Recent Progress in the Development of Liver Fluke and Blood Fluke Vaccines
Abstract
:1. Introduction
2. Fasciolosis
Fasciolosis Vaccines: An Update
3. Opisthorchiasis
Opisthorchiasis Vaccines: An Update
4. Clonorchiasis
Clonorchiasis Vaccines: An Update
5. Schistosomiasis
5.1. Schistosomiasis Vaccines: An Update
5.1.1. Sh28GST
5.1.2. Sm14
5.1.3. Sm-TSP-2
5.1.4. Sm-p80
5.2. Human Challenge Infection Model to Test Schistosomiasis Vaccines
6. Conclusions
Funding
Conflicts of Interest
References
- Jones, M.K.; Keiser, J.; McManus, D.P. Trematodes. In Manual of Clinical Microbiology; Carroll, K.C., Pfaller, M.A., Landry, M.L., McAdam, A.J., Patel, R., Richter, S.S., Warnock, D.W., Eds.; ASM Press: Washington, DC, USA, 2019; pp. 2590–2605. [Google Scholar] [CrossRef]
- Mas-Coma, S.; Valero, M.A.; Bargues, M.D. Fascioliasis. Adv. Exp. Med. Biol. 2019, 1154, 71–103. [Google Scholar] [CrossRef]
- Torgerson, P.R.; Devleesschauwer, B.; Praet, N.; Speybroeck, N.; Willingham, A.L.; Kasuga, F.; Rokni, M.B.; Zhou, X.N.; Fevre, E.M.; Sripa, B.; et al. World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: A data synthesis. PLoS Med. 2015, 12, e1001920. [Google Scholar] [CrossRef] [Green Version]
- Cwiklinski, K.; O’Neill, S.M.; Donnelly, S.; Dalton, J.P. A prospective view of animal and human Fasciolosis. Parasite Immunol. 2016, 38, 558–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina-Hernández, V.; Mulcahy, G.; Pérez, J.; Martínez-Moreno, Á.; Donnelly, S.; O’Neill, S.M.; Dalton, J.P.; Cwiklinski, K. Fasciola hepatica vaccine: We may not be there yet but we’re on the right road. Vet. Parasitol. 2015, 208, 101–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flynn, R.J.; Musah-Eroje, M. Evasion of host immunity during Fasciola hepatica infection. Methods Mol. Biol. 2020, 2137, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Cwiklinski, K.; Jewhurst, H.; McVeigh, P.; Barbour, T.; Maule, A.G.; Tort, J.; O’Neill, S.M.; Robinson, M.W.; Donnelly, S.; Dalton, J.P. Infection by the helminth parasite Fasciola hepatica requires rapid regulation of metabolic, virulence, and invasive factors to adjust to its mammalian host. Mol. Cell. Proteom. 2018, 17, 792–809. [Google Scholar] [CrossRef] [Green Version]
- Dalton, J.P.; Robinson, M.W.; Mulcahy, G.; O’Neill, S.M.; Donnelly, S. Immunomodulatory molecules of Fasciola hepatica: Candidates for both vaccine and immunotherapeutic development. Vet. Parasitol. 2013, 195, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, E.; Noya, V.; Cervi, L.; Chiribao, M.L.; Brossard, N.; Chiale, C.; Carmona, C.; Giacomini, C.; Freire, T. Glycans from Fasciola hepatica modulate the host immune response and TLR-induced maturation of dendritic cells. PLoS Negl. Trop. Dis. 2015, 9, e0004234. [Google Scholar] [CrossRef]
- Sulaiman, A.A.; Zolnierczyk, K.; Japa, O.; Owen, J.P.; Maddison, B.C.; Emes, R.D.; Hodgkinson, J.E.; Gough, K.C.; Flynn, R.J. A trematode parasite derived growth factor binds and exerts influences on host immune functions via host cytokine receptor complexes. PLoS Pathog. 2016, 12, e1005991. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Huang, S.Y.; Yue, D.M.; Wang, J.L.; Wang, Y.; Li, X.; Zhu, X.Q. Proteomic analysis of Fasciola hepatica excretory and secretory products (FhESPs) involved in interacting with host PBMCs and cytokines by shotgun LC-MS/MS. Parasitol. Res. 2017, 116, 627–635. [Google Scholar] [CrossRef]
- Musah-Eroje, M.; Flynn, R.J. Fasciola hepatica, TGF-β and host mimicry: The enemy within. Curr. Opin. Microbiol. 2018, 46, 80–85. [Google Scholar] [CrossRef]
- Piedrafita, D.; Raadsma, H.W.; Prowse, R.; Spithill, T.W. Immunology of the host-parasite relationship in fasciolosis (Fasciola hepatica and Fasciola gigantica). Can. J. Zool. 2004, 82, 233–250. [Google Scholar] [CrossRef]
- Toet, H.; Piedrafita, D.M.; Spithill, T.W. Liver fluke vaccines in ruminants: Strategies, progress and future opportunities. Int. J. Parasitol. 2014, 44, 915–927. [Google Scholar] [CrossRef]
- Dominquez, M.F.; Gonzalez-Miguel, J.; Carmona, C.; Dalton, J.; Cwiklinski, K.; Tort, J.F.; Siles-Lucas, M. Low allelic diversity in vaccine candidate genes from different locations sustain hope for Fasciola hepatica immunization. Vet. Parasitol. 2018, 258, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Cwiklinski, K.; Dalton, J.P.; Dufresne, P.J.; La Course, J.; Williams, D.J.; Hodgkinson, J.; Paterson, S. The Fasciola hepatica genome: Gene duplication and polymorphism reveals adaptation to the host environment and the capacity for rapid evolution. Genome Biol. 2015, 16, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.J.; Fontenla, S.; Fischer, P.U.; Le, T.H.; Costábile, A.; Blair, D.; Brindley, P.J.; Tort, J.F.; Cabada, M.M.; Mitreva, M. Adaptive radiation of the flukes of the family Fasciolidae inferred from genome-wide comparisons of key species. Mol. Biol. Evol. 2020, 37, 84–99. [Google Scholar] [CrossRef] [PubMed]
- Pandey, T.; Ghosh, A.; Todur, V.N.; Rajendran, V.; Kalita, P.; Kalita, J.; Shukla, R.; Chetri, P.B.; Shukla, H.; Sonkar, A.; et al. Draft genome of the liver fluke Fasciola gigantica. ACS Omega 2020, 5, 11084–11091. [Google Scholar] [CrossRef] [PubMed]
- Maizels, R.M.; Kurniawan-Atmadja, A. Variation and polymorphism in helminth parasites. Parasitology 2002, 125, S25–S37. [Google Scholar] [CrossRef] [Green Version]
- Cwiklinski, K.; Dalton, J.P. Advances in Fasciola hepatica research using ‘omics’ technologies. Int. J. Parasitol. 2018, 48, 321–331. [Google Scholar] [CrossRef] [Green Version]
- De la Torre-Escudero, E.; Gerlach, J.Q.; Bennett, A.; Cwiklinski, K.; Jewhurst, H.L.; Huson, K.M.; Joshi, L.; Kilcoyne, M.; O’Neill, S.; Dalton, J.P.; et al. Surface molecules of extracellular vesicles secreted by the helminth pathogen Fasciola hepatica direct their internalisation by host cells. PLoS Negl. Trop. Dis. 2019, 13, e0007087. [Google Scholar] [CrossRef] [Green Version]
- Cameron, T.C.; Cooke, I.; Faou, P.; Toet, H.; Piedrafita, D.; Young, N.; Rathinasamy, V.; Beddoe, T.; Anderson, G.; Dempster, R.; et al. A novel ex vivo immunoproteomic approach characterising Fasciola hepatica tegumental antigens identified using immune antibody from resistant sheep. Int. J. Parasitol. 2017, 47, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Young, N.D.; Hall, R.S.; Jex, A.J.; Cantacessi, C.; Gasser, R.B. Elucidating the transcriptome of Fasciola hepatica-a key to fundamental and biotechnological discoveries for a neglected parasite. Biotechnol. Adv. 2010, 28, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Young, N.D.; Campbell, B.E.; Hall, R.S.; Jex, A.R.; Cantacessi, C.; Laha, T.; Sohn, W.M.; Sripa, B.; Loukas, A.; Brindley, P.J.; et al. Unlocking the transcriptomes of two carcinogenic parasites, Clonorchis sinensis and Opisthorchis viverrini. PLoS Negl. Trop. Dis. 2010, 4, e719. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.W.; Menon, R.; Donnelly, S.M.; Dalton, J.P.; Ranganathan, S. An integrated transcriptomics and proteomics analysis of the secretome of the helminth pathogen Fasciola hepatica: Proteins associated with invasion and infection of the mammalian host. Mol. Cell. Proteom. 2009, 8, 1891–1907. [Google Scholar] [CrossRef] [Green Version]
- Young, N.D.; Jex, A.R.; Cantacess, C.; Hall, R.S.; Campbell, B.E.; Spithill, T.W.; Tangkawattana, S.; Tangkawattana, P.; Laha, T.; Gasser, R.B. A portrait of the transcriptome of the neglected trematode, Fasciola gigantica—Biological and biotechnological implications. PLoS Negl. Trop. Dis. 2011, 5, e1004. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.X.; Cong, W.; Elsheikha, H.M.; Liu, G.H.; Ma, J.G.; Huang, W.Y.; Zhao, Q.; Zhu, X.Q. De novo transcriptome sequencing and analysis of the juvenile and adult stages of Fasciola gigantica. Infect. Genet. Evol. 2017, 51, 33–40. [Google Scholar] [CrossRef]
- Turner, J.; Howell, A.; McCann, C.; Caminade, C.; Bowers, R.G.; Williams, D.; Baylis, M. A model to assess the efficacy of vaccines for control of liver fluke infection. Sci. Rep. 2016, 6, 23345. [Google Scholar] [CrossRef] [Green Version]
- Sithithaworn, P.; Andrews, R.H.; Nguyen, V.D.; Wongsaroj, T.; Sinuon, M.; Odermatt, P.; Nawa, Y.; Liang, S.; Brindley, P.J.; Sripa, B. The current status of opisthorchiasis and clonorchiasis in the Mekong Basin. Parasitol. Int. 2012, 61, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Suwannatrai, A.; Saichua, P.; Haswell, M. Epidemiology of Opisthorchis viverrini infection. Adv. Parasitol. 2018, 101, 41–67. [Google Scholar] [CrossRef]
- Aung, W.; Htoon, T.T.; Tin, H.H.; Thinn, K.K.; Sanpool, O.; Jongthawin, J.; Sadaow, L.; Phosuk, I.; Rodpai, R.; Intapan, P.M.; et al. First report and molecular identification of Opisthorchis viverrini infection in human communities from Lower Myanmar. PLoS ONE 2017, 12, e0177130. [Google Scholar] [CrossRef]
- Pakharukova, M.Y.; Mordvinov, V.A. The liver fluke Opisthorchis felineus: Biology, epidemiology and carcinogenic potential. Trans. Roy. Soc. Trop. Med. Hyg. 2016, 110, 28–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sriamporn, S.; Pisani, P.; Pipitgool, V.; Suwanrungruang, K.; Kamsa-ard, S.; Parkin, D.M. Prevalence of Opisthorchis viverrini infection and incidence of cholangiocarcinoma in Khon Kaen, Northeast Thailand. Trop. Med. Int. Health 2004, 9, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Khuntikeo, N.; Titapun, A.; Loilome, W.; Yongvanit, P.; Thinkhamrop, B.; Chamadol, N.; Boonmars, T.; Nethanomsak, T.; Andrews, R.H.; Petney, T.N.; et al. Current perspectives on opisthorchiasis control and cholangiocarcinoma detection in Southeast Asia. Front. Med. 2018, 5, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soukhathammavong, P.; Odermatt, P.; Sayasone, S.; Vonghachack, Y.; Vounatsou, P.; Hatz, C.; Akkhavong, K.; Keiser, J. Efficacy and safety of mefloquine, artesunate, mefloquine-artesunate, tribendimidine, and praziquantel in patients with Opisthorchis viverrini: A randomised, exploratory, open-label, phase 2 trial. Lancet Infect. Dis. 2011, 11, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Songserm, N.; Charoenbut, P.; Bureelerd, O.; Pintakham, K.; Woradet, S.; Vanhnivongkham, P.; Cua, L.N.; Uyen, N.T.T.; Cuu, N.C.; Sripa, B. Behavior-related risk factors for opisthorchiasis-associated cholangiocarcinoma among rural people living along the mekong river in five greater mekong subregion countries. Acta Trop. 2020, 201, 105221. [Google Scholar] [CrossRef]
- Sripa, B.; Jumnainsong, A.; Tangkawattana, S.; Haswell, M.R. Immune response to Opisthorchis viverrini infection and its role in pathology. Adv. Parasitol. 2018, 102, 73–95. [Google Scholar] [CrossRef]
- Young, N.D.; Gasser, R.B. Opisthorchis viverrini draft genome-biomedical implications and future avenues. Adv. Parasitol. 2018, 101, 125–148. [Google Scholar] [CrossRef]
- Young, N.D.; Nagarajan, N.; Lin, S.J.; Korhonen, P.K.; Jex, A.R.; Hall, R.S.; Safavi-Hemami, H.; Kaewkong, W.; Bertrand, D.; Gao, S.; et al. The Opisthorchis viverrini genome provides insights into life in the bile duct. Nat. Commun. 2014, 5, 4378. [Google Scholar] [CrossRef] [Green Version]
- Ershov, N.I.; Mordvinov, V.A.; Prokhortchouk, E.B.; Pakharukova, M.Y.; Gunbin, K.V.; Ustyantsev, K.; Genaev, M.A.; Blinov, A.G.; Mazur, A.; Boulygina, E.; et al. New insights from Opisthorchis felineus genome: Update on genomics of the epidemiologically important liver flukes. BMC Genom. 2019, 20, 399. [Google Scholar] [CrossRef]
- L’vova, M.N.; Duzhak, T.G.; Tsentalovich, I.P.; Katokhin, A.V.; Mordvinov, V.A. Secretome of the adult liver fluke Opisthorchis felineus. Parazitologiia 2014, 48, 169–184. [Google Scholar]
- Mulvenna, J.; Sripa, B.; Brindley, P.J.; Gorman, J.; Jones, M.K.; Colgrave, M.L.; Jones, A.; Nawaratna, S.; Laha, T.; Suttiprapa, S.; et al. The secreted and surface proteomes of the adult stage of the carcinogenic human liver fluke Opisthorchis viverrini. Proteomics 2010, 10, 1063–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pomaznoy, M.; Tatkov, S.; Katokhin, A.; Afonnikov, D.; Babenko, V.; Furman, D.; Brusentsov, I.; Belavin, P.; Najakshin, A.; Guselnikov, S.; et al. Adult Opisthorchis felineus major protein fractions deduced from transcripts: Comparison with liver flukes Opisthorchis viverrini and Clonorchis sinensis. Exp. Parasitol. 2013, 135, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Suttiprapa, S.; Sotillo, J.; Smout, M.; Suyapoh, W.; Chaiyadet, S.; Tripathi, T.; Laha, T.; Loukas, A. Opisthorchis viverrini proteome and host-parasite interactions. Adv. Parasitol. 2018, 102, 45–72. [Google Scholar] [CrossRef] [PubMed]
- Prasopdee, S.; Thitapakorn, V.; Sathavornmanee, T.; Tesana, S. A comprehensive review of omics and host-parasite interplays studies, towards control of Opisthorchis viverrini infection for prevention of cholangiocarcinoma. Acta Trop. 2019, 196, 76–82. [Google Scholar] [CrossRef]
- Pomaznoy, M.Y.; Logacheva, M.D.; Young, N.D.; Penin, A.A.; Ershov, N.I.; Katokhin, A.V.; Mordvinov, V.A. Whole transcriptome profiling of adult and infective stages of the trematode Opisthorchis felineus. Parasitol. Int. 2016, 65, 12–19. [Google Scholar] [CrossRef]
- Jex, A.R.; Young, N.D.; Sripa, J.; Hall, R.S.; Scheerlinck, J.P.; Laha, T.; Sripa, B.; Gasser, R.B. Molecular changes in Opisthorchis viverrini (Southeast Asian liver fluke) during the transition from the juvenile to the adult stage. PLoS Negl. Trop. Dis. 2012, 6, e1916. [Google Scholar] [CrossRef] [Green Version]
- Chaibangyang, W.; Geadkaew-Krenc, A.; Smooker, P.M.; Tesana, S.; Grams, R. Evaluation of Opisthorchis viverrini calreticulin for potential host modulation. Acta Trop. 2018, 187, 175–181. [Google Scholar] [CrossRef]
- Chaiyadet, S.; Sotillo, J.; Krueajampa, W.; Thongsen, S.; Brindley, P.J.; Sripa, B.; Loukas, A.; Laha, T. Vaccination of hamsters with Opisthorchis viverrini extracellular vesicles and vesicle-derived recombinant tetraspanins induces antibodies that block vesicle uptake by cholangiocytes and reduce parasite burden after challenge infection. PLoS Negl. Trop. Dis. 2019, 13, e0007450. [Google Scholar] [CrossRef] [Green Version]
- Phung, L.T.; Chaiyadet, S.; Hongsrichan, N.; Sotillo, J.; Dieu, H.D.T.; Tran, C.Q.; Brindley, P.J.; Loukas, A.; Laha, T. Recombinant Opisthorchis viverrini tetraspanin expressed in Pichia pastoris as a potential vaccine candidate for opisthorchiasis. Parasitol. Res. 2019, 118, 3419–3427. [Google Scholar] [CrossRef]
- Phung, L.T.; Chaiyadet, S.; Hongsrichan, N.; Sotillo, J.; Dieu, H.D.T.; Tran, C.Q.; Brindley, P.J.; Loukas, A.; Laha, T. Partial protection with a chimeric tetraspanin-leucine aminopeptidase subunit vaccine against Opisthorchis viverrini infection in hamsters. Acta Trop. 2020, 204, 105355. [Google Scholar] [CrossRef]
- Tang, Z.L.; Huang, Y.; Yu, X.B. Current status and perspectives of Clonorchis sinensis and clonorchiasis: Epidemiology, pathogenesis, omics, prevention and control. Infect. Dis. Poverty 2016, 5, 71. [Google Scholar] [CrossRef] [Green Version]
- Qian, M.B.; Utzinger, J.; Keiser, J.; Zhou, X.N. Clonorchiasis. Lancet 2016, 387, 800–810. [Google Scholar] [CrossRef]
- Saijuntha, W.; Sithithaworn, P.; Kiatsopit, N.; Andrews, R.H.; Petney, T.N. Liver Flukes: Clonorchis and Opisthorchis. Adv. Exp. Med. Biol. 2019, 1154, 139–180. [Google Scholar] [CrossRef] [PubMed]
- Na, B.K.; Pak, J.H.; Hong, S.J. Clonorchis sinensis and clonorchiasis. Acta Trop. 2020, 203, 105309. [Google Scholar] [CrossRef]
- Quan, F.S.; Lee, J.B.; Bae, J.S.; Ohwatari, N.; Min, Y.K.; Yang, H.M. Resistance to reinfection in rats induced by irradiated metacercariae of Clonorchis sinensis. Memórias do Instituto Oswaldo Cruz 2005, 100, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, W.; Huang, Y.; Sun, J.; Men, J.; Liu, H.; Luo, F.; Guo, L.; Lv, X.; Deng, C.; et al. The draft genome of the carcinogenic human liver fluke Clonorchis sinensis. Genome Biol. 2011, 12, R107. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Chen, W.; Wang, X.; Liu, H.; Chen, Y.; Guo, L.; Luo, F.; Sun, J.; Mao, Q.; Liang, P.; et al. The carcinogenic liver fluke, Clonorchis sinensis: New assembly, reannotation and analysis of the genome and characterization of tissue transcriptomes. PLoS ONE 2013, 8, e54732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Young, N.D.; Korhonen, P.K.; Gasser, R.B. Clonorchis sinensis and clonorchiasis: The relevance of exploring genetic variation. Adv. Parasitol. 2018, 100, 155–208. [Google Scholar] [CrossRef]
- Wang, D.; Korhonen, P.K.; Gasser, R.B.; Young, N.D. Improved genomic resources and new bioinformatic workflow for the carcinogenic parasite Clonorchis sinensis: Biotechnological implications. Biotechnol. Adv. 2018, 36, 894–904. [Google Scholar] [CrossRef]
- Sun, H.; Shang, M.; Tang, Z.; Jiang, H.; Dong, H.; Zhou, X.; Lin, Z.; Shi, C.; Ren, P.; Zhao, L.; et al. Oral delivery of Bacillus subtilis spores expressing Clonorchis sinensis paramyosin protects grass carp from cercaria infection. Appl. Microbiol. Biotechnol. 2020, 104, 1633–1646. [Google Scholar] [CrossRef]
- McManus, D.P.; Dunne, D.W.; Sacko, M.; Utzinger, J.; Vennervald, B.J.; Zhou, X.N. Schistosomiasis. Nat. Rev. Dis. Prim. 2018, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- McManus, D.P.; Bergquist, R.; Cai, P.; Ranasinghe, S.; Tebeje, B.M.; You, H. Schistosomiasis-from immunopathology to vaccines. Semin. Immunopathol. 2020, 42, 355–371. [Google Scholar] [CrossRef] [PubMed]
- Janse, J.J.; Langenberg, M.C.C.; Kos-Van Oosterhoud, J.; Ozir-Fazalalikhan, A.; Brienen, E.A.T.; Winkel, B.M.F.; Erkens, M.A.A.; van der Beek, M.T.; van Lieshout, L.; Smits, H.H.; et al. Establishing the production of male Schistosoma mansoni cercariae for a controlled human infection model. J. Infect. Dis. 2018, 218, 1142–1146. [Google Scholar] [CrossRef] [Green Version]
- Tebeje, B.M.; Harvie, M.; You, H.; Loukas, A.; McManus, D.P. Schistosomiasis vaccines: Where do we stand? Parasit. Vectors 2016, 9, 528. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.S.; Zelt, N.H.; Perera, D.J.; Ndao, M.; Ward, B.J. Vaccination against the digestive enzyme Cathepsin B using a YS1646 Salmonella enterica Typhimurium vector provides almost complete protection against Schistosoma mansoni challenge in a mouse model. PLoS Negl. Trop. Dis. 2019, 13, e0007490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.H.; Vance, G.M.; Cartwright, J.; Cao, J.P.; Wilson, R.A.; Castro-Borges, W. Mapping the epitopes of Schistosoma japonicum esophageal gland proteins for incorporation into vaccine constructs. PLoS ONE 2020, 15, e0229542. [Google Scholar] [CrossRef] [Green Version]
- Kifle, D.W.; Pearson, M.S.; Becker, L.; Pickering, D.; Loukas, A.; Sotillo, J. Proteomic analysis of two populations of Schistosoma mansoni-derived extracellular vesicles: 15k pellet and 120k pellet vesicles. Mol. Biochem. Parasitol. 2020, 236, 111264. [Google Scholar] [CrossRef]
- You, H.; Cai, P.; Tebeje, B.M.; Li, Y.; McManus, D.P. Schistosome vaccines for domestic animals. Trop. Med. Infect. Dis. 2018, 3, 68. [Google Scholar] [CrossRef] [Green Version]
- Hotez, P.J.; Bottazzi, M.E.; Bethony, J.; Diemert, D.D. Advancing the development of a human schistosomiasis vaccine. Trends Parasitol. 2019, 35, 104–108. [Google Scholar] [CrossRef]
- Zhang, W.; Molehin, A.; Patel, P.; Kim, E.; Peña, A.; Siddiqui, A.A. Testing of Schistosoma mansoni vaccine targets. Methods Mol. Biol. 2020, 2151, 229–262. [Google Scholar] [CrossRef]
- Molehin, A.J. Schistosomiasis vaccine development: Update on human clinical trials. J. Biomed. Sci. 2020, 27, 28. [Google Scholar] [CrossRef] [PubMed]
- Riveau, G.; Deplanque, D.; Remoué, F.; Schacht, A.M.; Vodougnon, H.; Capron, M.; Thiry, M.; Martial, J.; Libersa, C.; Capron, A. Safety and immunogenicity of rSh28GST antigen in humans: Phase 1 randomized clinical study of a vaccine candidate against urinary schistosomiasis. PLoS Negl. Trop. Dis. 2012, 6, e1704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riveau, G.; Schacht, A.M.; Dompnier, J.P.; Deplanque, D.; Seck, M.; Waucquier, N.; Senghor, S.; Delcroix-Genete, D.; Hermann, E.; Idris-Khodja, N.; et al. Safety and efficacy of the rSh28GST urinary schistosomiasis vaccine: A phase 3 randomized, controlled trial in Senegalese children. PLoS Negl. Trop. Dis. 2018, 12, e0006968. [Google Scholar] [CrossRef] [PubMed]
- Tendler, M.; Almeida, M.; Simpson, A. Development of the Brazilian anti schistosomiasis vaccine based on the recombinant fatty acid binding protein Sm14 plus GLA-SE adjuvant. Front. Immunol. 2015, 6, 218. [Google Scholar] [CrossRef] [Green Version]
- Santini-Oliveira, M.; Coler, R.N.; Parra, J.; Veloso, V.; Jayashankar, L.; Pinto, P.M.; Ciol, M.A.; Bergquist, R.; Reed, S.G.; Tendler, M. Schistosomiasis vaccine candidate Sm14/GLA-SE: Phase 1 safety and immunogenicity clinical trial in healthy, male adults. Vaccine 2016, 34, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Tendler, M.; Almeida, M.S.; Vilar, M.M.; Pinto, P.M.; Limaverde-Sousa, G. Current status of the Sm14/GLA-SE schistosomiasis vaccine: Overcoming barriers and paradigms towards the first anti-parasitic human (itarian) vaccine. Trop. Med. Infect. Dis. 2018, 3, 121. [Google Scholar] [CrossRef] [Green Version]
- Tran, M.H.; Pearson, M.S.; Bethony, J.M.; Smyth, D.J.; Jones, M.K.; Duke, M.; Don, T.A.; McManus, D.P.; Correa-Oliveira, R.; Loukas, A. Tetraspanins on the surface of Schistosoma mansoni are protective antigens against schistosomiasis. Nat. Med. 2006, 12, 835–840. [Google Scholar] [CrossRef]
- Keitel, W.A.; Potter, G.E.; Diemert, D.; Bethony, J.; El Sahly, H.M.; Kennedy, J.K.; Patel, S.M.; Plieskatt, J.L.; Jones, W.; Deye, G.; et al. A phase 1 study of the safety, reactogenicity, and immunogenicity of a Schistosoma mansoni vaccine with or without glucopyranosyl lipid a aqueous formulation (GLA-AF) in healthy adults from a non-endemic area. Vaccine 2019, 37, 6500–6509. [Google Scholar] [CrossRef]
- Mekonnen, G.G.; Tedla, B.A.; Pickering, D.; Becker, L.; Wang, L.; Zhan, B.; Bottazzi, M.E.; Loukas, A.; Sotillo, J.; Pearson, M.S. Schistosoma haematobium extracellular vesicle proteins confer protection in a heterologous model of schistosomiasis. Vaccines (Basel) 2020, 8, 416. [Google Scholar] [CrossRef]
- Siddiqui, A.A.; Siddiqui, B.A.; Ganley-Leal, L. Schistosomiasis vaccines. Hum. Vaccin. 2011, 7, 1192–1197. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Molehin, A.J.; Rojo, J.U.; Sudduth, J.; Ganapathy, P.K.; Kim, E.; Siddiqui, A.J.; Freeborn, J.; Sennoune, S.R.; May, J.; et al. Sm-p80-based schistosomiasis vaccine: Double-blind preclinical trial in baboons demonstrates comprehensive prophylactic and parasite transmission-blocking efficacy. Ann. N. Y. Acad. Sci. 2018, 1425, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Roestenberg, M.; Mo, A.; Kremsner, P.G.; Yazdanbakhsh, M. Controlled human infections: A report from the controlled human infection models workshop, Leiden University Medical Centre 4–6 May 2016. Vaccine 2017, 35, 7070–7076. [Google Scholar] [CrossRef]
- Langenberg, M.C.C.; Hoogerwerf, M.A.; Koopman, J.P.R.; Janse, J.J.; Kos-van Oosterhoud, J.; Feijt, C.; Jochems, S.P.; de Dood, C.J.; van Schuijlenburg, R.; Ozir-Fazalalikhan, A.; et al. A controlled human Schistosoma mansoni infection model to advance novel drugs, vaccines and diagnostics. Nat. Med. 2020, 26, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.G.; Vickers, D.; Olds, G.R.; Shah, S.M.; McManus, D.P. Katayama syndrome. Lancet Infect. Dis. 2007, 7, 218–224. [Google Scholar] [CrossRef]
- Bergquist, R.; McManus, D.P. Schistosomiasis vaccine development: The missing link. In Schistosoma: Biology, Pathology, and Control; Jamieson, B.G.M., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 462–478. [Google Scholar]
- Lurie, N.; Saville, M.; Hatchett, R.; Halton, J. Developing covid-19 vaccines at pandemic speed. N. Engl. J. Med. 2020, 382, 1969–1973. [Google Scholar] [CrossRef] [PubMed]
- Versteeg, L.; Almutairi, M.M.; Hotez, P.J.; Pollet, J. Enlisting the mRNA vaccine platform to combat parasitic infections. Vaccines 2019, 7, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antigen | Source | Host | Schedule a | Adjuvant | Efficacy b (%) |
---|---|---|---|---|---|
FhCL | Adult E/S | Cattle | 10–500 μg × 3 | FCA/FIA | 38.2–69.5 |
200 μg × 3 | 42.5 | ||||
Sheep | 100 μg × 2 | 33 | |||
Recombinant | Cattle | 200 μg × 2 | Montanide c | 47.2 | |
Montanide d | 49.2 | ||||
Goat | 100 μg × 2 | Quil A | 0 | ||
38.7 | |||||
0 | |||||
Montanide c | 0 | ||||
Mimotope | Goat | 1 × 1013 pp | Quil A | 46.9–79.5 | |
FhCL1 + FhHb | Adult E/S | Cattle | 200 μg × 3 | FCA/FIA | 51.9 |
FhCL2 | Sheep | 100 μg × 2 | FCA/FIA | 34 | |
FhCL2 + FhHb | Cattle | 200 μg × 3 | FCA/FIA | 72.4 | |
FCA/FIA | 72.4 | ||||
FIA | 11.2 | ||||
FCA/FIA | 29 | ||||
FhCL1 + FhCL2 | Sheep | 100 μg × 2 | FCA/FIA | 60 | |
Cattle | 200 μg × 3 | FCA/FIA | 55 | ||
FhCL1 + FhCL2 + FhLAP Adult E/S | SOM | Sheep | 100 μg × 2 | FCA/FIA | 79 |
FhCL1 + Prx + Sm14 | Recombinant | Goat | 100 μg × 2 | Quil A | 10.1 |
FhLAP | Adult Som | Sheep | 100 μg × 2 | FCA/FIA | 89.6 |
Recombinant | Rabbit | 100 μg × 2 | FCA/FIA | 78 | |
Sheep | 100 μg × 2 | FCA/FIA | 83.8 | ||
Alum | 86.7 | ||||
Adyuvac | 74.4 | ||||
DEAE-D | 49.8 | ||||
Ribi | 49.5 | ||||
FhPrx | Recombinant | Goat | 100 μg × 2 | Quil A | 33.1 |
33.1 |
Vaccine Type | Protein | Worm Reduction Rate | Egg Reduction Rate |
---|---|---|---|
DNA (pcDNA3.1) | Cysteine proteinase | 31.5% | 15.7% |
DNA (pcDNA3.1) | Fatty-acid-binding protein | 40.9% | 27.5% |
Bacillus subtilis spore-based | Tegumental protein 22.3 kDa | 44.7% | 30.4% |
Protein | Rho GTPase | 60.5% | 68.8% |
Protein | 14-3-3 epsilon | 45.4% | 37.9% |
Protein | Paramyosin | 54.3% | 50.9% |
DNA (pcDNA3.1) | Paramyosin | 36.1% | 38.8% |
Protein | Enolase | 56.3% | ND |
Protein | Enolase | 15.4% | ND |
DNA (pcDNA3.1) | Enolase | 37.4% | ND |
Bacillus subtilis spore-based | Enolase | 61.1% | 80.7% |
Protein | Cathepsin B cysteine protease (CB2) | 41.0% | 33.6% |
Protein | Cathepsin B cysteine protease (CB3) | 67.2% | 57.7% |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McManus, D.P. Recent Progress in the Development of Liver Fluke and Blood Fluke Vaccines. Vaccines 2020, 8, 553. https://doi.org/10.3390/vaccines8030553
McManus DP. Recent Progress in the Development of Liver Fluke and Blood Fluke Vaccines. Vaccines. 2020; 8(3):553. https://doi.org/10.3390/vaccines8030553
Chicago/Turabian StyleMcManus, Donald P. 2020. "Recent Progress in the Development of Liver Fluke and Blood Fluke Vaccines" Vaccines 8, no. 3: 553. https://doi.org/10.3390/vaccines8030553
APA StyleMcManus, D. P. (2020). Recent Progress in the Development of Liver Fluke and Blood Fluke Vaccines. Vaccines, 8(3), 553. https://doi.org/10.3390/vaccines8030553