The Chicken MHC: Insights into Genetic Resistance, Immunity, and Inflammation Following Infectious Bronchitis Virus Infections
Abstract
:1. Introduction
2. The Chicken MHC
3. Disease Resistance in Chickens
3.1. Parasites and Protozoa
3.2. Bacterial Infections
3.3. Oncogenic Viruses
3.4. Other Viruses
4. Genetic Resistance and Immune Responses to Infectious Bronchitis Virus Infections
5. The Future of Research on Genetic Resistance to IBV
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharma, J.M.; Tizard, I. Avian cellular immune effector mechanisms: A review. Avian Pathol. 1984, 13, 357–376. [Google Scholar] [CrossRef]
- Glick, B.; Chang, T.S.; Jaap, R.G. The bursa of Fabricius and antibody production. Poult. Sci. 1956, 35, 224–225. [Google Scholar] [CrossRef]
- Jaffredo, T.; Fellah, J.S.; Dunon, D. Immunology of Birds and Reptiles. In Encyclopedia of Life Sciences (eLS); Wiley Online Library: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Davison, F. The importance of the avian immune system and its unique features. In Avian Immunology, 2nd ed.; Schat, K.A., Kaspers, B., Kaiser, P., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 1–9. [Google Scholar] [CrossRef]
- De Kruif, P. Microbe Hunters; Houghton Mifflin Harcourt: San Diego, CA, USA, 1996. [Google Scholar]
- Collisson, E.W.; Pei, J.; Dzielawa, J.; Seo, S.H. Cytotoxic T lymphocytes are critical in the control of infectious bronchitis virus in poultry. Dev. Comp. Immunol. 2000, 24, 187–200. [Google Scholar] [CrossRef]
- Janse, E.M.; Roozelaar, D.V.; Koch, G. Leukocyte subpopulations in kidney and trachea of chickens infected with infectious bronchitis virus. Avian Pathol. 1994, 23, 513–523. [Google Scholar] [CrossRef]
- Dawes, M.E.; Griggs, L.M.; Collisson, E.W.; Briles, W.E.; Drechsler, Y. Dramatic differences in the response of macrophages from B2 and B19 MHC-defined haplotypes to interferon gamma and polyinosinic:polycytidylic acid stimulation. Poult. Sci. 2014, 93, 830–838. [Google Scholar] [CrossRef]
- Collisson, E.; Griggs, L.; Drechsler, Y. Macrophages from disease resistant B2 haplotype chickens activate T lymphocytes more effectively than macrophages from disease susceptible B19 birds. Dev. Comp. Immunol. 2017, 67, 249–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, S.H.; Collisson, E.W. Specific cytotoxic T lymphocytes are involved in in vivo clearance of infectious bronchitis virus. J. Virol. 1997, 71, 5173–5177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amarasinghe, A.; Abdul-Cader, M.S.; Almatrouk, Z.; van der Meer, F.; Cork, S.C.; Gomis, S.; Abdul-Careem, M.F. Induction of innate host responses characterized by production of interleukin (IL)-1β and recruitment of macrophages to the respiratory tract of chickens following infection with infectious bronchitis virus (IBV). Vet. Microbiol. 2018, 215, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.P.; Schat, K.A.; Gallardo, R.A. Cytokine responses in tracheas from MHC congenic chicken lines with distinct susceptibilities to infectious bronchitis virus. Avian Dis. 2020, 64, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Asif, M.; Lowenthal, J.W.; Ford, M.E.; Schat, K.A.; Kimpton, W.G.; Bean, A.G. Interleukin-6 expression after infectious bronchitis virus infection in chickens. Viral. Immunol. 2007, 20, 479–486. [Google Scholar] [CrossRef]
- Fulton, J.E.; McCarron, A.M.; Lund, A.R.; Pinegar, K.N.; Wolc, A.; Chazara, O.; Bed’Hom, B.; Berres, M.; Miller, M.M. A high-density SNP panel reveals extensive diversity, frequent recombination and multiple recombination hotspots within the chicken major histocompatibility complex B region between BG2 and CD1A1. Genet. Sel. Evol. 2016, 48, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The MHC Sequencing Consortium. Complete sequence and gene map of a human major histocompatibility complex. Nature 1999, 401, 921–923. [Google Scholar] [CrossRef]
- Kaufman, J.; Milne, S.; Göbel, T.W.; Walker, B.A.; Jacob, J.P.; Auffray, C.; Zoorob, R.; Beck, S. The chicken B locus is a minimal essential major histocompatibility complex. Nature 1999, 401, 923–925. [Google Scholar] [CrossRef]
- Kaufman, J.; Jacob, J.; Shaw, J.; Walker, B.; Milne, S.; Beck, S.; Salomonsen, J. Gene organisation determines evolution of function in the chicken MHC. Immunol. Rev. 1999, 167, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Rautenschlein, S.; Cheng, H.H.; Lamont, S.J. Host factors for disease resistance. In Diseases of Poultry, 14th ed.; Swayne, D.E., Ed.; Wiley-Blackwell: Oxford, UK, 2020; pp. 79–108. [Google Scholar]
- Kaufman, J. The Avian MHC. In Avian Immunology, 2nd ed.; Schat, K.A., Kaspers, B., Kaiser, P., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 149–167. [Google Scholar] [CrossRef]
- Waters, N.F.; Lambert, W.V. Inbreeding in the White Leghorn fowl. Res. Bull. (Iowa Agric. Home Econ. Exp. Stn.) 1936, 18, 1. [Google Scholar]
- Delany, M.E.; Pisenti, J.M. Conservation of poultry genetic research resources: Consideration of the past, present and future. Poult. Avian Biol. Rev. 1998, 9, 25–42. [Google Scholar]
- Abplanalp, H. Inbred lines as genetic resources of chickens. Poult. Sci. Rev. 1992, 4, 29–39. [Google Scholar]
- Pisenti, J.M.; Delany, M.E.; Taylor, R.L., Jr.; Abbott, U.K.; Abplanalp, H.; Arthur, J.A.; Bakst, M.R.; Baxter-Jones, C.; Bitgood, J.J.; Bradley, F.A.; et al. Avian Genetics Resources at Risk: An Assessment and Proposal for Conservation of Genetic Stocks in the USA and Canada; McGuire, P.E., Ed.; UC Davis Genetic Resources Conservation Program: Davis, CA, USA, 1999. [Google Scholar]
- Clare, R.A.; Strout, R.G.; Taylor, R.L., Jr.; Collins, W.M.; Briles, W.E. Major histocompatibility (B) complex effects on acquired immunity to cecal coccidiosis. Immunogenetics 1985, 22, 593–599. [Google Scholar]
- Brake, D.A.; Fedor, C.H.; Werner, B.W.; Miller, T.J.; Taylor, R.L.; Clare, R.A. Characterization of immune response to Eimeria tenella antigens in a natural immunity model with hosts which differ serologically at the B locus of the major histocompatibility complex. Infect. Immun. 1997, 65, 1204–1210. [Google Scholar]
- Lamont, S.J.; Bolin, C.; Cheville, N. Genetic resistance to fowl cholera is linked to the major histocompatibility complex. Immunogenetics 1987, 25, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Cotter, P.F.; Taylor, R.L.; Abplanalp, H. Differential Resistance to Staphylococcus aureus Challenge in Major Histocompatibility (B) Complex Congenic Lines. Poult. Sci. 1992, 71, 1873–1878. [Google Scholar] [CrossRef] [PubMed]
- Cotter, P.F.; Taylor, R.L., Jr.; Abplanalp, H. B-complex associated immunity to Salmonella enteritidis challenge in congenic chickens. Poult. Sci. 1998, 77, 1846–1851. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Miller, M.M.; Lamont, S.J. Association of MHC class I and class II gene polymorphisms with vaccine or challenge response to Salmonella enteritidis in young chicks. Immunogenetics 2002, 54, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Collins, W.M.; Briles, W.E.; Zsigray, R.M.; Dunlop, W.R.; Corbett, A.C.; Clark, K.K.; Marks, J.L.; McGrail, T.P. The B locus (MHC) in the chicken: Association with the fate of RSV-induced tumors. Immunogenetics 1977, 5, 333–343. [Google Scholar] [CrossRef]
- Schierman, L.W.; Watanabe, D.H.; McBride, R.A. Increased growth of Rous sarcomas in chickens pretreated with formalinized syngeneic tumor cells. Eur. J. Immunol. 1977, 7, 710–713. [Google Scholar] [CrossRef]
- Schat, K.A.; Calnek, B.W.; Fabricant, J.; Abplanalp, H. Influence of oncogenicity of Marek’ disease virus on evaluation of genetic resistance. Poult. Sci. 1981, 60, 2559–2566. [Google Scholar]
- Briles, W.E.; Briles, R.W.; Pollock, D.L.; Pattison, M. Marek’s disease resistance of B (MHC) heterozygotes in a cross of purebred Leghorn lines. Poult. Sci. 1982, 61, 205–211. [Google Scholar] [CrossRef]
- Bacon, L.D.; Crittenden, L.B.; Witter, R.L.; Fadly, A.; Motta, J. B5 and B15 associated with progressive Marek’s disease, Rous sarcoma, and avian leukosis virus-induced tumors in inbred 15I4 chickens. Poult. Sci. 1983, 62, 573–578. [Google Scholar] [CrossRef]
- Witter, P.L.; Calnek, B.W. Resistance to Marek’s disease of congenic lines differing in major histocompatibility haplotypes to 3 virus strains. In Proceedings of the International Symposium on Marek’s Disease, 2nd ed.; Abplanalp, H., Schat, K.A., Eds.; Springer: Ithaca, NY, USA, 1984; pp. 347–358. [Google Scholar]
- Wakenell, P.S.; Miller, M.M.; Goto, R.M.; Gauderman, W.J.; Briles, W.E. Association between the Rfp-Y haplotype and the incidence of Marek’s disease in chickens. Immunogenetics 1996, 44, 242–245. [Google Scholar]
- Taylor, R.L. Major histocompatibility (B) complex control of responses against Rous sarcomas. Poult. Sci. 2004, 83, 638–649. [Google Scholar] [CrossRef]
- Bumstead, N.; Huggins, M.B.; Cook, J.K. Genetic differences in susceptibility to a mixture of avian infectious bronchitis virus and Escherichia coli. Br. Poult. Sci. 1989, 30, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.; Otsuki, K.; Huggins, M.; Bumstead, N. Investigations into resistance of chicken lines to infection with infectious bronchitis virus. Adv. Exp. Med. Biol. 1990, 276, 491–496. [Google Scholar]
- Otsuki, K.; Matsuo, K.; Maeda, N.; Sanekata, T.; Tsubokura, M. Selection of Variants of Avian Infectious Bronchitis Virus Showing Tropism for Different Organs; Springer: Boston, MA, USA, 1990; pp. 379–384. [Google Scholar]
- Ignjatovic, J.; Reece, R.; Ashton, F. Susceptibility of three genetic lines of chicks to infection with a nephropathogenic T strain of avian infectious bronchitis virus. J. Comp. Pathol. 2003, 128, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Bacon, L.D.; Hunter, D.B.; Zhang, H.M.; Brand, K.; Etches, R. Retrospective evidence that the MHC (B haplotype) of chickens influences genetic resistance to attenuated infectious bronchitis vaccine strains in chickens. Avian Pathol. 2004, 33, 605–609. [Google Scholar] [CrossRef]
- Joiner, K.S.; Hoerr, F.J.; Ewald, S.J.; van Santen, V.L.; Wright, J.C.; van Ginkel, F.W.; Toro, H. Pathogenesis of infectious bronchitis virus in vaccinated chickens of two different major histocompatibility B complex genotypes. Avian Dis. 2007, 51, 758–763. [Google Scholar] [CrossRef]
- Banat, G.R.; Tkalcic, S.; Dzielawa, J.A.; Jackwood, M.W.; Saggese, M.D.; Yates, L.; Kopulos, R.; Briles, W.E.; Collisson, E.W. Association of the chicken MHC B haplotypes with resistance to avian coronavirus. Dev. Comp. Immunol. 2013, 39, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Sadeyen, J.R.; Cavanagh, D.; Kaiser, P.; Burt, D.W. The early immune response to infection of chickens with Infectious Bronchitis Virus (IBV) in susceptible and resistant birds. BMC Vet. Res. 2015, 11, 256. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.P.; Hauck, R.; Zhou, H.; Gallardo, R.A. Understanding immune resistance to infectious bronchitis using major histocompatibility complex chicken lines. Avian Dis. 2017, 61, 358–365. [Google Scholar] [CrossRef]
- Da Silva, A.P.; Hauck, R.; Kern, C.; Wang, Y.; Zhou, H.; Gallardo, R.A. Effect of chicken MHC haplotype on resistance to distantly-related infectious bronchitis viruses. Avian Dis. 2019, 63, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Marangon, S.; Busani, L. The use of vaccination in poultry production. Rev. Sci. Tech. 2007, 26, 265–274. [Google Scholar]
- Raggi, L.G.; Lee, G.G. Lack of correlation between infectivity, serologic response and challenge results in immunization with an infectious bronchitis vaccine. J. Immunol. 1965, 94, 538–543. [Google Scholar]
- Toro, H.; Espinoza, C.; Ponce, V.; Rojas, V.; Morales, M.A.; Kaleta, E.F. Infectious bronchitis: Effect of viral doses and routes on specific lacrimal and serum antibody responses in chickens. Avian Dis. 1997, 41, 379–387. [Google Scholar] [CrossRef]
- Browning, M.; McMichael, A. HLA and MHC: Genes, Molecules, and Function; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Murphy, K.; Weaver, C. Antigen recognition by B-cell and T-cell receptors. In Janeway’s Immunobiology, 9th ed.; Garland Science: New York, NY, USA, 2016; pp. 139–172. [Google Scholar]
- Wieczorek, M.; Abualrous, E.T.; Sticht, J.; Álvaro-Benito, M.; Stolzenberg, S.; Noé, F.; Freund, C. Major histocompatibility complex (MHC) class I and MHC class II proteins: Conformational plasticity in antigen presentation. Front. Immunol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Briles, W.E.; McGibbon, W.H.; Irwin, M.R. On multiple alleles effecting cellular antigens in the chicken. Genetics 1950, 35, 633–652. [Google Scholar] [PubMed]
- Schierman, L.W.; Nordskog, A.W. Relationship of blood type to histocompatibility in chickens. Science 1961, 134, 1008–1009. [Google Scholar] [CrossRef]
- Pink, J.R.L.; Droege, W.; Hála, K.; Miggiano, V.C.; ZIegler, A. A three-locus model for the chicken major histocompatibility complex. Immunogenetics 1977, 5, 203–216. [Google Scholar] [CrossRef]
- Wolf, H.; Hála, K.; Boyd, R.L.; Wick, G. MHC- and non-MHC-encoded surface antigens of chicken lymphoid cells and erythrocytes recognized by polyclonal xeno-, allo- and monoclonal antibodies. Eur. J. Immunol. 1984, 14, 831–839. [Google Scholar] [CrossRef]
- Kline, K.; Briles, W.E.; Bacon, L.; Sanders, B.G. Characterization of two distinct disulfide-linked B-G molecules in the chicken. J. Hered. 1988, 79, 249–256. [Google Scholar] [CrossRef]
- Briles, W.E.; Goto, R.M.; Auffray, C.; Miller, M.M. A polymorphic system related to but genetically independent of the chicken major histocompatibility complex. Immunogenetics 1993, 37, 408–414. [Google Scholar] [CrossRef]
- Juul-Madsen, H.R.; Simonsen, M.; Hedemand, J.E.; Salomonsen, J. Restriction fragment length polymorphism analysis of the chicken B-F and B-L genes and their association with serologically defined B haplotypes. Anim. Genet. 1993, 24, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Delany, M.E.; Robinson, C.M.; Goto, R.M.; Miller, M.M. Architecture and organization of chicken microchromosome 16: Order of the NOR, MHC-Y, and MHC-B subregions. J. Hered. 2009, 100, 507–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.M.; Taylor, R.L., Jr. Brief review of the chicken major histocompatibility complex: The genes, their distribution on chromosome 16, and their contributions to disease resistance. Poult. Sci. 2016, 95, 375–392. [Google Scholar] [CrossRef]
- Owen, J.P.; Delany, M.E.; Mullens, B.A. MHC haplotype involvement in avian resistance to an ectoparasite. Immunogenetics 2008, 60, 621–631. [Google Scholar] [CrossRef]
- Owen, J.P.; Delany, M.E.; Cardona, C.J.; Bickford, A.A.; Mullens, B.A. Host inflammatory response governs fitness in an avian ectoparasite, the northern fowl mite (Ornithonyssus sylviarum). Int. J. Parasitol. 2009, 39, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Schou, T.W.; Roepstorff, A.; Permin, A.; Sørensen, P.; Kjær, J. Comparative genetic resistance to Ascaridia galli infections of 4 different commercial layer-lines. Br. Poult. Sci. 2003, 44, 182–185. [Google Scholar] [CrossRef]
- Schou, T.W.; Permin, A.; Juul-Madsen, H.R.; Sørensen, P.; Labouriau, R.; Nguyên, T.L.; Fink, M.; Pham, S.L. Gastrointestinal helminths in indigenous and exotic chickens in Vietnam: Association of the intensity of infection with the Major Histocompatibility Complex. Parasitology 2007, 134, 561–573. [Google Scholar] [CrossRef]
- Norup, L.R.; Dalgaard, T.S.; Pleidrup, J.; Permin, A.; Schou, T.W.; Jungersen, G.; Fink, D.R.; Juul-Madsen, H.R. Comparison of parasite-specific immunoglobulin levels in two chicken lines during sustained infection with Ascaridia galli. Vet. Parasitol. 2013, 191, 187–190. [Google Scholar] [CrossRef]
- Caron, L.A.; Abplanalp, H.; Taylor, R.L., Jr. Resistance, susceptibility, and immunity to Eimeria tenella in major histocompatibility (B) complex congenic lines. Poult. Sci. 1997, 76, 677–682. [Google Scholar] [CrossRef]
- Kim, D.K.; Lillehoj, H.S.; Hong, Y.H.; Park, D.W.; Lamont, S.J.; Han, J.Y.; Lillehoj, E.P. Immune-related gene expression in two B-complex disparate genetically inbred Fayoumi chicken lines following Eimeria maxima infection. Poult. Sci. 2008, 87, 433–443. [Google Scholar] [CrossRef]
- Worley, K.; Collet, J.; Spurgin, L.G.; Cornwallis, C.; Pizzari, T.; Richardson, D.S. MHC heterozygosity and survival in red junglefowl. Mol. Ecol. 2010, 19, 3064–3075. [Google Scholar] [CrossRef]
- Joiner, K.S.; Hoerr, F.J.; van Santen, E.; Ewald, S.J. The Avian major histocompatibility complex influences bacterial skeletal disease in broiler breeder chickens. Vet. Pathol. 2005, 42, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Lamont, S.J.; Kaiser, M.G.; Liu, W. Candidate genes for resistance to Salmonella enteritidis colonization in chickens as detected in a novel genetic cross. Vet. Immunol. Immunopathol. 2002, 87, 423–428. [Google Scholar] [CrossRef]
- Zhou, H.; Lamont, S.J. Chicken MHC class I and II gene effects on antibody response kinetics in adult chickens. Immunogenetics 2003, 55, 133–140. [Google Scholar] [CrossRef]
- Macklin, K.S.; Ewald, S.J.; Norton, R.A. Major histocompatibility complex effect on cellulitis among different chicken lines. Avian Pathol. 2002, 31, 371–376. [Google Scholar] [CrossRef]
- Cavero, D.; Schmutz, M.; Philipp, H.C.; Preisinger, R. Breeding to reduce susceptibility to Escherichia coli in layers. Poult. Sci. 2009, 88, 2063–2068. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.P.; Van Zandy, J.N.; Law, G.R.J. Differences in susceptibility to Marek’s disease in chickens carrying two different B locus blood group alleles. Poult. Sci. 1967, 45, 1268. [Google Scholar]
- Briles, W.E.; Stone, H.A.; Cole, R.K. Marek’s disease: Effects of B histocompatibility alloalleles in resistant and susceptible chicken lines. Science 1977, 195, 193–195. [Google Scholar] [CrossRef]
- Bacon, L.D.; Witter, R.L. Influence of turkey herpesvirus vaccination on the B-haplotype effect on Marek’s disease resistance in 15.B-congenic chickens. Avian Dis. 1992, 36, 378–385. [Google Scholar] [CrossRef]
- Bacon, L.D.; Witter, R.L. Influence of B-haplotype on the relative efficacy of Marek’s disease vaccines of different serotypes. Avian Dis. 1993, 37, 53–59. [Google Scholar] [CrossRef]
- Bacon, L.D.; Witter, R.L. B haplotype influence on the relative efficacy of Marek’s dsease vaccines in commercial chickens. Poult. Sci. 1994, 73, 481–487. [Google Scholar] [CrossRef]
- Bacon, L.D.; Witter, R.L. Serotype specificity of B-haplotype influence on the relative efficacy of Marek’s disease vaccines. Avian Dis. 1994, 38, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Bacon, L.D.; Witter, R.L. Efficacy of Marek’s disease vaccines in Mhc heterozygous chickens: Mhc congenic x inbred line F1 matings. J. Hered. 1995, 86, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Bacon, L.D.; Hunt, H.D.; Cheng, H.H. A Review of the Development of Chicken Lines to Resolve Genes Determining Resistance to Diseases. Poult. Sci. 2000, 79, 1082–1093. [Google Scholar] [CrossRef] [PubMed]
- Shiina, T.; Briles, W.E.; Goto, R.M.; Hosomichi, K.; Yanagiya, K.; Shimizu, S.; Inoko, H.; Miller, M.M. Extended gene map reveals tripartite motif, C-type lectin, and Ig superfamily type genes within a subregion of the chicken MHC affecting infectious disease. J. Immunol. 2007, 178, 7162–7172. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.L., Jr.; Ewert, D.L.; England, J.M.; Halpern, M.S. Major histocompatibility (B) complex control of the growth pattern of v-src DNA-induced primary tumors. Virology 1992, 191, 477–479. [Google Scholar] [CrossRef]
- White, E.C.; Briles, W.E.; Briles, R.W.; Taylor, R.L. Response of six major histocompatibility (B) complex recombinant haplotypes to Rous sarcomas. Poult. Sci. 1994, 73, 836–842. [Google Scholar] [CrossRef]
- Schulten, E.S.; Briles, W.E.; Taylor, R.L. Rous sarcoma growth in lines congenic for major histocompatibility (B) complex recombinants1. Poult. Sci. 2009, 88, 1601–1607. [Google Scholar] [CrossRef]
- Bacon, L.D.; Witter, R.L.; Crittenden, L.B.; Fadly, A.; Motta, J. B-haplotype influence on Marek’s disease, Rous sarcoma, and lymphoid leukosis virus-induced tumors in chickens. Poult. Sci. 1981, 60, 1132–1139. [Google Scholar] [CrossRef]
- Yoo, B.H.; Sheldon, B.L. Association of the major histocompatibility complex with avian leukosis virus infection in chickens. Br. Poult. Sci. 1992, 33, 613–620. [Google Scholar] [CrossRef]
- Hunt, H.D.; Jadhao, S.; Swayne, D.E. Major histocompatibility complex and background genes in chickens influence susceptibility to high pathogenicity avian influenza virus. Avian Dis. 2010, 54, 572–575. [Google Scholar] [CrossRef]
- Boonyanuwat, K.; Thummabutra, S.; Sookmanee, N.; Vatchavalkhu, V.; Siripholvat, V. Influences of major histocompatibility complex class I haplotypes on avian influenza virus disease traits in Thai indigenous chickens. Anim. Sci. J. 2006, 77, 285–289. [Google Scholar] [CrossRef]
- Norup, L.R.; Dalgaard, T.S.; Pedersen, A.R.; Juul-Madsen, H.R. Assessment of Newcastle disease-specific T cell proliferation in different inbred MHC chicken lines. Scand. J. Immunol. 2011, 74, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Dunnington, E.A.; Larsen, C.T.; Gross, W.B.; Siegel, P.B. Antibody responses to combinations of antigens in white Leghorn chickens of different background genomes and major histocompatibility complex genotypes. Poult. Sci. 1992, 71, 1801–1806. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, D.J.; Thureen, D.R.; Keeler, C.L. Research notes: Comparison of disease susceptibility and resistance in three lines of chickens experimentally infected with infectious laryngotracheitis virus. Poult. Sci. 1998, 77, 17–21. [Google Scholar] [CrossRef]
- Dunn, J. Evaluation of host genetic resistance against infectious laryngotracheitis. In Proceedings of the American Association of Avian Pathologists (AAAP) Meeting, Virtual Meeting, 30 July–6 August 2020. [Google Scholar]
- Juul-Madsen, H.R.; Nielsen, O.L.; Krogh-Maibom, T.; Røntved, C.M.; Dalgaard, T.S.; Bumstead, N.; Jørgensen, P.H. Major histocompatibility complex-linked immune response of young chickens vaccinated with an attenuated live infectious bursal disease virus vaccine followed by an infection. Poult. Sci. 2002, 81, 649–656. [Google Scholar] [CrossRef]
- Juul-Madsen, H.R.; Dalgaard, T.S.; Røntved, C.M.; Jensen, K.H.; Bumstead, N. Immune response to a killed infectious bursal disease virus vaccine in inbred chicken lines with different major histocompatibility complex haplotypes. Poult. Sci. 2006, 85, 986–998. [Google Scholar] [CrossRef]
- Butter, C.; Staines, K.; van Hateren, A.; Davison, T.F.; Kaufman, J. The peptide motif of the single dominantly expressed class I molecule of the chicken MHC can explain the response to a molecular defined vaccine of infectious bursal disease virus (IBDV). Immunogenetics 2013, 65, 609–618. [Google Scholar] [CrossRef] [Green Version]
- Bacon, L.D. Influence of the major histocompatibility complex on disease resistance and productivity. Poult. Sci. 1987, 66, 802–811. [Google Scholar] [CrossRef]
- Davison, T.F. The immunologists’ debt to the chicken. Br. Poult. Sci. 2003, 44, 6–21. [Google Scholar] [CrossRef]
- Purchase, H.G.; Cunningham, C.H.; Burmester, B.R. Genetic differences among chicken embryos in response to inoculation with an Isolate of infectious bronchitis virus. Avian Dis. 1966, 10, 162–172. [Google Scholar] [CrossRef]
- Smith, H.W.; Cook, J.K.; Parsell, Z.E. The experimental infection of chickens with mixtures of infectious bronchitis virus and Escherichia coli. J. Gen. Virol. 1985, 66, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, K.; Huggins, M.B.; Cook, J.K.A. Comparison of the susceptibility to avian infectious bronchitis virus infection of two inbred lines of white leghorn chickens. Avian Pathol. 1990, 19, 467–475. [Google Scholar] [CrossRef]
- Nakamura, K.; Cook, J.K.A.; Otsuki, K.; Huggins, M.B.; Frazier, J.A. Comparative study of respiratory lesions in two chicken lines of different susceptibility infected with infectious bronchitis virus: Histology, ultrastructure and immunohistochemistry. Avian Pathol. 1991, 20, 241–257. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.K.; Davison, T.F.; Huggins, M.B.; McLaughlan, P. Effect of in ovo bursectomy on the course of an infectious bronchitis virus infection in line C White Leghorn chickens. Arch. Virol. 1991, 118, 225–234. [Google Scholar] [CrossRef]
- Cook, K.A.; Otsuki, K.; da Silva Martins, N.R.; Ellis, M.M.; Huggins, M.B. The secretory antibody response of inbred lines of chicken to avian infectious bronchitis virus infection. Avian Pathol. 1992, 21, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Larsen, F.T.; Bed’Hom, B.; Naghizadeh, M.; Kjærup, R.B.; Zohari, S.; Dalgaard, T.S. Immunoprofiling of peripheral blood from infectious bronchitis virus vaccinated MHC-B chicken lines—Monocyte MHC-II expression as a potential correlate of protection. Dev. Comp. Immunol. 2019, 96, 93–102. [Google Scholar] [CrossRef]
- Krug, R.M.; Shaw, M.; Broni, B.; Shapiro, G.; Haller, O. Inhibition of influenza viral mRNA synthesis in cells expressing the interferon-induced Mx gene product. J. Virol. 1985, 56, 201–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seliger, C.; Schaerer, B.; Kohn, M.; Pendl, H.; Weigend, S.; Kaspers, B.; Härtle, S. A rapid high-precision flow cytometry based technique for total white blood cell counting in chickens. Vet. Immunol. Immunopathol. 2012, 145, 86–99. [Google Scholar] [CrossRef]
- Wang, Y.; Brahmakshatriya, V.; Lupiani, B.; Reddy, S.; Okimoto, R.; Li, X.; Chiang, H.; Zhou, H. Associations of chicken Mx1 polymorphism with antiviral responses in avian influenza virus infected embryos and broilers. Poult. Sci. 2012, 91, 3019–3024. [Google Scholar] [CrossRef]
- Sasaki, K.; Yoneda, A.; Ninomiya, A.; Kawahara, M.; Watanabe, T. Both antiviral activity and intracellular localization of chicken Mx protein depend on a polymorphism at amino acid position 631. Biochem. Biophys. Res. Commun. 2013, 430, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, P.; Mänz, B.; Haller, O.; Schwemmle, M.; Kochs, G. The viral nucleoprotein determines Mx sensitivity of influenza A viruses. J. Virol. 2011, 85, 8133–8140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Haplotype | Chicken Line | Characteristics | Reference |
---|---|---|---|
B2 | Line 6 | Susceptible | Purchase et al. 1966 [101] |
Line 7 | Resistant | Purchase et al. 1966 [101] | |
Susceptible | Bacon et al. 2004 [42] | ||
NIU 1 | Resistant | Banat et al. 2013 [44], Dawes et al. 2014 [8] | |
UCD 2 331 | Resistant | da Silva et al. 2017 [46], da Silva et al. 2019 [47], da Silva et al. 2020 [12] | |
AU 3 | Resistant | Larsen et al. 2019 [107] | |
B5 | NIU | Resistant | Banat et al. 2013 [44] |
B8 | NIU | Resistant | Banat et al. 2013 [44] |
B12 | Line C | Resistant | Cook et al. 1990 [39], Otsuki et al. 1990 [103], Nakamura et al. 1991 [104], Cook et al. 1991 [105] Cook et al. 1992 [106], Smith et al. 2015 [45] |
NIU | Susceptible | Banat et al. 2013 [44] | |
AU | Susceptible | Larsen et al. 2019 [107] | |
B13 | 15.P-13 | Intermediate | Bacon et al. 2004 [42] |
B14 | AU | Susceptible | Larsen et al. 2019 [107] |
B15 | AU | Resistant | Larsen et al. 2019 [107] |
15I | Resistant | Bacon et al. 2004 [42] | |
Intermediate | Purchase et al. 1966 [101] | ||
Susceptible | Cook et al. 1990 [39], Otsuki et al. 1990 [103], Nakamura et al. 1991 [104], Cook et al. 1991 [105] Cook et al. 1992 [106], Smith et al. 2015 [45] | ||
B18 | UCD 253 | Resistant | da Silva et al. 2017 [46] |
B19 | NIU | Susceptible | Banat et al. 2013 [44], Dawes et al. 2014 [8] |
UCD 077 | Susceptible | da Silva et al. 2017 [46] | |
UCD 335 | Susceptible | da Silva et al. 2017 [46], da Silva et al. 2019 [47], da Silva et al. 2020 [12] | |
AU | Susceptible | Larsen et al. 2019 [107] | |
B21 | AU | Resistant | Larsen et al. 2019 [107] |
15.N-21 | Intermediate | Bacon et al. 2004 [42] | |
UCD 330 | Susceptible | da Silva et al. 2017 [46] | |
UCD 336 | Susceptible | da Silva et al. 2017 [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.P.d.; Gallardo, R.A. The Chicken MHC: Insights into Genetic Resistance, Immunity, and Inflammation Following Infectious Bronchitis Virus Infections. Vaccines 2020, 8, 637. https://doi.org/10.3390/vaccines8040637
Silva APd, Gallardo RA. The Chicken MHC: Insights into Genetic Resistance, Immunity, and Inflammation Following Infectious Bronchitis Virus Infections. Vaccines. 2020; 8(4):637. https://doi.org/10.3390/vaccines8040637
Chicago/Turabian StyleSilva, Ana P. da, and Rodrigo A. Gallardo. 2020. "The Chicken MHC: Insights into Genetic Resistance, Immunity, and Inflammation Following Infectious Bronchitis Virus Infections" Vaccines 8, no. 4: 637. https://doi.org/10.3390/vaccines8040637
APA StyleSilva, A. P. d., & Gallardo, R. A. (2020). The Chicken MHC: Insights into Genetic Resistance, Immunity, and Inflammation Following Infectious Bronchitis Virus Infections. Vaccines, 8(4), 637. https://doi.org/10.3390/vaccines8040637