010, 29, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Kim, S.H.; Manoharan, V.K.; Varghese, B.P.; Paldurai, A.; Samal, S.K. Novel avian paramyxovirus-based vaccine vectors expressing the Ebola virus glycoprotein elicit mucosal and humoral immune responses in guinea pigs. Sci. Rep. 2019, 9, 5520. [Google Scholar] [CrossRef] [Green Version]
- Bukreyev, A.; Huang, Z.; Yang, L.; Elankumaran, S.; St Claire, M.; Murphy, B.R.; Samal, S.K.; Collins, P.L. Recombinant newcastle disease virus expressing a foreign viral antigen is attenuated and highly immunogenic in primates. J. Virol. 2005, 79, 13275–13284. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.; Wen, Z.; Su, H.; Ge, J.; Chen, W.; Wang, X.; Wu, C.; Yang, C.; Chen, H.; Bu, Z. Newcastle disease virus-vectored Nipah encephalitis vaccines induce B and T cell responses in mice and long-lasting neutralizing antibodies in pigs. Virology 2012, 432, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Chen, S.; Jiang, X.; Green, K.Y.; Samal, S.K. Immunogenicity of Newcastle disease virus vectors expressing Norwalk virus capsid protein in the presence or absence of VP2 protein. Virology 2015, 484, 163–169. [Google Scholar] [CrossRef] [Green Version]
- DiNapoli, J.M.; Kotelkin, A.; Yang, L.; Elankumaran, S.; Murphy, B.R.; Samal, S.K.; Collins, P.L.; Bukreyev, A. Newcastle disease virus, a host range-restricted virus, as a vaccine vector for intranasal immunization against emerging pathogens. Proc. Natl. Acad. Sci. USA 2007, 104, 9788–9793. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.Q.; Ge, J.Y.; Wang, J.L.; Shao, Y.; Zhang, H.L.; Wen, Z.Y.; Bu, Z.G. Newcastle disease virus-based MERS-CoV candidate vaccine elicits high-level and lasting neutralizing antibodies in Bactrian camels. J. Integr. Agric. 2017, 16, 2264–2273. [Google Scholar] [CrossRef]
- Martinez-Sobrido, L.; Gitiban, N.; Fernandez-Sesma, A.; Cros, J.; Mertz, S.E.; Jewell, N.A.; Hammond, S.; Flano, E.; Durbin, R.K.; Garcia-Sastre, A.; et al. Protection against respiratory syncytial virus by a recombinant Newcastle disease virus vector. J. Virol. 2006, 80, 1130–1139. [Google Scholar] [CrossRef] [Green Version]
- Viktorova, E.G.; Khattar, S.K.; Kouiavskaia, D.; Laassri, M.; Zagorodnyaya, T.; Dragunsky, E.; Samal, S.; Chumakov, K.; Belov, G.A. Newcastle Disease Virus-Based Vectored Vaccine against Poliomyelitis. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.; Kumar, M.; Yang, X.; Akkoyunlu, M.; Collins, P.L.; Samal, S.K.; Pal, U. A host-restricted viral vector for antigen-specific immunization against Lyme disease pathogen. Vaccine 2011, 29, 5294–5303. [Google Scholar] [CrossRef] [PubMed]
- Kortekaas, J.; Dekker, A.; de Boer, S.M.; Weerdmeester, K.; Vloet, R.P.; de Wit, A.A.; Peeters, B.P.; Moormann, R.J. Intramuscular inoculation of calves with an experimental Newcastle disease virus-based vector vaccine elicits neutralizing antibodies against Rift Valley fever virus. Vaccine 2010, 28, 2271–2276. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, J.; Ge, J.; Hua, R.; Liu, R.; Li, X.; Wang, X.; Shao, Y.; Sun, E.; Wu, D.; et al. Newcastle disease virus-vectored West Nile fever vaccine is immunogenic in mammals and poultry. Virol. J. 2016, 13, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nath, B.; Vandna; Saini, H.M.; Prasad, M.; Kumar, S. Evaluation of Japanese encephalitis virus E and NS1 proteins immunogenicity using a recombinant Newcastle disease virus in mice. Vaccine 2020, 38, 1860–1868. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, G.; Palese, P.; Goff, P.H. Oncolytic Newcastle disease virus expressing a checkpoint inhibitor as a radioenhancing agent for murine melanoma. EBioMedicine 2019, 49, 96–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayakumar, G.; McCroskery, S.; Palese, P. Engineering Newcastle Disease Virus as an Oncolytic Vector for Intratumoral Delivery of Immune Checkpoint Inhibitors and Immunocytokines. J. Virol. 2020, 94. [Google Scholar] [CrossRef]
- Wan, H.; Chen, L.; Wu, L.; Liu, X. Newcastle disease in geese: Natural occurrence and experimental infection. Avian Pathol. J. WVPA 2004, 33, 216–221. [Google Scholar] [CrossRef]
- Meng, C.; Rehman, Z.U.; Liu, K.; Qiu, X.; Tan, L.; Sun, Y.; Liao, Y.; Song, C.; Yu, S.; Ding, Z.; et al. Potential of genotype VII Newcastle disease viruses to cause differential infections in chickens and ducks. Transbound. Emerg. Dis. 2018, 65, 1851–1862. [Google Scholar] [CrossRef] [Green Version]
- Runge, S.; Olbert, M.; Herden, C.; Malberg, S.; Romer-Oberdorfer, A.; Staeheli, P.; Rubbenstroth, D. Viral vector vaccines protect cockatiels from inflammatory lesions after heterologous parrot bornavirus 2 challenge infection. Vaccine 2017, 35, 557–563. [Google Scholar] [CrossRef]
- Eidson, C.S.; Kleven, S.H.; Villegas, P. Efficacy of intratracheal administration of Newcastle disease vaccine in day-old chicks. Poult. Sci. 1976, 55, 1252–1267. [Google Scholar] [CrossRef] [PubMed]
- Bennejean, G.; Guittet, M.; Picault, J.P.; Bouquet, J.F.; Devaux, B.; Gaudry, D.; Moreau, Y. Vaccination of one-day-old chicks against newcastle disease using inactivated oil adjuvant vaccine and/or live vaccine. Avian Pathol. J. WVPA 1978, 7, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Gough, R.E.; Allan, W.H. Aerosol vaccination against Newcastle disease using the Ulster strain. Avian Pathol. J. WVPA 1976, 5, 81–95. [Google Scholar] [CrossRef] [PubMed]
- van Eck, J.H.; van Wiltenburg, N.; Jaspers, D. An Ulster 2C strain-derived Newcastle disease vaccine: Efficacy and excretion in maternally immune chickens. Avian Pathol. J. WVPA 1991, 20, 481–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naqi, S.A.; Marquez, B.; Sahin, N. Maternal antibody and its effect on infectious bursal disease immunization. Avian Dis. 1983, 27, 623–631. [Google Scholar] [CrossRef]
- Maas, R.; Rosema, S.; van Zoelen, D.; Venema, S. Maternal immunity against avian influenza H5N1 in chickens: Limited protection and interference with vaccine efficacy. Avian Pathol. J. WVPA 2011, 40, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.K.; Kayali, G.; Walker, D.; Forrest, H.L.; Ellebedy, A.H.; Griffin, Y.S.; Rubrum, A.; Bahgat, M.M.; Kutkat, M.A.; Ali, M.A.; et al. Puzzling inefficiency of H5N1 influenza vaccines in Egyptian poultry. Proc. Natl. Acad. Sci. USA 2010, 107, 11044–11049. [Google Scholar] [CrossRef] [Green Version]
- Abdelwhab, E.M.; Grund, C.; Aly, M.M.; Beer, M.; Harder, T.C.; Hafez, H.M. Influence of maternal immunity on vaccine efficacy and susceptibility of one day old chicks against Egyptian highly pathogenic avian influenza H5N1. Vet. Microbiol. 2012, 155, 13–20. [Google Scholar] [CrossRef]
- Bertran, K.; Lee, D.H.; Criado, M.F.; Balzli, C.L.; Killmaster, L.F.; Kapczynski, D.R.; Swayne, D.E. Maternal antibody inhibition of recombinant Newcastle disease virus vectored vaccine in a primary or booster avian influenza vaccination program of broiler chickens. Vaccine 2018, 36, 6361–6372. [Google Scholar] [CrossRef]
- Yu, Q.; Spatz, S.; Li, Y.; Yang, J.; Zhao, W.; Zhang, Z.; Wen, G.; Garcia, M.; Zsak, L. Newcastle disease virus vectored infectious laryngotracheitis vaccines protect commercial broiler chickens in the presence of maternally derived antibodies. Vaccine 2017, 35, 789–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faulkner, O.B.; Estevez, C.; Yu, Q.; Suarez, D.L. Passive antibody transfer in chickens to model maternal antibody after avian influenza vaccination. Vet. Immunol. Immunopathol. 2013, 152, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Lardinois, A.; Vandersleyen, O.; Steensels, M.; Desloges, N.; Mast, J.; van den Berg, T.; Lambrecht, B. Stronger Interference of Avian Influenza Virus-Specific Than Newcastle Disease Virus-Specific Maternally Derived Antibodies with a Recombinant NDV-H5 Vaccine. Avian Dis. 2016, 60, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Nakaya, Y.; Nakaya, T.; Park, M.S.; Cros, J.; Imanishi, J.; Palese, P.; Garcia-Sastre, A. Induction of cellular immune responses to simian immunodeficiency virus gag by two recombinant negative-strand RNA virus vectors. J. Virol. 2004, 78, 9366–9375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Huey, D.; Oglesbee, M.; Niewiesk, S. Insights into the regulatory mechanism controlling the inhibition of vaccine-induced seroconversion by maternal antibodies. Blood 2011, 117, 6143–6151. [Google Scholar] [CrossRef] [PubMed]
- Schlereth, B.; Buonocore, L.; Tietz, A.; Meulen, V.T.; Rose, J.K.; Niewiesk, S. Successful mucosal immunization of cotton rats in the presence of measles virus-specific antibodies depends on degree of attenuation of vaccine vector and virus dose. J. Gen. Virol. 2003, 84, 2145–2151. [Google Scholar] [CrossRef]
- Weidinger, G.; Ohlmann, M.; Schlereth, B.; Sutter, G.; Niewiesk, S. Vaccination with recombinant modified vaccinia virus Ankara protects against measles virus infection in the mouse and cotton rat model. Vaccine 2001, 19, 2764–2768. [Google Scholar] [CrossRef]
- Gao, R.; Sheng, Z.; Sreenivasan, C.C.; Wang, D.; Li, F. Influenza A Virus Antibodies with Antibody-Dependent Cellular Cytotoxicity Function. Viruses 2020, 12, 276. [Google Scholar] [CrossRef] [Green Version]
- Su, B.; Dispinseri, S.; Iannone, V.; Zhang, T.; Wu, H.; Carapito, R.; Bahram, S.; Scarlatti, G.; Moog, C. Update on Fc-Mediated Antibody Functions Against HIV-1 Beyond Neutralization. Front. Immunol. 2019, 10, 2968. [Google Scholar] [CrossRef] [Green Version]
- van Erp, E.A.; Luytjes, W.; Ferwerda, G.; van Kasteren, P.B. Fc-Mediated Antibody Effector Functions During Respiratory Syncytial Virus Infection and Disease. Front. Immunol. 2019, 10, 548. [Google Scholar] [CrossRef] [Green Version]
- Kohl, S.; West, M.S.; Prober, C.G.; Sullender, W.M.; Loo, L.S.; Arvin, A.M. Neonatal antibody-dependent cellular cytotoxic antibody levels are associated with the clinical presentation of neonatal herpes simplex virus infection. J. Infect. Dis. 1989, 160, 770–776. [Google Scholar] [CrossRef]
- Kao, C.M.; Goymer, J.; Loh, L.N.; Mahant, A.; Aschner, C.B.; Herold, B.C. Murine Model of Maternal Immunization Demonstrates Protective Role for Antibodies That Mediate Antibody-Dependent Cellular Cytotoxicity in Protecting Neonates From Herpes Simplex Virus Type 1 and Type 2. J. Infect. Dis. 2020, 221, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Niewiesk, S. Maternal antibodies: Clinical significance, mechanism of interference with immune responses, and possible vaccination strategies. Front. Immunol. 2014, 5, 446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Niewiesk, S. Sidestepping maternal antibody: A lesson from measles virus vaccination. Expert Rev. Clin. Immunol. 2011, 7, 557–559. [Google Scholar] [CrossRef] [PubMed]
- Phillips, N.E.; Parker, D.C. Cross-linking of B lymphocyte Fc gamma receptors and membrane immunoglobulin inhibits anti-immunoglobulin-induced blastogenesis. J. Immunol. 1984, 132, 627–632. [Google Scholar] [PubMed]
- Muta, T.; Kurosaki, T.; Misulovin, Z.; Sanchez, M.; Nussenzweig, M.C.; Ravetch, J.V. A 13-amino-acid motif in the cytoplasmic domain of Fc gamma RIIB modulates B-cell receptor signalling. Nature 1994, 369, 340. [Google Scholar] [CrossRef]
- Takai, T.; Ono, M.; Hikida, M.; Ohmori, H.; Ravetch, J.V. Augmented humoral and anaphylactic responses in Fc gamma RII-deficient mice. Nature 1996, 379, 346–349. [Google Scholar] [CrossRef]
- Getahun, A.; Dahlstrom, J.; Wernersson, S.; Heyman, B. IgG2a-mediated enhancement of antibody and T cell responses and its relation to inhibitory and activating Fc gamma receptors. J. Immunol. 2004, 172, 5269–5276. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, M.C.; Wernersson, S.; Diaz de Stahl, T.; Gustavsson, S.; Heyman, B. Efficient IgG-mediated suppression of primary antibody responses in Fcgamma receptor-deficient mice. Proc. Natl. Acad. Sci. USA 1999, 96, 2244–2249. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, M.C.; Getahun, A.; Heyman, B. FcgammaRIIB in IgG-mediated suppression of antibody responses: Different impact in vivo and in vitro. J. Immunol. 2001, 167, 5558–5564. [Google Scholar] [CrossRef]
- Getahun, A.; Heyman, B. Studies on the mechanism by which antigen-specific IgG suppresses primary antibody responses: Evidence for epitope masking and decreased localization of antigen in the spleen. Scand. J. Immunol. 2009, 70, 277–287. [Google Scholar] [CrossRef]
- Bruggemann, M.; Rajewsky, K. Regulation of the antibody response against hapten-coupled erythrocytes by monoclonal antihapten antibodies of various isotypes. Cell. Immunol. 1982, 71, 365–373. [Google Scholar] [CrossRef]
- Bergstrom, J.J.; Xu, H.; Heyman, B. Epitope-Specific Suppression of IgG Responses by Passively Administered Specific IgG: Evidence of Epitope Masking. Front. Immunol. 2017, 8, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, M.C.; Diaz de Stahl, T.; Heyman, B. IgE-mediated suppression of primary antibody responses in vivo. Scand. J. Immunol. 2001, 53, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Tao, T.W.; Uhr, J.W. Capacity of pepsin-digested antibody to inhibit antibody formation. Nature 1966, 212, 208–209. [Google Scholar] [CrossRef]
- Vono, M.; Eberhardt, C.S.; Auderset, F.; Mastelic-Gavillet, B.; Lemeille, S.; Christensen, D.; Andersen, P.; Lambert, P.H.; Siegrist, C.A. Maternal Antibodies Inhibit Neonatal and Infant Responses to Vaccination by Shaping the Early-Life B Cell Repertoire within Germinal Centers. Cell Rep. 2019, 28, 1773–1784.e5. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.; Kim, Y.; An, I.; Wang, S.J.; Lee, H.J.; Choi, K.S.; Im, S.P.; Min, W.; Oem, J.K.; Jheong, W. Complete genome sequence of a novel avian paramyxovirus isolated from wild birds in South Korea. Arch Virol. 2018, 163, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Nayak, B.; Dias, F.M.; Kumar, S.; Paldurai, A.; Collins, P.L.; Samal, S.K. Avian paramyxovirus serotypes 2–9 (APMV-2-9) vary in the ability to induce protective immunity in chickens against challenge with virulent Newcastle disease virus (APMV-1). Vaccine 2012, 30, 2220–2227. [Google Scholar] [CrossRef] [Green Version]
- Steglich, C.; Grund, C.; Röder, A.; Zhao, N.; Mettenleiter, T.C.; Römer-Oberdörfer, A. Chimeric avian paramyxovirus-based vector immunization against highly pathogenic avian influenza followed by conventional Newcastle disease vaccination eliminates lack of protection from virulent ND virus. Trials Vaccinol. 2014, 3, 65–67. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.Z.; Zhao, J.X.; Wang, H.W.; Yang, A.M.; Bu, C.Y.; Wang, M. Isolation, identification, and comparison of four isolates of avian paramyxovirus serotype 2 in China. Avian Dis. 2006, 50, 386–390. [Google Scholar] [CrossRef]
- Yin, R.; Zhang, P.; Liu, X.; Chen, Y.; Tao, Z.; Ai, L.; Li, J.; Yang, Y.; Li, M.; Xue, C.; et al. Dispersal and Transmission of Avian Paramyxovirus Serotype 4 among Wild Birds and Domestic Poultry. Front. Cell. Infect. Microbiol. 2017, 7, 212. [Google Scholar] [CrossRef] [Green Version]
- Warke, A.; Appleby, L.; Mundt, E. Prevalence of antibodies to different avian paramyxoviruses in commercial poultry in the United States. Avian Dis. 2008, 52, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Delcayre, A.X.; Salas, F.; Mathur, S.; Kovats, K.; Lotz, M.; Lernhardt, W. Epstein Barr virus/complement C3d receptor is an interferon alpha receptor. EMBO J. 1991, 10, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Asokan, R.; Hua, J.; Young, K.A.; Gould, H.J.; Hannan, J.P.; Kraus, D.M.; Szakonyi, G.; Grundy, G.J.; Chen, X.S.; Crow, M.K.; et al. Characterization of human complement receptor type 2 (CR2/CD21) as a receptor for IFN-alpha: A potential role in systemic lupus erythematosus. J. Immunol. 2006, 177, 383–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Martinez-Sobrido, L.; Choi, C.; Petroff, N.; García-Sastre, A.; Niewiesk, S.; Carsillo, T. Induction of type I interferon secretion through recombinant Newcastle disease virus expressing measles virus hemagglutinin stimulates antibody secretion in the presence of maternal antibodies. J. Virol. 2011, 85, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Liu, Y.; Wang, H.; Zhang, X.; Zhu, S.; Xu, P.; Yin, J.; Ren, G.; Liu, J.; Li, D. Recombinant NDV expressing cytokines or fliC confers a quick immune response against NDV challenge and resistance to maternal antibody. Vet. Microbiol. 2016, 196, 107–117. [Google Scholar] [CrossRef]
Pathogen/Disease | Antigen | NDV Backbone | Animal Model | Route of Immunization | Dose | Reference |
---|---|---|---|---|---|---|
H1N1 | HA | Hitchner B1 | mouse | i.v. or i.p. | two doses, 5 × 107 pfu | [15] |
H5N1 | HA | La Sota | chicken/mouse | o.n.(chicken) i.p.(mouse) | one dose, 106 EID50 (chicken); two doses, 106 EID50 (mouse) | [38] |
H5N1 | HA | La Sota | chicken | o.n. | one dose, 106 EID50 | [39] |
H5N2 | HA | La Sota | chicken | i.m./spray | two doses, 5 × 106 TCID50 (i.m.); one dose, 106 TCID50 (spray) | [40] |
H5N1 | HA | La Sota | chicken | i.m. or o.n. | two doses, 5 × 106 pfu | [41] |
H5N2 | HA/HA+NA | La Sota/ chiNDV-2FHN | chicken | i.n. | prime, chimeric-vector vaccines, 105 pfu; boost, La Sota-vector vaccines, 105 pfu | [42] |
H5N1 | HA | chiNDV-8FHN | chicken | o.n. | one dose, 106 TCID50 | [25] |
H5N1 | HA | chiNDV-2FHN | chicken | o.n. | two doses, 106 pfu/mL | [43] |
H5N1 | HA or HA + NA/M1/NS1 | La Sota/ chiNDV-2FHN | chicken | o.n. | one dose, 106 pfu/mL; two doses, chimeric-vector prime and La Sota-vector boost, 106 pfu/mL | [44] |
H5N1 | HA/HA1 | TS09-C | chicken | i.n./i.o. | two doses, 106 TCID50 | [45] |
H5N1 | HA | La Sota | duck | i.o. | two doses, 106 EID50 | [46] |
H5N2 | HA | La Sota | chicken | i.o. | one dose, 104.8, 105.8, 106.8, 107.8EID50 | [19] |
H5N1 | HA | BC | monkey | i.n./i.t. | two doses, 107 pfu | [47] |
H9N2 | HA | La Sota | chicken | o.n./i.m. | two doses, 107 ffu | [48] |
H9N2 | HA | NA strain | chicken | o.n. | one or two dose, 106 EID50 | [49] |
H9N2 | HA | chiNDV-2FHN | chicken | o.n. | one dose, 106 EID50 | [50] |
H7N2 | HA | Hitchner B1 | chicken | i.o. | one or two dose, 105.7-6.1 EID50 | [51] |
H7N2 | HA | Hitchner B1 | chicken | i.o. | one dose, 106 EID50 | [16] |
H7N1 | HA | La Sota | chicken | i.n. | one dose, 106 EID50 | [52] |
H7N9 | HA | La Sota | chicken | i.m. or o.n. | two doses, 5 × 106 pfu | [41] |
H7N9 | HA | LX | chicken | i.n. | two doses, 5 × 106 EID50 | [53] |
H7N9 | HA | rAI4 | chicken | i.n./i.o. | one dose, 106 EID50 | [54] |
H7N3 H7N8 | HA HA/HA + NA | La Sota La Sota/ chiNDV-2FHN | mouse chicken | i.n. i.n. | two doses, 104 or 106 ffu prime, chimeric-vector vaccines, 105 pfu; boost, La Sota-vector vaccines, 5 × 105 pfu | [55] [56] |
H6N2 | HA | Clone 30 | chicken/turkey | o.n. | one dose, 106 (chicken)/107 (turkey)EID50 | [57] |
IBDV IBDV | VP2 VP2 | La Sota F | chicken chicken | i.o. | one or two dose, 104 ELD50 two dose, 106 EID50 | [58] [59] |
IBDV | VP2 | rLaC30L | chicken embryo | in ovo | one dose, 105.5, 104.5, 103.5, 102.5EID50 | [60] |
ILTV | gB/gD | La Sota | chicken | i.n./i.o. | one dose, 106 TCID50 | [61] |
ILTV | gB/gC/gD | La Sota | chicken | o.n. | two doses, 2 × 105 TCID50 | [62] |
IBV | S | La Sota | chicken | o.n. | one or two dose, 106 pfu | [63] |
IBV | S1 | La Sota | chicken | o.n. | one or two dose, 106 pfu | [64] |
IBV | S1 (multi-epitope) | La Sota | chicken | o.n. | one dose, 106 EID50 | [65] |
AMPV | G | La Sota | turkey | i.n./i.o. | one or two dose, 106 TCID50 | [66] |
AMPV | F+G | La Sota | turkey | i.n./i.o. | one dose, 106 TCID50 | [34] |
FAdV | fiber 2 | La Sota | chicken | i.m. | one dose, 107 EID50 | [67] |
GoAstV | Cap | SH12 | gosling | o.n. | one dose, 107 TCID50 | [68] |
GPV | VP3 | NA | gosling | s.c. | two doses, 106 EID50 | [69] |
DTMUV | prM+E | GM | duck | s.c. | two doses, 106 EID50 | [70] |
Bornavirus | N/P | Clone 30 | cockatiel/canary | i.m. | 105.9-6.1 (cockatiel)/106.6 ffu (canary) | [71] |
BEFV | G | La Sota | cattle | i.m. | two doses, 8 × 107 EID50 | [72] |
BHV-1 | gD | La Sota | calf | i.n./i.t. | one dose, 1.5 × 107 pfu | [73] |
CDV | F/H | La Sota | mink | i.m. | two doses, 2 × 109 EID50 | [74] |
Rabies | G | La Sota | dog | i.m. | three doses, 109.8/109.3/108.3 EID50 | [75] |
CSFV | E2/Erns | La Sota | pig | i.n. | two doses, 103 TCID50 | [76] |
PRRSV | GP5/GP3 + GP5 | La Sota | piglet | i.m. | two doses, 4 × 108 EID50 | [77] |
VSV | G | La Sota | mouse | i.m. | two doses, 107 TCID50 | [78] |
HIV-1 | Gag | Hitchner B1 | mouse | i.n. | prime, 5 × 105 pfu; boost, 106 pfu | [79] |
HIV-1 | Gag | La Sota | mouse | i.n. | prime, 5 × 105 ffu; boost, 106 ffu | [80] |
HIV-1 | Gag/Env/ Gag + Env | La Sota | guinea pig/mouse | i.n. | two doses, 2 × 105 (guinea pig)/4 × 103 (mouse) pfu | [81] |
SIV | gp160 | La Sota/ chiNDV-2FHN | guinea pig | i.n. | two doses, 105 TCID50 | [82] |
EBOV | GP | BC/La Sota | monkey | i.n./i.t. | two doses, 107 pfu | [83] |
EBOV | GP | APMV-3/ chiNDV-3FHN | guinea pig | i.n. | two doses, 2 × 106 TCID50 | [84] |
HPIV-3 | HN | BC | monkey | i.n./i.t. | two doses, 106.5 pfu | [85] |
NiV | G/F | La Sota | pig | i.m. | two doses, 2 × 109 EID50 | [86] |
NV | VP1 + VP2 | BC/La Sota | mouse | i.n. | three doses, 106 EID50 | [87] |
SARS-CoV | S | BC/La Sota | monkey | i.n./i.t. | two doses, 107 pfu | [88] |
MERS-CoV | S | La Sota | mouse/camel | i.m. | two doses, 108 (mouse)/ 2 × 109(camel) EID50 | [89] |
RSV | F | Hitchner B1 | mouse | i.n. | one dose, 5 × 105 pfu | [90] |
poliovirus | P1 + 3CD | La Sota | guinea pig | i.n. | two doses, 105 pfu | [91] |
Lyme | BmpA/OspC | La Sota | hamster | i.n./i.m./i.p. | two doses, 106 pfu | [92] |
RVFV | Gn | La Sota | cattle | i.n. /i.m. | two doses, 106.3 (i.n.)/ 2 × 107 (i.m.) TCID50 | [93] |
WNV | PrM/E | La Sota | mouse/house | i.m. | two doses, 108 (mouse)/ 2 × 109 (horse) EID50 | [94] |
JEV | E/NS1 | La Sota | mouse | i.n. | one dose, 106 EID50 | [95] |
melanoma | PD1/PD-L1/CTLA4 | La Sota | mouse | i.t | five injections, 1 × 107 pfu | [96] |
melanoma | PD1/PD-L1/CD28 | La Sota | mouse | i.t | five injections, 1 × 106 pfu | [97] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Ni, J.; Cao, Y.; Liu, X. Newcastle Disease Virus as a Vaccine Vector for 20 Years: A Focus on Maternally Derived Antibody Interference. Vaccines 2020, 8, 222. https://doi.org/10.3390/vaccines8020222
Hu Z, Ni J, Cao Y, Liu X. Newcastle Disease Virus as a Vaccine Vector for 20 Years: A Focus on Maternally Derived Antibody Interference. Vaccines. 2020; 8(2):222. https://doi.org/10.3390/vaccines8020222
Chicago/Turabian StyleHu, Zenglei, Jie Ni, Yongzhong Cao, and Xiufan Liu. 2020. "Newcastle Disease Virus as a Vaccine Vector for 20 Years: A Focus on Maternally Derived Antibody Interference" Vaccines 8, no. 2: 222. https://doi.org/10.3390/vaccines8020222
APA StyleHu, Z., Ni, J., Cao, Y., & Liu, X. (2020). Newcastle Disease Virus as a Vaccine Vector for 20 Years: A Focus on Maternally Derived Antibody Interference. Vaccines, 8(2), 222. https://doi.org/10.3390/vaccines8020222