Immune Checkpoint Inhibitors for Unresectable Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Immune Checkpoint Inhibitors as a First-Line Therapy
2.1. PD-1/PD-L1 Inhibition
2.2. Dual Immune Checkpoint Blockade
2.3. Combination with Biological Therapy
3. Immune Checkpoint Inhibitors as Second-Line Therapy
3.1. CTLA-4 Inhibition
3.2. PD-1/PD-L1 Inhibition
3.3. Dual Immune Checkpoint Blockade
3.4. Combination with Biological Therapy
4. Predictors of Response Using PD-L1 Expression
5. Immune Checkpoint Inhibitors for Subgroups of Patients
5.1. Use of Immune Checkpoint Inhibitors in Patients Autoimmune Diseases
5.2. Use of Immune Checkpoint Inhibitors in Patients with Inflammatory Bowel Disease
6. Novel Immunotherapies
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- El-Serag, H.B. Hepatocellular carcinoma. N. Engl. J. Med. 2011, 365, 1118–1127. [Google Scholar] [CrossRef] [PubMed]
- Abd El Aziz, M.A.; Sacco, R.; Facciorusso, A. Nucleos(t)ide analogues and Hepatitis B virus-related hepatocellular carcinoma: A literature review. Antivir. Chem. Chemother. 2020, 28, 2040206620921331. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Li, A.A.; Perumpail, B.J.; Gadiparthi, C.; Kim, W.; Cholankeril, G.; Glenn, J.S.; Harrison, S.A.; Younossi, Z.M.; Ahmed, A. Changing Trends in Etiology-Based and Ethnicity-Based Annual Mortality Rates of Cirrhosis and Hepatocellular Carcinoma in the United States. Hepatology 2019, 69, 1064–1074. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, A.; Abd El Aziz, M.A.; Singh, S.; Pusceddu, S.; Milione, M.; Giacomelli, L.; Sacco, R. Statin Use Decreases the Incidence of Hepatocellular Carcinoma: An Updated Meta-Analysis. Cancers 2020, 12, 874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudo, M.; Trevisani, F.; Abou-Alfa, G.K.; Rimassa, L. Hepatocellular Carcinoma: Therapeutic Guidelines and Medical Treatment. Liver Cancer 2016, 6, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.M.; Adnane, L.; Newell, P.; Villanueva, A.; Llovet, J.M.; Lynch, M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther. 2008, 7, 3129–3140. [Google Scholar] [CrossRef] [Green Version]
- Keating, G.M.; Santoro, A. Sorafenib. Drugs 2009, 69, 223–240. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Matsui, J.; Funahashi, Y.; Uenaka, T.; Watanabe, T.; Tsuruoka, A.; Asada, M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin. Cancer Res. 2008, 14, 5459–5465. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, K.; Kodama, K.; Takase, K.; Sugi, N.H.; Yamamoto, Y.; Iwata, M.; Tsuruoka, A. Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett. 2013, 340, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Matsui, J.; Yamamoto, Y.; Funahashi, Y.; Tsuruoka, A.; Watanabe, T.; Wakabayashi, T.; Uenaka, T.; Asada, M. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int. J. Cancer 2008, 122, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Matsui, J.; Matsushima, T.; Obaishi, H.; Miyazaki, K.; Nakamura, K.; Tohyama, O.; Semba, T.; Yamaguchi, A.; Hoshi, S.S.; et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc. Cell 2014, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Facciorusso, A.; Abd El Aziz, M.A.; Sacco, R. Efficacy of Regorafenib in Hepatocellular Carcinoma Patients: A Systematic Review and Meta-Analysis. Cancers 2019, 12, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinter, M.; Peck-Radosavljevic, M. Review article: Systemic treatment of hepatocellular carcinoma. Aliment. Pharmacol. Ther. 2018, 48, 598–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.-L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.-Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.-W.; et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef]
- Zhu, A.X.; Kang, Y.K.; Yen, C.J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 282–296. [Google Scholar] [CrossRef]
- Yu, S.; Wang, Y.; Hou, J.; Li, W.; Wang, X.; Xiang, L.; Tan, D.; Wang, W.; Jiang, L.; Claret, F.X.; et al. Tumor-infiltrating immune cells in hepatocellular carcinoma: Tregs is correlated with poor overall survival. PLoS ONE 2020, 15, e0231003. [Google Scholar] [CrossRef]
- Pinato, D.J.; Guerra, N.; Fessas, P.; Murphy, R.; Mineo, T.; Mauri, F.A.; Mukherjee, S.K.; Thursz, M.; Wong, C.N.; Sharma, R.; et al. Immune-based therapies for hepatocellular carcinoma. Oncogene 2020, 39, 3620–3637. [Google Scholar] [CrossRef] [Green Version]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.Y.; Choo, S.P.; Trojan, J.; Welling, T.H.R.; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Yau, T.; Kang, Y.-K.; Kim, T.-Y.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M.-M.; Matilla, A.; et al. Nivolumab (NIVO) + ipilimumab (IPI) combination therapy in patients (pts) with advanced hepatocellular carcinoma (aHCC): Results from CheckMate 040. J. Clin. Oncol. 2019, 37, 4012. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef]
- Yau, T.; Park, J.W.; Finn, R.S.; Cheng, A.L.; Mathurin, P.; Edeline, J.; Kudo, M.; Han, K.H.; Harding, J.J.; Merle, P.; et al. CheckMate 459: A randomized, multi-center phase III study of nivolumab (NIVO) vs sorafenib (SOR) as first-line (1L) treatment in patients (pts) with advanced hepatocellular carcinoma (aHCC). Ann. Oncol. 2019, 30, v874–v875. [Google Scholar] [CrossRef]
- Finn, R.S.; Ryoo, B.Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Gucalp, R.; Shapira, I. Evolving Concepts: Immunity in Oncology from Targets to Treatments. J. Oncol. 2015, 2015, 847383. [Google Scholar] [CrossRef]
- Shi, F.; Shi, M.; Zeng, Z.; Qi, R.Z.; Liu, Z.W.; Zhang, J.Y.; Yang, Y.P.; Tien, P.; Wang, F.S. PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int. J. Cancer 2011, 128, 887–896. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, X.Y.; Qiu, S.J.; Yamato, I.; Sho, M.; Nakajima, Y.; Zhou, J.; Li, B.Z.; Shi, Y.H.; Xiao, Y.S.; et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin. Cancer Res. 2009, 15, 971–979. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Song, X.; Xu, L.; Ma, J.; Zhang, Y.; Gong, W.; Zhang, Y.; Zhou, X.; Wang, Z.; Wang, Y.; et al. The binding of an anti-PD-1 antibody to FcγRΙ has a profound impact on its biological functions. Cancer Immunol. Immunother. CII 2018, 67, 1079–1090. [Google Scholar] [CrossRef] [Green Version]
- Qin, S.; Finn, R.S.; Kudo, M.; Meyer, T.; Vogel, A.; Ducreux, M.; Macarulla, T.M.; Tomasello, G.; Boisserie, F.; Hou, J.; et al. RATIONALE 301 study: Tislelizumab versus sorafenib as first-line treatment for unresectable hepatocellular carcinoma. Future Oncol. 2019, 15, 1811–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwai, Y.; Hamanishi, J.; Chamoto, K.; Honjo, T. Cancer immunotherapies targeting the PD-1 signaling pathway. J. Biomed. Sci. 2017, 24, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudo, M. Combination Cancer Immunotherapy with Molecular Targeted Agents/Anti-CTLA-4 Antibody for Hepatocellular Carcinoma. Liver Cancer 2019, 8, 1–11. [Google Scholar] [CrossRef]
- Wing, K.; Onishi, Y.; Prieto-Martin, P.; Yamaguchi, T.; Miyara, M.; Fehervari, Z.; Nomura, T.; Sakaguchi, S. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008, 322, 271–275. [Google Scholar] [CrossRef]
- Kudo, M. Immuno-Oncology Therapy for Hepatocellular Carcinoma: Current Status and Ongoing Trials. Liver Cancer 2019, 8, 221–238. [Google Scholar] [CrossRef]
- Postow, M.A.; Chesney, J.; Pavlick, A.C.; Robert, C.; Grossmann, K.; McDermott, D.; Linette, G.P.; Meyer, N.; Giguere, J.K.; Agarwala, S.S.; et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 2015, 372, 2006–2017. [Google Scholar] [CrossRef] [Green Version]
- Kelley, R.K.; Abou-Alfa, G.K.; Bendell, J.C.; Kim, T.-Y.; Borad, M.J.; Yong, W.-P.; Morse, M.; Kang, Y.-K.; Rebelatto, M.; Makowsky, M.; et al. Phase I/II study of durvalumab and tremelimumab in patients with unresectable hepatocellular carcinoma (HCC): Phase I safety and efficacy analyses. J. Clin. Oncol. 2017, 35, 4073. [Google Scholar] [CrossRef]
- Morse, M.A.; Sun, W.; Kim, R.; He, A.R.; Abada, P.B.; Mynderse, M.; Finn, R.S. The Role of Angiogenesis in Hepatocellular Carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 912–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, A.X.; Duda, D.G.; Sahani, D.V.; Jain, R.K. HCC and angiogenesis: Possible targets and future directions. Nat. Rev. Clin. Oncol. 2011, 8, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Voron, T.; Marcheteau, E.; Pernot, S.; Colussi, O.; Tartour, E.; Taieb, J.; Terme, M. Control of the immune response by pro-angiogenic factors. Front. Oncol. 2014, 4, 70. [Google Scholar] [CrossRef] [Green Version]
- Fukumura, D.; Kloepper, J.; Amoozgar, Z.; Duda, D.G.; Jain, R.K. Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat. Rev. Clin. Oncol. 2018, 15, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Lee, M.S.; Ryoo, B.Y.; Hsu, C.H.; Numata, K.; Stein, S.; Verret, W.; Hack, S.P.; Spahn, J.; Liu, B.; Abdullah, H.; et al. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): An open-label, multicentre, phase 1b study. Lancet Oncol. 2020, 21, 808–820. [Google Scholar] [CrossRef]
- Pinter, M.; Ulbrich, G.; Sieghart, W.; Kölblinger, C.; Reiberger, T.; Li, S.; Ferlitsch, A.; Müller, C.; Lammer, J.; Peck-Radosavljevic, M. Hepatocellular Carcinoma: A Phase II Randomized Controlled Double-Blind Trial of Transarterial Chemoembolization in Combination with Biweekly Intravenous Administration of Bevacizumab or a Placebo. Radiology 2015, 277, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Siegel, A.B.; Cohen, E.I.; Ocean, A.; Lehrer, D.; Goldenberg, A.; Knox, J.J.; Chen, H.; Clark-Garvey, S.; Weinberg, A.; Mandeli, J.; et al. Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008, 26, 2992–2998. [Google Scholar] [CrossRef] [Green Version]
- Sangro, B.; Gomez-Martin, C.; de la Mata, M.; Iñarrairaegui, M.; Garralda, E.; Barrera, P.; Riezu-Boj, J.I.; Larrea, E.; Alfaro, C.; Sarobe, P.; et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol. 2013, 59, 81–88. [Google Scholar] [CrossRef]
- Duffy, A.G.; Ulahannan, S.V.; Makorova-Rusher, O.; Rahma, O.; Wedemeyer, H.; Pratt, D.; Davis, J.L.; Hughes, M.S.; Heller, T.; ElGindi, M.; et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J. Hepatol. 2017, 66, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.M.; Choi, J.; Lee, D.; Shim, J.H.; Lim, Y.S.; Lee, H.C.; Chung, Y.H.; Lee, Y.S.; Park, S.R.; Ryu, M.H.; et al. Regorafenib Versus Nivolumab After Sorafenib Failure: Real-World Data in Patients With Hepatocellular Carcinoma. Hepatol. Commun. 2020, 4, 1073–1086. [Google Scholar] [CrossRef]
- Lee, C.H.; Lee, Y.B.; Kim, M.A.; Jang, H.; Oh, H.; Kim, S.W.; Cho, E.J.; Lee, K.H.; Lee, J.H.; Yu, S.J.; et al. Effectiveness of nivolumab versus regorafenib in hepatocellular carcinoma patients who failed sorafenib treatment. Clin. Mol. Hepatol. 2020, 26, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.I.; Lee, S.J.; Lee, J.; Lim, H.Y.; Paik, S.W.; Yoo, G.S.; Choi, C.; Park, H.C. Clinical significance of radiotherapy before and/or during nivolumab treatment in hepatocellular carcinoma. Cancer Med. 2019, 8, 6986–6994. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Golan, T.; Lin, C.-C.; Dahan, L.; Fu, S.; Moreno, V.; Geva, R.; Reck, M.; Wasserstrom, H.A.; Mi, G.; et al. Ramucirumab (Ram) and durvalumab (Durva) treatment of metastatic non-small cell lung cancer (NSCLC), gastric/gastroesophageal junction (G/GEJ) adenocarcinoma, and hepatocellular carcinoma (HCC) following progression on systemic treatment(s). J. Clin. Oncol. 2019, 37, 2528. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Jia, R.; Yue, C.; Chang, L.; Liu, R.; Zhang, G.; Zhao, C.; Zhang, Y.; Chen, C.; et al. Anti-PD-1 Antibody SHR-1210 Combined with Apatinib for Advanced Hepatocellular Carcinoma, Gastric, or Esophagogastric Junction Cancer: An Open-label, Dose Escalation and Expansion Study. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 515–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Totoki, Y.; Tatsuno, K.; Covington, K.R.; Ueda, H.; Creighton, C.J.; Kato, M.; Tsuji, S.; Donehower, L.A.; Slagle, B.L.; Nakamura, H.; et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat. Genet. 2014, 46, 1267–1273. [Google Scholar] [CrossRef] [PubMed]
- Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N. Engl. J. Med. 2017, 377, 2500–2501. [Google Scholar] [CrossRef]
- Zucman-Rossi, J.; Villanueva, A.; Nault, J.C.; Llovet, J.M. Genetic Landscape and Biomarkers of Hepatocellular Carcinoma. Gastroenterology 2015, 149, 1226–1239.e1224. [Google Scholar] [CrossRef] [Green Version]
- Haanen, J.; Carbonnel, F.; Robert, C.; Kerr, K.M.; Peters, S.; Larkin, J.; Jordan, K. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, iv119–iv142. [Google Scholar] [CrossRef] [PubMed]
- Konstantina, T.; Konstantinos, R.; Anastasios, K.; Anastasia, M.; Eleni, L.; Ioannis, S.; Sofia, A.; Dimitris, M. Fatal adverse events in two thymoma patients treated with anti-PD-1 immune check point inhibitor and literature review. Lung Cancer 2019, 135, 29–32. [Google Scholar] [CrossRef]
- Krenn, M.; Grisold, A.; Wohlfarth, P.; Rath, J.; Cetin, H.; Koneczny, I.; Zimprich, F. Pathomechanisms and Clinical Implications of Myasthenic Syndromes Exacerbated and Induced by Medical Treatments. Front. Mol. Neurosci. 2020, 13, 156. [Google Scholar] [CrossRef]
- Herbst, D.A.; Reddy, K.R. Risk factors for hepatocellular carcinoma. Clin. Liver Dis. 2012, 1, 180–182. [Google Scholar] [CrossRef]
- Tansel, A.; Katz, L.H.; El-Serag, H.B.; Thrift, A.P.; Parepally, M.; Shakhatreh, M.H.; Kanwal, F. Incidence and Determinants of Hepatocellular Carcinoma in Autoimmune Hepatitis: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2017, 15, 1207–1217.e1204. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Wahab, N.; Shah, M.; Lopez-Olivo, M.A.; Suarez-Almazor, M.E. Use of Immune Checkpoint Inhibitors in the Treatment of Patients With Cancer and Preexisting Autoimmune Disease: A Systematic Review. Ann. Intern. Med. 2018, 168, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Cortellini, A.; Buti, S.; Santini, D.; Perrone, F.; Giusti, R.; Tiseo, M.; Bersanelli, M.; Michiara, M.; Grassadonia, A.; Brocco, D.; et al. Clinical Outcomes of Patients with Advanced Cancer and Pre-Existing Autoimmune Diseases Treated with Anti-Programmed Death-1 Immunotherapy: A Real-World Transverse Study. Oncologist 2019, 24, e327–e337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danlos, F.X.; Voisin, A.L.; Dyevre, V.; Michot, J.M.; Routier, E.; Taillade, L.; Champiat, S.; Aspeslagh, S.; Haroche, J.; Albiges, L.; et al. Safety and efficacy of anti-programmed death 1 antibodies in patients with cancer and pre-existing autoimmune or inflammatory disease. Eur. J. Cancer 2018, 91, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Sullivan, R.J.; Ott, P.A.; Carlino, M.S.; Khushalani, N.I.; Ye, F.; Guminski, A.; Puzanov, I.; Lawrence, D.P.; Buchbinder, E.I.; et al. Ipilimumab Therapy in Patients With Advanced Melanoma and Preexisting Autoimmune Disorders. JAMA Oncol. 2016, 2, 234–240. [Google Scholar] [CrossRef]
- Kähler, K.C.; Eigentler, T.K.; Gesierich, A.; Heinzerling, L.; Loquai, C.; Meier, F.; Meiss, F.; Pföhler, C.; Schlaak, M.; Terheyden, P.; et al. Ipilimumab in metastatic melanoma patients with pre-existing autoimmune disorders. Cancer Immunol. Immunother. CII 2018, 67, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, G.C.; Gainor, J.F.; Altan, M.; Kravets, S.; Dahlberg, S.E.; Gedmintas, L.; Azimi, R.; Rizvi, H.; Riess, J.W.; Hellmann, M.D.; et al. Safety of Programmed Death-1 Pathway Inhibitors Among Patients With Non-Small-Cell Lung Cancer and Preexisting Autoimmune Disorders. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 1905–1912. [Google Scholar] [CrossRef]
- Menzies, A.M.; Johnson, D.B.; Ramanujam, S.; Atkinson, V.G.; Wong, A.N.M.; Park, J.J.; McQuade, J.L.; Shoushtari, A.N.; Tsai, K.K.; Eroglu, Z.; et al. Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, 368–376. [Google Scholar] [CrossRef]
- Tison, A.; Quéré, G.; Misery, L.; Funck-Brentano, E.; Danlos, F.X.; Routier, E.; Robert, C.; Loriot, Y.; Lambotte, O.; Bonniaud, B.; et al. Safety and Efficacy of Immune Checkpoint Inhibitors in Patients With Cancer and Preexisting Autoimmune Disease: A Nationwide, Multicenter Cohort Study. Arthritis Rheumatol. 2019, 71, 2100–2111. [Google Scholar] [CrossRef]
- Rojas-Feria, M.; Castro, M.; Suárez, E.; Ampuero, J.; Romero-Gómez, M. Hepatobiliary manifestations in inflammatory bowel disease: The gut, the drugs and the liver. World J. Gastroenterol. 2013, 19, 7327–7340. [Google Scholar] [CrossRef]
- Dougan, M. Checkpoint Blockade Toxicity and Immune Homeostasis in the Gastrointestinal Tract. Front. Immunol. 2017, 8, 1547. [Google Scholar] [CrossRef] [Green Version]
- Chambers, C.A.; Allison, J.P. Costimulatory regulation of T cell function. Curr. Opin. Cell Biol. 1999, 11, 203–210. [Google Scholar] [CrossRef]
- Ng, S.C.; Tsoi, K.K.; Kamm, M.A.; Xia, B.; Wu, J.; Chan, F.K.; Sung, J.J. Genetics of inflammatory bowel disease in Asia: Systematic review and meta-analysis. Inflamm. Bowel Dis. 2012, 18, 1164–1176. [Google Scholar] [CrossRef]
- Nakazawa, A.; Dotan, I.; Brimnes, J.; Allez, M.; Shao, L.; Tsushima, F.; Azuma, M.; Mayer, L. The expression and function of costimulatory molecules B7H and B7-H1 on colonic epithelial cells. Gastroenterology 2004, 126, 1347–1357. [Google Scholar] [CrossRef]
- Beswick, E.J.; Grim, C.; Singh, A.; Aguirre, J.E.; Tafoya, M.; Qiu, S.; Rogler, G.; McKee, R.; Samedi, V.; Ma, T.Y.; et al. Expression of Programmed Death-Ligand 1 by Human Colonic CD90(+) Stromal Cells Differs Between Ulcerative Colitis and Crohn’s Disease and Determines Their Capacity to Suppress Th1 Cells. Front. Immunol. 2018, 9, 1125. [Google Scholar] [CrossRef] [PubMed]
- Reynoso, E.D.; Elpek, K.G.; Francisco, L.; Bronson, R.; Bellemare-Pelletier, A.; Sharpe, A.H.; Freeman, G.J.; Turley, S.J. Intestinal tolerance is converted to autoimmune enteritis upon PD-1 ligand blockade. J. Immunol. 2009, 182, 2102–2112. [Google Scholar] [CrossRef] [PubMed]
- Boutros, C.; Tarhini, A.; Routier, E.; Lambotte, O.; Ladurie, F.L.; Carbonnel, F.; Izzeddine, H.; Marabelle, A.; Champiat, S.; Berdelou, A.; et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat. Rev. Clin. Oncol. 2016, 13, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Braga Neto, M.B.; Ramos, G.P.; Loftus, E.V., Jr.; Faubion, W.A.; Raffals, L.E. Use of Immune Checkpoint Inhibitors in Patients With Pre-established Inflammatory Bowel Diseases: Retrospective Case Series. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2020. [Google Scholar] [CrossRef]
- Abu-Sbeih, H.; Faleck, D.M.; Ricciuti, B.; Mendelsohn, R.B.; Naqash, A.R.; Cohen, J.V.; Sellers, M.C.; Balaji, A.; Ben-Betzalel, G.; Hajir, I.; et al. Immune Checkpoint Inhibitor Therapy in Patients With Preexisting Inflammatory Bowel Disease. J. Clin. Oncol. 2019, 38, 576–583. [Google Scholar] [CrossRef]
- Abu-Sbeih, H.; Ali, F.S.; Luo, W.; Qiao, W.; Raju, G.S.; Wang, Y. Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis. J. Immunother. Cancer 2018, 6, 95. [Google Scholar] [CrossRef]
- Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004, 350, 2335–2342. [Google Scholar] [CrossRef] [Green Version]
- Sugrue, M.; Kozloff, M.; Hainsworth, J.; Badarinath, S.; Cohn, A.; Flynn, P.; Steis, R.; Dong, W.; Sarkar, S.; Grothey, A. Risk factors for gastrointestinal perforations in patients with metastatic colorectal cancer receiving bevacizumab plus chemotherapy. J. Clin. Oncol. 2006, 24, 3535. [Google Scholar] [CrossRef]
- Wu, Y.S.; Shui, L.; Shen, D.; Chen, X. Bevacizumab combined with chemotherapy for ovarian cancer: An updated systematic review and meta-analysis of randomized controlled trials. Oncotarget 2017, 8, 10703–10713. [Google Scholar] [CrossRef]
- Burger, R.A.; Brady, M.F.; Bookman, M.A.; Monk, B.J.; Walker, J.L.; Homesley, H.D.; Fowler, J.; Greer, B.E.; Boente, M.; Fleming, G.F.; et al. Risk factors for GI adverse events in a phase III randomized trial of bevacizumab in first-line therapy of advanced ovarian cancer: A Gynecologic Oncology Group Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 1210–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, P.; Hu, J.H.; Cheng, Z.G.; Liu, Z.F.; Wang, J.L.; Jiao, S.C. Efficacy and safety of bevacizumab for the treatment of advanced hepatocellular carcinoma: A systematic review of phase II trials. PLoS ONE 2012, 7, e49717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Read, S.; Malmström, V.; Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J. Exp. Med. 2000, 192, 295–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karandikar, N.J.; Vanderlugt, C.L.; Walunas, T.L.; Miller, S.D.; Bluestone, J.A. CTLA-4: A negative regulator of autoimmune disease. J. Exp. Med. 1996, 184, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Francisco, L.M.; Sage, P.T.; Sharpe, A.H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 2010, 236, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Xu, L.; Yi, M.; Yu, S.; Wu, K.; Luo, S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4. Mol. Cancer 2019, 18, 155. [Google Scholar] [CrossRef]
- Vey, N.; Dumas, P.Y.; Recher, C.; Gastaud, L.; Lioure, B.; Bulabois, C.E.; Pautas, C.; Marolleau, J.P.; Leprêtre, S.; Raffoux, E.; et al. Randomized phase 2 trial of lirilumab (anti-KIR monoclonal antibody, mab) as maintenance treatment in elderly patients (pts) with acute myeloid leukemia (AML): Results of the EFFIKIR trial. Blood 2017, 130, 889. [Google Scholar]
Study ID | NCT | Study Design, Key Inclusion | Sample Size | OS, Months (95% CI) | PFS Months (95% CI) | Response Rates | Side Effects |
---|---|---|---|---|---|---|---|
PD-1/PD-L1 antibodies | |||||||
CheckMate 459 ESMO October 2019 | NCT02576509 | RCT, CP: A | 743 patients Nivolumab: 371 pts Sorafenib: 372 pts | Nivolumab vs. Sorafenib: OS: 16.4 (13.9–18.4) vs. 14.7 (11.9–17.2) 12 mo (%): 59.7 (54.4–64.6) vs. 55.1 (49.8–60.1) 24 mo (%): 36.8 (31.8–41.8) vs. 33.1 (28.3–38.0) | Nivolumab vs. Sorafenib: 3.7 (3.1–3.9) vs. 3.8 (3.7–4.5) | Nivolumab vs. Sorafenib: ORR: 57 (15%) vs. 26 (7%) Complete response: 14 (4%) vs. 5 (1%) Partial response: 43 (12%) vs. 21 (6%) | Nivolumab demonstrated a favorable safety profile consistent with previous reports. |
RATIONALE 301 | NCT03412773 | RCT, BCLC stage C or B, CP: A | 674 patients Tislelizumab vs. Sorafenib | Pending | Pending | Pending | Pending |
Dual immune checkpoint blockade: | |||||||
HIMALAYA study | NCT03298451 | RCT, BCLC stage C or B, CP: A | 1310 pts, Durvalumab vs. (Durvalumab + Tremelimumab) vs. Sorafenib | Pending | Pending | Pending | Pending |
Combination with biological therapy: | |||||||
IMbrave 150 | NCT03434379 | RCT, CP: A | 501 patients Atezolizumab + Bevacizumab: 336 pts vs. Sorafenib: 165 pts | Atezolizumab + Bevacizumab vs. Sorafenib; Overall death: 28.6% vs. 39.4%; HR: 0.58 (95% CI 0.42–0.79) OS: NE vs. 13.2 (10.4—NE) OS at 6 Mo: 84.8% vs. 72.2% | Atezolizumab + Bevacizumab vs. Sorafenib; Overall progression: 58.6% vs. 66.1%; HR: 0.59 (95% CI 0.47–0.76) PFS: 6.8 (5.7–8.3) vs. 4.3 (4.0–5.6) PFS at 6 Mo: 57.5% vs. 37.2% | Atezolizumab + Bevacizumab vs. Sorafenib; % (95% CI) ORR per RECIST 1.1: 27.3 (22.5–32.5) vs. 11.9 (7.4–18) ORR per HCC specific mRECIST: 33.2 (28.1–38.6) vs. 13.3 (8.4–19.6) | Atezolizumab + Bevacizumab vs. Sorafenib; Grade 3–4 complications: 186 (56.5%) vs. 86 (55.1%) |
G030140 group F | NCT02715531 | RCT, CP: A | 119 pts Atezolizumab + Bevacizumab: 60 pts vs. Atezolizumab: 59 pts | Atezolizumab + Bevacizumab vs. Atezolizumab Overall death: 27% vs. 31% OS: not reached in both groups | Atezolizumab + Bevacizumab vs. Atezolizumab Overall progression: HR: per HCC mRECIST: 57% vs. 66%, HR: 0.54 (80% CI 0.40–0.74) per RECIST 1.1: 58% vs. 66% HR: 0.55 (80% CI 0.40–0.74) PFS Mo: per HCC mRECIST: 5.6 mo (3.6–7.4) vs. 3.4 mo (1.9–5.2) per RECIST: 5.7 mo (3.5–9.3) vs. 2.0 mo (1.9–3.7) | Atezolizumab + Bevacizumab vs. Atezolizumab ORR per RECIST 1.1: 20% (95% CI 11–32) vs. 17% (95% CI 8–29) ORR per HCC mRECIST: 27% (95% CI 16–40) vs. 17% (95% CI 8–29) | Atezolizumab + Bevacizumab vs. Atezolizumab Grade 3–4: 12 (20%) vs. 3 (5%) The most common grade 3–4 SEs were: hypertension: 3 (5%) vs. none proteinuria: 2 (3%) vs. none |
G030140 group A | NCT02715531 | RCT, CP: A | 104 pts Atezolizumab + Bevacizumab | 57 (55%) still alive at data cut off OS not reached | Per RECIST 1.1: 66%; 7.3 months (95% CI 5.4–9.9) Per HCC mRECIST: 66%; 7.3 months (95% CI 5.4–9.9) | ORR per RECIST 1.1: n (%; 95% CI) 37 (36%; 26–46) ORR per HCC mRECIST: 41 (39%; 30–50) | Serious SEs: 25 (24%) The most common serious SEs were upper gastrointestinal hemorrhage, colitis, esophageal variceal hemorrhage and pneumonitis, each occurring in two (2%) patients. |
COSMIC 312 | NCT03755791 | RCT, BCLC stage C or B, CP: A | 740 pts Cabozantinib + Atezolizumab: 370 pts vs. Cabozantinib: 185 pts vs. Sorafenib: 185 pts | pending | pending | pending | Pending |
LEAP 002 | NCT03713593 | RCT, BCLC stage C or B, CP: A | 750 pts Pembrolizumab + Lenvatinib vs. Lenvatinib alone | pending | pending | pending | Pending |
CheckMate 9DW | NCT04039607 | RCT | 1084 pts Nivolumab + Ipilimumab vs. Sorafenib/Lenvatinib | pending | pending | pending | Pending |
KEYNOTE 524; AACR April 2019 | NCT03006926 | Single-arm, BCLC stage C or B, CP: A | 104 pts will be recruited, however, the presented results are for 30 pts (6 pts in safety part and 24 pts in efficacy part) Pembrolizumab + Lenvatinib | pending | pending | ORR per mRECIST per investigator: 11 (36.7) per mRECIST per IIR: 15 (50.0%) Per RECIST IIR: 11 (36.7%) | Any-grade treatment-emergent adverse events (TEAEs) occurred in 28 pts (93%); the most common any-grade TEAEs were decreased appetite (63%) and hypertension (60%). 7 (23%) pts discontinued treatment due to TEAEs and no new safety signals were identified. |
VEGF Liver 100 | NCT03289533 | Single-arm, BCLC stage C or B, CP: A | 22 pts Avelumab + Axitinib | __ | PFS: mo (95% CI) Per RECIST: 5.5 (1.9–7.3) Per mRECIST: 3.8 (1.9–7.3) 6 months PFS: % (95% CI) Per RECIST: 35.1% (15.3–55.8%) Per mRECIST: 30.9% (12.5–51.5%) | ORR Per RECIST: 13.6% (95% CI, 2.9–34.9%) Per mRECIST: 31.8% (95% CI, 13.9–54.9%) | The most common grade 3 treatment-related adverse events (TRAEs) (≥10% of patients) were hypertension (50.0%) and hand-foot syndrome (22.7%); no grade 4/5 TRAEs were reported. |
Kelley 2017, arm five | NCT02519348 | RCT | 433 pts Durvalumab + Tremelimumab vs. Durvalumab vs. Tremelimumab vs. Durvalumab + Tremelimumab (regmine two) vs. Durvalumab + Bevacizumab | __ | __ | __ | __ |
Study ID | NCT | Study Design, Key Inclusion | Sample Size | OS, Months (95% CI) | PFS Months (95% CI) | Response Rates | Side Effects |
---|---|---|---|---|---|---|---|
CTLA-4 antibodies | |||||||
Sangro 2013 | NCT01008358 | Single-arm, HCV patients, CP: A or B | 21 pts Tremelimumab | __ | __ | ORR: 17.6% time to progression: 6.48 months (95% CI 3.95–9.14) | Grade 3–4 transaminase elevation: 45% |
Duffy 2017 | NCT01853618 | Single-arm, CP: A or B | 32 pts Tremelimumab plus ablation | OS: 12.3 months (95% CI 9.3 to 15.4 months). Six months OS: 85.7% (66.3–94.4%) One year OS: 50.8% (29.1–68.9%) | PFS: 7.4 months (4.7–19.4 months) Six months PFS: 57.1% (37.1–72.9%) One year PFS: 33.1% (16.2–51.2%) | Partial response: 26% (95% CI 9.1–51.2) | Grade 3–4 increase AST: 7 pts (19%) |
PD-1/PD-L1 inhibition: | |||||||
KEYNOTE 240 | NCT02702401 | RCT, CP: A | 413 pts Pembrolizumab: 278 pts vs. Placebo: 135 pts | OS: Pembrolizumab: 13.9 months (95% CI, 11.6 to 16.0 months) Placebo: 10.6 months (95% CI, 8.3 to 13.5 months) HR: 0.781; 95% CI, 0.611 to 0.998 | PFS: Pembrolizumab: 3.0 months (95% CI, 2.8 to 4.1 months) Placebo: 2.8 months (95% CI, 1.6 to 3.0 months) HR: 0.718; 95% CI, 0.570 to 0.904 PFS at 12 months: Pembrolizumab: 19.4% (95% CI, 14.6% to 24.9%) Placebo: 6.7% (95% CI, 3.0% to 12.4%) | ORR: Pembrolizumab: 18.3% (95% CI 14–23.4) Placebo: 4.4% (95% CI 1.6–9.4) Estimated treatment difference: 13.8 (95% CI: 7.7 to 19.5) | Any grade 3–4: Pembrolizumab: 52% Placebo: 46.3% Grade 3–4 AST elevation: Pembrolizumab: 13.3% Placebo: 7.5% |
Scheiner 2019 | NA | Retrospective cohort | 65 pts Nivolumab: 34 pts Pembrolizumab: 31 pts | OS: Nivolumab: 9.0 (95% CI, 5.5–12.5) months Pembrolizumab: 11.0 (95% CI, 7.4–14.5) months 1 year OS: Nivolumab: 38% Pembrolizumab: 44% | PFS Nivolumab: 4.3 (95% CI, 2.0–6.7) months Pembrolizumab: 5.6 (95% CI, 1.1–10.1) months | ORR: Nivolumab: 15% Pembrolizumab: 10% | High grade: 17% in both groups |
Choi 2020 | NA | Propensity score matching, CP: A | 272 pts after matching Regorafenib: 136 pts vs. Nivolumab: 136 pts | weeks, median (95% CI) Regorafenib: 31.3 (24.6–42.0) Nivolumab: 37.1 (22.4–49.0) | time in weeks; median (95% CI) Regorafenib: 12.6 (10.6–15.7) Nivolumab: 7.1 (6.1–11.1) | ORR: Regorafenib: 3.7% Nivolumab: 14% | |
Lee 2020 | NA | Retrospective cohort | 150 patients Regorafenib: 102 patients Nivolumab: 48 patients | OS: Regorafenib: 6.9 months (95% CI, 3.5–13.1) Nivolumab: 5.9 months (95% CI, 3.2–18.1) Death rates: Regorafenib: 37.3% Nivolumab: 56.3% | mTTP Regorafenib: 3.3 months; (95% CI, 2.0–5.3) Nivolumab: 4.0 months; (95% CI, 1.8–8.7) Progression: Regorafenib: 60.8% Nivolumab: 60.4% | ORR: Regorafenib: 5.9% Nivolumab: 16.7% | |
Yu 2019 | NA | Retrospective cohort | 76 pts Nivolumab alone: 22 pts Nivolumab plus radiotherapy: 54 pts | Patients who had received previous/concurrent RT had a significantly longer progression-free survival (PFS; p = 0.008) and overall survival (OS; p = 0.007) than those who did not receive RT | __ | No complete response PR: Nivolumab alone: 1 pt (4.5%) Nivolumab plus radio: 8 pts (14.8%) | Nivolumab-related toxicities were generally tolerable regardless of the history of RT. |
Qin 2020 | NCT02989922 | RCT | Total 220 pts Camrelizumab every two weeks group: 111 pts Camrelizumab every three weeks group: 109 pts. | OS: Overall: 13.8 (11.5–16.6) Two months: 14.2 (11.5–NR) three months: 13.2 (9.4–17.0) OS rates: At 6 months, % (95% CI): Overall: 74.4% (68.0–79.7) Two weeks: 75.9% (66.6–82.9) Three weeks: 73.0% (63.6–80.4) At 9 months: Overall: 64.0% (57.2–70.1) Two weeks: 67.3% (57.5–75.3) Three weeks: 60.8% (50.8–69.3) At 12 months: Overall: 55.9% (48.9–62.2) Two weeks: 59.6% (49.6–68.2) Three weeks:52.2% (42.3–61.2) | PFS: Overall: 2.1 months (2.0–3.2) Two weeks: 2.3 months (1.9–3.2) Three weeks: 2.0 months (2.0–3.2) Disease progression rate: Overall: 73% Two weeks: 72% Three weeks: 74% | ORR: Number (%, 95% CI) Overall: 32 (14.7%; 10.3–20.2) Every two weeks: 13 (11.9%; 6.5–19.5) Every three weeks: 19 (17.6%; 10.9–26.1) | Grade 3: Overall: 11 (5.1%) Two weeks: 11 (10.1%) Three weeks: 6 (5.6%) Grade 4: Overall: 5 (2.3%) Two weeks: zero Three weeks: zero (I do not know how both two weeks and three weeks are zero but ht overall is 5) Grade five: Overall: 1 (0.5%), two and three weeks are zero. |
CHECKMATE 040 | Dose escalation | Phase I/2 trial | 48 pts Nivolumab | __ | __ | __ | Treatment-related grade 3–4: 25% |
Dose expansion | 214 pts Nivolumab uninfected Sorafenib untreated/intolerant: 56 pts uninfected Sorafenib progressors: 57 pts HCV: 50 pts HBV: 51 pts | OS: not reached 6 months OS: Overall: 83% (78 to 88) uninfected untreated/intolerant: 89% (77 to 95) uninfected Sorafenib progressors: 75% (62 to 85) HCV: 85% (72 to 93) HBV: 84% (71 to 92) | PFS: Overall: 4.0 (2.9 to 5.4) uninfected untreated/intolerant: 5.4 (3.9 to 8.5) uninfected Sorafenib progressors: 4.0 (2.6 to 6.7) HCV: 4.0 (2.6 to 5.7) HBV: 4.0 (1.3 to 4.1) | ORR: Overall: 42 (20%; 15 to 26) uninfected untreated/intolerant: 13 (23%; 13 to 36) uninfected Sorafenib progressors: 12 (21%; 11 to 34) HCV: 10 (20%; 10 to 34) HBV: 7 (14%; 6 to 26) | Grade 3–4: (19%) | ||
KEYNOTE 224 | NCT02702414 | Single-arm, CP: A | 104 pts Pembrolizumab | OS: 12.9 months (95% CI 9.7–15.5) OS at 12 months: 54% (95% CI 44–63) | PFS: 4.9 months (95% CI 3.4–7.2) PFS at 12 months: 28% (95% CI 19–37) | ORR: 17% (95% CI 11–26) | Grade 3: 24% |
He 2018 | NCT02383212 | Single-arm, CP: A | 26 pts Cemiplimab | __ | PFS: 3.7 months (95% CI: 2.3–9.1) | PR: 19.2% Stable disease: 53.8% | 1 death due to hepatic failure related to treatment |
NCT04294498 | Single-arm, HBV, CP: A | 43 pts Durvalumab | __ | __ | __ | __ | |
Dual immune checkpoint blockade | |||||||
Kelley 2017 | NCT02519348 | RCT, here we present the results of initial phase one safety and efficacy analysis | 40 pts Durvalumab/Tremelimumab combination | __ | __ | ORR: 15% | Most common grade ≥3 related AE was asymptomatic increased AST (10%) |
Combination with biological therapy: | |||||||
Bang 2019 | NCT02572687 | Single-arm | 28 pts Ramucirumab and Durvalumab | 10.7 months (95% CI 5.1–18.4) | 4.4 months (95% CI 1.6–5.7) | ORR: 3 (11%) | |
Xu 2019 | NCT02942329 | Single-arm | 18 pts Camrelizumab + Apatinib | OS: not reached | PFS: 5.8 months (2.6, NR) At 6 months: 45.4% (20.9%, 67.1%) At 9 months: 37.8% (15.0%, 60.7%) | ORR: 44.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd El Aziz, M.A.; Facciorusso, A.; Nayfeh, T.; Saadi, S.; Elnaggar, M.; Cotsoglou, C.; Sacco, R. Immune Checkpoint Inhibitors for Unresectable Hepatocellular Carcinoma. Vaccines 2020, 8, 616. https://doi.org/10.3390/vaccines8040616
Abd El Aziz MA, Facciorusso A, Nayfeh T, Saadi S, Elnaggar M, Cotsoglou C, Sacco R. Immune Checkpoint Inhibitors for Unresectable Hepatocellular Carcinoma. Vaccines. 2020; 8(4):616. https://doi.org/10.3390/vaccines8040616
Chicago/Turabian StyleAbd El Aziz, Mohamed A., Antonio Facciorusso, Tarek Nayfeh, Samer Saadi, Mohamed Elnaggar, Christian Cotsoglou, and Rodolfo Sacco. 2020. "Immune Checkpoint Inhibitors for Unresectable Hepatocellular Carcinoma" Vaccines 8, no. 4: 616. https://doi.org/10.3390/vaccines8040616
APA StyleAbd El Aziz, M. A., Facciorusso, A., Nayfeh, T., Saadi, S., Elnaggar, M., Cotsoglou, C., & Sacco, R. (2020). Immune Checkpoint Inhibitors for Unresectable Hepatocellular Carcinoma. Vaccines, 8(4), 616. https://doi.org/10.3390/vaccines8040616