Understanding GroEL and DnaK Stress Response Proteins as Antigens for Bacterial Diseases
Abstract
:1. Introduction
2. Role of GroEL and DnaK in Bacterial Protein Folding
3. Non-Chaperone Role of GroEL and DnaK in Prokaryotes
4. Evidence for Immunogenicity of Prokaryote-Derived GroEL and DnaK
5. Evidence for Adjuvant and Immunomodulatory Potential of Prokaryote-Derived GroEL and DnaK
5.1. Immunomodulators
5.2. Adjuvants
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blom, A.; Harder, W.; Matin, A. Unique and overlapping pollutant stress proteins of Escherichia coli. Appl. Environ. Microbiol. 1992, 58, 331–334. [Google Scholar] [CrossRef] [Green Version]
- Sivadon-Tardy, V.; Porcher, R.; Orlikowski, D.; Ronco, E.; Gault, E.; Roussi, J.; Durand, M.C.; Sharshar, T.; Annane, D.; Raphael, J.C.; et al. Increased incidence of Campylobacter jejuni-associated Guillain–Barré syndromes in the Greater Paris area. Epidemiol. Infect. 2014, 142, 1609–1613. [Google Scholar] [CrossRef]
- Gophna, U.; Ron, E.Z. Virulence and the heat shock response. Int. J. Med. Microbiol. 2003, 292, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Hecker, M.; Schumann, W.; Völker, U. Heat-shock and general stress response in Bacillus subtilis. Mol. Microbiol. 1996, 19, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Muffler, A.; Barth, M.; Marschall, C.; Hengge-Aronis, R. Heat shock regulation of sigmaS turnover: A role for DnaK and relationship between stress responses mediated by sigmaS and sigma32 in Escherichia coli. J. Bacteriol. 1997, 179, 445–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartl, F.U. Molecular chaperones in cellular protein folding. Nature 1996, 381, 571–580. [Google Scholar] [CrossRef]
- Ampie, L.; Choy, W.; Lamano, J.B.; Fakurnejad, S.; Bloch, O.; Parsa, A.T. Heat shock protein vaccines against glioblastoma: From bench to bedside. J. Neuro Oncol. 2015, 123, 441–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabaghian, M.; Latify, A.M.; Tebianian, M.; Nili, H.; Ranjbar, A.R.T.; Mirjalili, A.; Mohammadi, M.; Banihashemi, R.; Ebrahimi, S.M. Vaccination with recombinant 4 × M2e.HSP70c fusion protein as a universal vaccine candidate enhances both humoral and cell-mediated immune responses and decreases viral shedding against experimental challenge of H9N2 influenza in chickens. Veter. Microbiol. 2014, 174, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Huurman, V.A.L.; Van Der Meide, P.E.; Duinkerken, G.; Willemen, S.; Cohen, I.R.; Elias, D.; Roep, B.O. Immunological efficacy of heat shock protein 60 peptide DiaPep277TM therapy in clinical type I diabetes. Clin. Exp. Immunol. 2008, 152, 488–497. [Google Scholar] [CrossRef]
- Balchin, D.; Hayer-Hartl, M.; Hartl, F.U. Recent advances in understanding catalysis of protein folding by molecular chaperones. FEBS Lett. 2020, 594, 2770–2781. [Google Scholar] [CrossRef]
- Kramer, G.; Ramachandiran, V.; Horowitz, P.M.; Hardesty, B. The molecular chaperone DnaK is not recruited to translating ribosomes that lack trigger factor. Arch. Biochem. Biophys. 2002, 403, 63–70. [Google Scholar] [CrossRef]
- Langer, T.; Lu, C.; Echols, H.; Flanagan, J.M.; Hayer, M.K.; Hartl, F.U. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 1992, 356, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Liberek, K.; Marszalek, J.; Ang, D.; Georgopoulos, C.; Zylicz, M. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. USA 1991, 88, 2874–2878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, J.C.Y.C. Mechanisms of the Hsp70 chaperone systemThis paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting—Protein Folding: Principles and Diseases” and has undergone the Journal’s usual peer review process. Biochem. Cell Biol. 2010, 88, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Mccarty, J.S.; Buchberger, A.; Reinstein, J.; Bukau, B. The Role of ATP in the Functional Cycle of the DnaK Chaperone System. J. Mol. Biol. 1995, 249, 126–137. [Google Scholar] [CrossRef]
- Brehmer, D.; Gässler, C.; Rist, W.; Mayer, M.P.; Bukau, B. Influence of GrpE on DnaK-substrate interactions. J. Biol. Chem. 2004, 279, 27957–27964. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Smyth, D.; O’Hagan, B.M.G.; Heap, J.T.; McMullan, G.; Minton, N.P.; Ternan, N.G. Inactivation of the dnaK gene in Clostridium difficile 630 Δerm yields a temperature-sensitive phenotype and increases biofilm-forming ability. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lund, P.A. Microbial molecular chaperones. Adv. Microb. Physiol. 2001, 44, 93–140. [Google Scholar] [CrossRef]
- Hayer-Hartl, M.; Bracher, A.; Hartl, F.U. The GroEL–GroES Chaperonin Machine: A Nano-Cage for Protein Folding. Trends Biochem. Sci. 2016, 41, 62–76. [Google Scholar] [CrossRef]
- Hartl, F.U.; Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 2009, 16, 574–581. [Google Scholar] [CrossRef]
- Kerner, M.J.; Naylor, D.J.; Ishihama, Y.; Maier, T.; Chang, H.-C.; Stines, A.P.; Georgopoulos, C.; Frishman, D.; Hayer-Hartl, M.; Mann, M.; et al. Proteome-wide Analysis of Chaperonin-Dependent Protein Folding in Escherichia coli. Cell 2005, 122, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Chari, A.; Fischer, U. Cellular strategies for the assembly of molecular machines. Trends Biochem. Sci. 2010, 35, 676–683. [Google Scholar] [CrossRef]
- Kim, Y.E.; Hipp, M.S.; Bracher, A.; Hayer-Hartl, M.; Hartl, F.U. Molecular Chaperone Functions in Protein Folding and Proteostasis. Annu. Rev. Biochem. 2013, 82, 323–355. [Google Scholar] [CrossRef]
- Ellis, R.J. Molecular chaperones: Assisting assembly in addition to folding. Trends Biochem. Sci. 2006, 31, 395–401. [Google Scholar] [CrossRef]
- Tyler, J.K. Chromatin assembly. Cooperation between histone chaperones and ATP-dependent nucleosome remodeling machines. Eur. J. Biochem. 2002, 269, 2268–2274. [Google Scholar] [CrossRef]
- Baumeister, W.; Walz, J.; Zühl, F.; Seemüller, E. The proteasome: Paradigm of a self-compartmentalizing protease. Cell 1998, 92, 367–380. [Google Scholar] [CrossRef] [Green Version]
- Tomoyasu, T.; Tabata, A.; Imaki, H.; Tsuruno, K.; Miyazaki, A.; Sonomoto, K.; Whiley, R.A.; Nagamune, H. Role of Streptococcus intermedius DnaK chaperone system in stress tolerance and pathogenicity. Cell Stress Chaperon. 2011, 17, 41–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagemann, L.; Gründel, A.; Jacobs, E.; Dumke, R. The surface-displayed chaperones GroEL and DnaK of Mycoplasma pneumoniae interact with human plasminogen and components of the extracellular matrix. Pathog. Dis. 2017, 75. [Google Scholar] [CrossRef]
- Ensgraber, M.; Loos, M. A 66-kilodalton heat shock protein of Salmonella typhimurium is responsible for binding of the bacterium to intestinal mucus. Infect. Immun. 1992, 60, 3072–3078. [Google Scholar] [CrossRef] [Green Version]
- Bergonzelli, G.E.; Granato, D.; Pridmore, R.D.; Marvin-Guy, L.F.; Donnicola, D.; Corthésy-Theulaz, I.E. GroEL of Lactobacillus johnsonii La1 (NCC 533) Is Cell Surface Associated: Potential Role in Interactions with the Host and the Gastric Pathogen Helicobacter pylori. Infect. Immun. 2006, 74, 425–434. [Google Scholar] [CrossRef] [Green Version]
- González-López, M.A.; Velázquez-Guadarrama, N.; Romero-Espejel, M.E.; Olivares-Trejo, J.D.J. Helicobacter pylori secretes the chaperonin GroEL (HSP60), which binds iron. FEBS Lett. 2013, 587, 1823–1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, N.; Oeda, K.; Watanabe, E.; Mikami, T.; Fukita, Y.; Nishimura, K.; Komai, K.; Matsuda, K. Chaperonin turned insect toxin. Nature 2001, 411, 44. [Google Scholar] [CrossRef] [PubMed]
- Knaust, A.; Weber, M.V.R.; Hammerschmidt, S.; Bergmann, S.; Frosch, M.; Kurzai, O. Cytosolic proteins contribute to surface plasminogen recruitment of Neisseria meningitidis. J. Bacteriol. 2007, 189, 3246–3255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaumburg, J.; Diekmann, O.; Hagendorff, P.; Bergmann, S.; Rohde, M.; Hammerschmidt, S.; Jänsch, L.; Wehland, J.; Kärst, U. The cell wall subproteome ofListeria monocytogenes. Proteomics 2004, 4, 2991–3006. [Google Scholar] [CrossRef]
- Singh, V.K.; Utaida, S.; Jackson, L.S.; Jayaswal, R.K.; Wilkinson, B.J.; Chamberlain, N.R. Role for dnaK locus in tolerance of multiple stresses in Staphylococcus aureus. Microbiology 2007, 153, 3162–3173. [Google Scholar] [CrossRef] [Green Version]
- Webb, S.A.; Kahler, C.M. Bench-to-bedside review: Bacterial virulence and subversion of host defences. Crit. Care 2008, 12, 234. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.J.; Khan, W.I. Goblet Cells and Mucins: Role in Innate Defense in Enteric Infections. Pathogens 2013, 2, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Yu, Z.; Chen, C.; Kling, D.E.; Newburg, D.S. Human Milk Mucin 1 and Mucin 4 Inhibit Salmonella Enterica Serovar Typhimurium Invasion Of Human Intestinal Epithelial Cells In Vitro. J. Nutr. 2012, 142, 1504–1509. [Google Scholar] [CrossRef] [Green Version]
- Mack, D.; Ahrne, S.; Hyde, L.; Wei, S.; Hollingsworth, M.A. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 2003, 52, 827–833. [Google Scholar] [CrossRef] [Green Version]
- Fallingborg, J. Intraluminal pH of the human gastrointestinal tract. Dan. Med Bull. 1999, 46, 183–196. [Google Scholar]
- Li, X.; Bleumink-Pluym, N.M.C.; Luijkx, Y.M.C.A.; Wubbolts, R.; Van Putten, J.P.M.; Strijbis, K. MUC1 is a receptor for the Salmonella SiiE adhesin that enables apical invasion into enterocytes. PLoS Pathog. 2019, 15, e1007566. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Tang, X.; Sheng, X.; Xing, J.; Zhan, W. DNA vaccine encoding molecular chaperone GroEL of Edwardsiella tarda confers protective efficacy against edwardsiellosis. Mol. Immunol. 2016, 79, 55–65. [Google Scholar] [CrossRef]
- Chitlaru, T.; Gat, O.; Grosfeld, H.; Inbar, I.; Gozlan, Y.; Shafferman, A. Identification of In Vivo-Expressed Immunogenic Proteins by Serological Proteome Analysis of the Bacillus anthracis Secretome. Infect. Immun. 2007, 75, 2841–2852. [Google Scholar] [CrossRef] [Green Version]
- Senkovich, O.; Ceaser, S.; McGee, D.J.; Testerman, T.L. Unique Host Iron Utilization Mechanisms of Helicobacter pylori Revealed with Iron-Deficient Chemically Defined Media. Infect. Immun. 2010, 78, 1841–1849. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zabad, S.; Liu, H.; Wang, W.; Jeffery, C. MoonProt 2.0: An expansion and update of the moonlighting proteins database. Nucleic Acids Res. 2018, 46, D640–D644. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Zeng, H.; Yang, X.; Liu, Z.; Qiu, D. An insecticidal protein from Xenorhabdus ehlersii stimulates the innate immune response in Galleria mellonella. World J. Microbiol. Biotechnol. 2013, 29, 1705–1711. [Google Scholar] [CrossRef]
- Kumari, P.; Kant, S.; Zaman, S.; Mahapatro, G.K.; Banerjee, N.; Sarin, N.B. A novel insecticidal GroEL protein from Xenorhabdus nematophila confers insect resistance in tobacco. Transgenic Res. 2013, 23, 99–107. [Google Scholar] [CrossRef]
- Castiblanco-Valencia, M.M.; Fraga, T.R.; Pagotto, A.H.; Serrano, S.M.D.T.; Abreu, P.A.E.; Barbosa, A.S.; Isaac, L. Plasmin cleaves fibrinogen and the human complement proteins C3b and C5 in the presence of Leptospira interrogans proteins: A new role of LigA and LigB in invasion and complement immune evasion. Immunobiology 2016, 221, 679–689. [Google Scholar] [CrossRef]
- Seiffert, D.; Fowler, B.J.; Jenkins, G.R.; Thinnes, T.C.; Loskutoff, D.J.; Parmer, R.J.; Miles, L.A.; Zhang, L. Plasminogen Has a Broad Extrahepatic Distribution. Thromb. Haemost. 2002, 87, 493–501. [Google Scholar] [CrossRef]
- Ayón-Núñez, D.A.; Fragoso, G.; Bobes, R.J.; Laclette, J.P. Plasminogen-binding proteins as an evasion mechanism of the host’s innate immunity in infectious diseases. Biosci. Rep. 2018, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruxelle, J.F.; Mizrahi, A.; Hoÿs, S.; Collignon, A.; Janoir, C.; Péchiné, S. Clostridium difficile flagellin FliC: Evaluation as adjuvant and use in a mucosal vaccine against Clostridium difficile. PLoS ONE 2017, 12, 0187212. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Zhou, Y.; Wild, J.; Adler, J.; Gross, C.A. DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J. Bacteriol. 1992, 174, 6256–6263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Li, L.-R.; Wang, J.-D.; Chen, Y.; Jin, J.-F.; Zhang, Z.-S.; Zhou, D.-Y.; Zhang, Y.-L. Expression ofHelicobacter pyloriHsp60 protein and its immunogenicity. World J. Gastroenterol. 2003, 9, 2711–2714. [Google Scholar] [CrossRef] [PubMed]
- Karachaliou, M.; Chatzi, L.; Michel, A.; Kyriklaki, A.; Kampouri, M.; Koutra, K.; Roumeliotaki, T.; Chalkiadaki, G.; Stiakaki, E.; Pawlita, M.; et al. Helicobacter pylori Seropositivity and Childhood Neurodevelopment, the Rhea Birth Cohort in Crete, Greece. Paediatr. Perinat. Epidemiol. 2017, 31, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Khan, S.; Ali, A.; Akbar, H.; Sayaf, A.M.; Khan, A.; Wei, D.-Q. Immunoinformatics approaches to explore Helicobacter Pylori proteome (Virulence Factors) to design B and T cell multi-epitope subunit vaccine. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Zügel, U.; Kaufmann, S.H. Activation of CD8 T cells with specificity for mycobacterial heat shock protein 60 in Mycobacterium bovis bacillus Calmette-Guérin-vaccinated mice. Infect Immun. 1997, 65, 3947–3950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Li, Y.; Hu, Y.-Z.; Mo, X.-B.; Xu, G.-H.; Xie, L.-W.; Li, A. GroEL, a novel vaccine candidate of piscine Streptococcus agalactiae identified by immunoproteome. Fish Shellfish Immunol. 2019, 84, 377–383. [Google Scholar] [CrossRef]
- Obradovic, M.; Pasternak, J.A.; Ng, S.H.; Allan, B.; Brownlie, R.; Wilson, H.L. Immunoproteomic analysis of Lawsonia intracellularis identifies candidate neutralizing antibody targets for use in subunit vaccine development. Veter. Microbiol. 2019, 235, 270–279. [Google Scholar] [CrossRef]
- Magdeldin, S.; Enany, S.; Yoshida, Y.; Xu, B.; Zhang, Y.; Zureena, Z.; Lokamani, I.; Yaoita, E.; Yamamoto, T. Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis. Clin. Proteom. 2014, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Macchia, G.; Massone, A.; Burroni, D.; Covacci, A.; Censini, S.; Rappuoli, R. The Hsp60 protein of Helicobacter pylori: Structure and immune response in patients with gastroduodenal diseases. Mol. Microbiol. 1993, 9, 645–652. [Google Scholar] [CrossRef]
- Vemulapalli, R.; Biswas, B.; Dutta, S.K. Cloning and molecular analysis of genes encoding two immunodominant antigens of Ehrlichia risticii. Microb. Pathog. 1998, 24, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Dumler, J.S.; Asanovich, K.M.; Bakken, J.S.; Richter, P.; Kimsey, R.; Madigan, J.E. Serologic cross-reactions among Ehrlichia equi, Ehrlichia phagocytophila, and human granulocytic Ehrlichia. J. Clin. Microbiol. 1995, 33, 1098–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosier, D.A.; Iandolo, J.; Rogers, D.; Uhlich, G.; Crupper, S. Characterization of a 54-kDa heat-shock-inducible protein of Pasteurella haemolytica. Veter. Microbiol. 1998, 60, 67–73. [Google Scholar] [CrossRef]
- Chen, J.; Wang, W.; Hou, S.; Fu, W.; Cai, J.; Xia, L.; Lu, Y. Comparison of protective efficacy between two DNA vaccines encoding DnaK and GroEL against fish nocardiosis. Fish Shellfish Immunol. 2019, 95, 128–139. [Google Scholar] [CrossRef]
- Castillo, M.; Martín-Orúe, S.M.; Manzanilla, E.G.; Badiola, I.; Martín, M.; Gasa, J. Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR. Veter. Microbiol. 2006, 114, 165–170. [Google Scholar] [CrossRef]
- Linghua, Z.; Xingshan, T.; Fengzhen, Z. The efficacy of CpG oligodinucleotides, in combination with conventional adjuvants, as immunological adjuvants to swine streptococcic septicemia vaccine in piglets in vivo. Int. Immunopharmacol. 2006, 6, 1267–1276. [Google Scholar] [CrossRef]
- Park, B.S.; Song, D.H.; Kim, H.M.; Choi, B.-S.; Lee, H.; Lee, J.-O. The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex. Nature 2009, 458, 1191–1195. [Google Scholar] [CrossRef]
- Krieg, A.M.; Yi, A.-K.; Matson, S.; Waldschmidt, T.J.; Bishop, G.A.; Teasdale, R.; Koretzky, G.A.; Klinman, D.M. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995, 374, 546–549. [Google Scholar] [CrossRef]
- Bode, C.; Zhao, G.; Steinhagen, F.; Kinjo, T.; Klinman, D.M. CpG DNA as a vaccine adjuvant. Expert Rev. Vaccines 2011, 10, 499–511. [Google Scholar] [CrossRef] [Green Version]
- Uray, K.; Hudecz, F.; Füst, G.; Prohászka, Z. Comparative analysis of linear antibody epitopes on human and mycobacterial 60-kDa heat shock proteins using samples of healthy blood donors. Int. Immunol. 2003, 15, 1229–1236. [Google Scholar] [CrossRef] [Green Version]
- Vabulas, R.M.; Ahmad-Nejad, P.; Da Costa, C.; Miethke, T.; Kirschning, C.J.; Häcker, H.; Wagner, H. Endocytosed HSP60s Use Toll-like Receptor 2 (TLR2) and TLR4 to Activate the Toll/Interleukin-1 Receptor Signaling Pathway in Innate Immune Cells. J. Biol. Chem. 2001, 276, 31332–31339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kol, A.; Bourcier, T.; Lichtman, A.H.; Libby, P. Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. J. Clin. Investig. 1999, 103, 571–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagai, K.; Domon, H.; Maekawa, T.; Oda, M.; Hiyoshi, T.; Tamura, H.; Yonezawa, D.; Arai, Y.; Yokoji, M.; Tabeta, K.; et al. Pneumococcal DNA-binding proteins released through autolysis induce the production of proinflammatory cytokines via toll-like receptor 4. Cell. Immunol. 2018, 325, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Bulut, Y.; Michelsen, K.S.; Hayrapetian, L.; Naiki, Y.; Spallek, R.; Singh, M.; Arditi, M. Mycobacterium Tuberculosis Heat Shock Proteins Use Diverse Toll-like Receptor Pathways to Activate Pro-inflammatory Signals. J. Biol. Chem. 2005, 280, 20961–20967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratanji, K.D.; Derrick, J.P.; Kimber, I.; Thorpe, R.; Wadhwa, M.; Dearman, R.J. Influence of Escherichia coli chaperone DnaK on protein immunogenicity. Immunology 2016, 150, 343–355. [Google Scholar] [CrossRef] [Green Version]
- Rane, S.S.; Dearman, R.J.; Kimber, I.; Uddin, S.; Bishop, S.; Shah, M.; Podmore, A.; Pluen, A.; Derrick, J.P. Impact of a Heat Shock Protein Impurity on the Immunogenicity of Biotherapeutic Monoclonal Antibodies. Pharm. Res. 2019, 36, 51. [Google Scholar] [CrossRef]
- Shevtsov, M.; Kim, A.V.; Samochernych, K.A.; Romanova, I.V.; Margulis, B.A.; Yakovenko, I.V.; Ischenko, A.M.; Khachatryan, W.A.; Guzhova, I.V. Pilot study of intratumoral injection of recombinant heat shock protein 70 in the treatment of malignant brain tumors in children. OncoTargets Ther. 2014, 7, 1071–1081. [Google Scholar] [CrossRef] [Green Version]
- Soltys, B.J.; Gupta, R.S. Immunoelectron Microscopic Localization of the 60-kDa Heat Shock Chaperonin Protein (Hsp60) in Mammalian Cells. Exp. Cell Res. 1996, 222, 16–27. [Google Scholar] [CrossRef]
- Poccia, F.; Piselli, P.; Vendetti, S.; Bach, S.; Amendola, A.; Placido, R.; Colizzi, V. Heat-shock protein expression on the membrane of T cells undergoing apoptosis. Immunology 1996, 88, 6–12. [Google Scholar] [CrossRef]
- Koga, T.; Wand-Wurttenberger, A.; Debruyn, J.; Munk, M.; Schoel, B.; Kaufmann, S.H.E. T cells against a bacterial heat shock protein recognize stressed macrophages. Science 1989, 245, 1112–1115. [Google Scholar] [CrossRef]
- Xu, Q.; Luef, G.; Weimann, S.; Gupta, R.S.; Wolf, H.; Wick, G. Staining of endothelial cells and macrophages in atherosclerotic lesions with human heat-shock protein-reactive antisera. Arter. Thromb. A J. Vasc. Biol. 1993, 13, 1763–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigidin, Y.A.; Loukina, G.V.; Skurkovich, B.; Skurkovich, S. Randomized, double-blind trial of anti-interferon-gamma antibodies in rheumatoid arthritis. Scand. J. Rheumatol. 2001, 30, 203–207. [Google Scholar] [PubMed]
- Kotake, S.; Udagawa, N.; Takahashi, N.; Matsuzaki, K.; Itoh, K.; Ishiyama, S.; Saito, S.; Inoue, K.; Kamatani, N.; Gillespie, M.T.; et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Investig. 1999, 103, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Tesmer, L.A.; Lundy, S.K.; Sarkar, S.; Fox, D.A. Th17 cells in human disease. Immunol. Rev. 2008, 223, 87–113. [Google Scholar] [CrossRef] [PubMed]
- Nakae, S.; Nambu, A.; Sudo, K.; Iwakura, Y. Suppression of Immune Induction of Collagen-Induced Arthritis in IL-17-Deficient Mice. J. Immunol. 2003, 171, 6173–6177. [Google Scholar] [CrossRef] [Green Version]
- Detanico, T.; Rodrigues, L.; Sabritto, A.C.; Keisermann, M.; Bauer, M.E.; Zwickey, H.; Bonorino, C. Mycobacterial heat shock protein 70 induces interleukin-10 production: Immunomodulation of synovial cell cytokine profile and dendritic cell maturation. Clin. Exp. Immunol. 2004, 135, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Tukaj, S.; Mantej, J.; Sobala, M.; Potrykus, K.; Sitko, K. Autologous extracellular Hsp70 exerts a dual role in rheumatoid arthritis. Cell Stress Chaperon. 2020, 25, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, A.; Kosaka, N.; Hasegawa, H.; Suzuki, H.; Sugano, S.; Chiba, J. Enhancement of antibody responses to native G protein-coupled receptors using E. coli GroEL as a molecular adjuvant in DNA immunization. J. Immunol. Methods 2012, 375, 243–251. [Google Scholar] [CrossRef]
- Tobian, A.A.R.; Canaday, D.H.; Harding, C.V. Bacterial Heat Shock Proteins Enhance Class II MHC Antigen Processing and Presentation of Chaperoned Peptides to CD4 + T Cells. J. Immunol. 2004, 173, 5130. [Google Scholar] [CrossRef] [Green Version]
- Tobian, A.A.R.; Canaday, D.H.; Boom, W.H.; Harding, C.V. Bacterial Heat Shock Proteins Promote CD91-Dependent Class I MHC Cross-Presentation of Chaperoned Peptide to CD8+ T Cells by Cytosolic Mechanisms in Dendritic Cells versus Vacuolar Mechanisms in Macrophages. J. Immunol. 2004, 172, 5277–5286. [Google Scholar] [CrossRef] [Green Version]
- Barrios, C.; Lussow, A.R.; Van Embden, J.; Van der Zee, R.; Rappuoli, R.; Costantino, P.; Louis, J.A.; Lambert, P.-H.; Del Guidice, G. Mycobacterial heat-shock proteins as carrier molecules. II: The use of the 70-kDa mycobacterial heat-shock protein as carrier for conjugated vaccines can circumvent the need for adjuvants and Bacillus Calmette Guérin priming. Eur. J. Immunol. 1992, 22, 1365–1372. [Google Scholar] [CrossRef] [PubMed]
- Chitradevi, S.T.S.; Kaur, G.; Uppalapati, S.; Yadav, A.; Singh, D.; Bansal, A. Co-administration of rIpaB domain of Shigella with rGroEL of S. Typhi enhances the immune responses and protective efficacy against Shigella infection. Cell. Mol. Immunol. 2015, 12, 757–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chitradevi, S.T.S.; Kaur, G.; Sivaramakrishna, U.; Singh, D.; Bansal, A. Development of recombinant vaccine candidate molecule against Shigella infection. Vaccine 2016, 34, 5376–5383. [Google Scholar] [CrossRef] [PubMed]
- Jackson, B.R.; Zegarra, J.A.; Lopez-Gatell, H.; Sejvar, J.; Arzate, F.; Waterman, S.; Núñez, A.S.; Lopez, B.; Weiss, J.; Cruz, R.Q.; et al. Binational outbreak of Guillain–Barré syndrome associated with Campylobacter jejuni infection, Mexico and USA, 2011. Epidemiol. Infect. 2014, 142, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Loshaj-Shala, A.; Regazzoni, L.; Daci, A.; Orioli, M.; Brezovska, K.; Panovska, A.P.; Beretta, G.; Suturkova, L. Guillain Barré syndrome (GBS): New insights in the molecular mimicry between C. jejuni and human peripheral nerve (HPN) proteins. J. Neuroimmunol. 2015, 289, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Chiricosta, L.; Gugliandolo, A.; Bramanti, P.; Mazzon, E. Could the Heat Shock Proteins 70 Family Members Exacerbate the Immune Response in Multiple Sclerosis? An in Silico Study. Genes 2020, 11, 615. [Google Scholar] [CrossRef] [PubMed]
- Elfaitouri, A.; Herrmann, B.; Bölin-Wiener, A.; Wang, Y.; Gottfries, C.-G.; Zachrisson, O.; Pipkorn, R.; Rönnblom, L.; Blomberg, J. Epitopes of Microbial and Human Heat Shock Protein 60 and Their Recognition in Myalgic Encephalomyelitis. PLoS ONE 2013, 8, 81155. [Google Scholar] [CrossRef] [PubMed]
- Cancino-Diaz, J.C.; Vargas-Rodríguez, L.; Grinberg-Zylberbaum, N.; Reyes-López, M.A.; Domínguez-López, M.L.; Pablo-Velazquez, A.; Cancino-Diaz, M.E. High levels of IgG class antibodies to recombinant HSP60 kDa of Yersinia enterocolitica in sera of patients with uveitis. Br. J. Ophthalmol. 2004, 88, 247–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hjelholt, T.J.; Carlsen, T.; Deleuran, B.; Jurik, A.G.; Schiøttz-Christensen, B.; Christiansen, G.; Birkelund, S. Increased Levels of IgG Antibodies against Human HSP60 in Patients with Spondyloarthritis. PLoS ONE 2013, 8, 56210. [Google Scholar] [CrossRef] [Green Version]
- Huszti, Z.; Bene, L.; Fekete, B.; Romics, L.; Singh, M. Low levels of antibodies against E. coli and mycobacterial 65kDa heat shock proteins in patients with inflammatory bowel disease. Inflamm. Res. 2004, 53, 551–555. [Google Scholar] [CrossRef]
Chaperone/Chaperonin | Traditional Role | Source |
---|---|---|
DnaK and GroEL | Delay chain compaction | Balchin et al., 2020 [10] |
Assist in transport | Kim et al., 2013 [23] | |
Direct proteins for degradation | Kim et al., 2013 [23] | |
Assist oligomeric protein complexes | Ellis, 2006 [24] | |
Assembly of proteasome | Baumiester et al., 1998 [26] | |
Temperature homeostasis | Tomoyasu et al., 2012 [27] | |
Chaperone/Chaperonin | Non-Traditional/Moonlighting Role | Source |
GroEL | Adhesion to plasminogen | Hagemann et al., 2017 [28] |
Adhesion to mucin | Ensgraber et al., 1992 [29]; Bergonzolli et al., 2006 [30] | |
Iron binding | González-López et al., 2013 [31] | |
Toxin | Yoshida et al., 2001 [32] | |
DnaK | FliC Expression | Jain et al., 2017 [17] |
Adhesion to plasminogen | Hagemann et al., 2017 [28] Knaust et al., 2007 [33] Schaumburg et al., 2004 [34] | |
Bacterial growth | Tomoyasu et al., 2012 [27] | |
Pathogenicity | Singh et al., 2007 [35] | |
Therapeutic agent tolerance | Singh et al., 2007 [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fourie, K.R.; Wilson, H.L. Understanding GroEL and DnaK Stress Response Proteins as Antigens for Bacterial Diseases. Vaccines 2020, 8, 773. https://doi.org/10.3390/vaccines8040773
Fourie KR, Wilson HL. Understanding GroEL and DnaK Stress Response Proteins as Antigens for Bacterial Diseases. Vaccines. 2020; 8(4):773. https://doi.org/10.3390/vaccines8040773
Chicago/Turabian StyleFourie, Kezia R., and Heather L. Wilson. 2020. "Understanding GroEL and DnaK Stress Response Proteins as Antigens for Bacterial Diseases" Vaccines 8, no. 4: 773. https://doi.org/10.3390/vaccines8040773
APA StyleFourie, K. R., & Wilson, H. L. (2020). Understanding GroEL and DnaK Stress Response Proteins as Antigens for Bacterial Diseases. Vaccines, 8(4), 773. https://doi.org/10.3390/vaccines8040773