Modulation of Antigen Display on PapMV Nanoparticles Influences Its Immunogenicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sortase A and Nanoparticle Protein Production, Purification, and Self-Assembly
2.2. Peptides
2.3. Biophysical Characterization of Platforms
2.4. Coupling Reactions with SrtA
2.5. SDS-PAGE for Quantification of the Coupling Efficacy and Western Blotting to Identify Components
2.6. Animals, Immunization, and Immune Response Quantification
2.6.1. Immunization and M2e Antibody Titration by ELISA
2.6.2. Immunization and IFN Detection by ELISPOT Directed to the NP Peptide
2.6.3. Immunization and Interferon Alpha (IFN) Quantification
2.7. Statistics
2.8. Ethics Statement
3. Results
3.1. Design, Production, and Characterization of PapMV Nanoparticles
3.2. Assessment of the Humoral Response Induced by the Vaccine Platforms Coupled to the M2e Peptide
3.3. Assessment of Humoral Response to M2e Peptide with Nanoparticles Coupled at Increasing Density
3.4. Assessment of CD8+-Mediated Response Induced by the Vaccine Platforms and Impact of Coupling Density on Immunogenicity
3.5. The PapMV-N Platform Is a Stronger Inducer of Type I Interferon than PapMV-C
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Plotkin, S. History of vaccination. Proc. Natl. Acad. Sci. USA 2014, 111, 12283–12287. [Google Scholar] [CrossRef] [Green Version]
- Plotkin, S.A.; Plotkin, S.L. The development of vaccines: How the past led to the future. Nat. Rev. Microbiol. 2011, 9, 889–893. [Google Scholar] [CrossRef]
- Rappuoli, R.; Pizza, M.; Del Giudice, G.; De Gregorio, E. Vaccines, new opportunities for a new society. Proc. Natl. Acad. Sci. USA 2014, 111, 12288–12293. [Google Scholar] [CrossRef] [Green Version]
- Tognotti, E. The eradication of smallpox, a success story for modern medicine and public health: What lessons for the future? J. Infect. Dev. Ctries 2010, 4, 264–266. [Google Scholar] [CrossRef] [Green Version]
- van Panhuis, W.G.; Grefenstette, J.; Jung, S.Y.; Chok, N.S.; Cross, A.; Eng, H.; Lee, B.Y.; Zadorozhny, V.; Brown, S.; Cummings, D.; et al. Contagious diseases in the United States from 1888 to the present. N. Engl. J. Med. 2013, 369, 2152–2158. [Google Scholar] [CrossRef] [Green Version]
- Pagliusi, S.; Ting, C.C.; Lobos, F.; DCVMN Executive Committee Group. Vaccines: Shaping global health. Vaccine 2017, 35, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Krammer, F.; Garcia-Sastre, A.; Tripathi, S. Moving from Empirical to Rational Vaccine Design in the ’Omics’ Era. Vaccines 2019, 7, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauch, S.; Jasny, E.; Schmidt, K.E.; Petsch, B. New Vaccine Technologies to Combat Outbreak Situations. Front. Immunol. 2018, 9, 1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brisse, M.; Vrba, S.M.; Kirk, N.; Liang, Y.; Ly, H. Emerging Concepts and Technologies in Vaccine Development. Front. Immunol. 2020, 11, 583077. [Google Scholar] [CrossRef]
- Ni, R.; Feng, R.; Chau, Y. Synthetic Approaches for Nucleic Acid Delivery: Choosing the Right Carriers. Life 2019, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines a new era in vaccinology. Nat. Rev. Drug. Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piyush, R.; Rajarshi, K.; Chatterjee, A.; Khan, R.; Ray, S. Nucleic acid-based therapy for coronavirus disease 2019. Heliyon 2020, 6, e05007. [Google Scholar] [CrossRef] [PubMed]
- Poland, G.A.; Ovsyannikova, I.G.; Crooke, S.N.; Kennedy, R.B. SARS-CoV-2 Vaccine Development: Current Status. Mayo Clin. Proc. 2020, 95, 2172–2188. [Google Scholar] [CrossRef] [PubMed]
- Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol. 2020, 1–18. [Google Scholar]
- Jazayeri, S.D.; Poh, C.L. Development of Universal Influenza Vaccines Targeting Conserved Viral Proteins. Vaccines 2019, 7, 169. [Google Scholar] [CrossRef] [Green Version]
- Rajão, D.S.; Pérez, D.R. Universal Vaccines and Vaccine Platforms to Protect against Influenza Viruses in Humans and Agriculture. Front. Microbiol. 2018, 9, 123. [Google Scholar] [CrossRef]
- Pasin, F.; Munzel, W.; Daros, J.A. Harnessed viruses in the age of metagenomics and synthetic biology: An update on infectious clone assembly and biotechnologies of plant viruses. Plant. Biotechnol. J. 2019, 17, 1010–1026. [Google Scholar] [CrossRef] [Green Version]
- Hefferon, K.L. Repurposing Plant Virus Nanoparticles. Vaccines 2018, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Hefferon, K. Plant virus expression vector development: New perspectives. Biomed. Res. Int. 2014, 2014, 785382. [Google Scholar] [CrossRef]
- Wang, M.; Gao, S.; Zeng, W.; Yang, Y.; Ma, J.; Wang, Y. Plant Virology Delivers Diverse Toolsets for Biotechnology. Viruses 2020, 12, 1338. [Google Scholar] [CrossRef]
- Balke, I.; Zeltins, A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv. Drug. Deliv. Rev. 2019, 145, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Balke, I.; Zeltins, A. Recent Advances in the Use of Plant Virus-Like Particles as Vaccines. Viruses 2020, 12, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, A.; Odon, V.; Kormelink, R. Plant Viruses in Plant Molecular Pharming: Toward the Use of Enveloped Viruses. Front. Plant Sci. 2019, 10, 803. [Google Scholar] [CrossRef] [PubMed]
- Steele, J.F.C.; Peyret, H.; Saunders, K.; Castells-Graells, R.; Marsian, J.; Meshcheriakova, Y.; Lomonossoff, G.P. Synthetic plant virology for nanobiotechnology and nanomedicine. Wiley. Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1447. [Google Scholar] [CrossRef] [Green Version]
- Lebel, M.E.; Daudelin, J.F.; Chartrand, K.; Tarrab, E.; Kalinke, U.; Savard, P.; Labrecque, N.; Leclerc, D. Nanoparticle Adjuvant Sensing by TLR7 Enhances CD8+ T Cell–Mediated Protection from Listeria Monocytogenes Infection. J. Immunol. 2014, 192, 1071–1078. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, C.; Rioux, G.; Dumas, M.C.; Leclerc, D. Induction of innate immunity inlungs with virus-like nanoparticles leads to protection against influenza and Streptococcuspneumoniaechallenge. Nanomedecine 2013, 9, 839–848. [Google Scholar] [CrossRef]
- Carignan, D.; Herblot, S.; Laliberté-Gagné, M.E.; Bolduc, M.; Duval, M.; Savard, P.; Leclerc, D. Activation of innate immunity in primary human cells using a plant virus derived nanoparticle TLR7/8 agonist. Nanomedecine 2018, 14, 2317–2327. [Google Scholar] [CrossRef]
- Carignan, D.; Thérien, A.; Rioux, G.; Paquet, G.; Gagné, M.È.L.; Bolduc, M.; Savard, P.; Leclerc, D. Engineering of the PapMV vaccine platform with a shortened M2e peptide leads to an effective one dose influenza vaccine. Vaccine 2015, 33, 7245–7253. [Google Scholar] [CrossRef]
- Bolduc, M.; Baz, M.; Laliberté-Gagné, M.; Carignan, D.; Garneau, C.; Russel, A.; Boivin, G.; Savard, P.; Leclerc, D. The Quest for a nanoparticle-based vaccine inducing broad protection to influenza viruses. Nanomedecine 2018, 14, 2563–2574. [Google Scholar] [CrossRef]
- Babin, C.; Majeau, N.; Leclerc, D. Engineering of papaya mosaic virus (PapMV) nanoparticles with a CTL epitope derived from influenza NP. J. Nanobiotechnol. 2013, 11, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Leclerc, D.; Beauseigle, D.; Denis, J.; Morin, H.; Paré, C.; Lamarre, A.; Lapointe, R. Proteasome-independent major histocompatibility complex class I cross-presentation mediated by papaya mosaic virus-like particles leads to expansion of specific human T cells. J. Virol. 2007, 81, 1319–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobitz, A.W.; Kattke, M.D.; Wereszczynski, J.; Clubb, R.T. Sortase Transpeptidases: Structural biology and Catalytic Mechanism. Adv. Protein. Chem. Struct. Biol. 2017, 109, 223–264. [Google Scholar] [PubMed] [Green Version]
- Thérien, A.; Bédard, M.; Carignan, D.; Rioux, G.; Gauthier-Landry, L.; Laliberté-Gagné, M.È.; Bolduc, M.; Savard, P.; Leclerc, D. A versatile papaya mosaic virus (PapMV) vaccine platform based on sortase-mediated antigen coupling. Nanobiotechnology 2017, 18, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneewind, O.; Missiakas, D. Sortases, Surface Proteins, and Their Roles in Staphylococcus aureus Disease and Vaccine Development. Microbiol. Spectr. 2019, 7, 10.1128. [Google Scholar]
- Laliberté-Gagné, M.E.; Bolduc, M.; Thérien, A.; Garneau, C.; Casault, P.; Savard, P.; Estaquier, J.; Leclerc, D. Increased Immunogenicity of Full-Length Protein Antigens through Sortase-Mediated Coupling on the PapMV Vaccine Platform. Vaccines 2019, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, A.H.; Marraffini, L.A.; Glass, E.M.; Debord, K.L.; Ton-That, H.; Schneewind, O. Bacillus anthracis sortase A (SrtA) anchors LPXTG motif-containing surface proteins to the cell wall envelope. J. Bacteriol. 2005, 187, 4646–4655. [Google Scholar] [CrossRef] [Green Version]
- Neirynck, S.; Deroo, T.; Saelens, X.; Vanlandschoot, P.; Jou, W.M.; Fiers, W. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med. 1999, 10, 1157–1163. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laliberté-Gagné, M.-E.; Bolduc, M.; Garneau, C.; Olivera-Ugarte, S.-M.; Savard, P.; Leclerc, D. Modulation of Antigen Display on PapMV Nanoparticles Influences Its Immunogenicity. Vaccines 2021, 9, 33. https://doi.org/10.3390/vaccines9010033
Laliberté-Gagné M-E, Bolduc M, Garneau C, Olivera-Ugarte S-M, Savard P, Leclerc D. Modulation of Antigen Display on PapMV Nanoparticles Influences Its Immunogenicity. Vaccines. 2021; 9(1):33. https://doi.org/10.3390/vaccines9010033
Chicago/Turabian StyleLaliberté-Gagné, Marie-Eve, Marilène Bolduc, Caroline Garneau, Santa-Mariela Olivera-Ugarte, Pierre Savard, and Denis Leclerc. 2021. "Modulation of Antigen Display on PapMV Nanoparticles Influences Its Immunogenicity" Vaccines 9, no. 1: 33. https://doi.org/10.3390/vaccines9010033
APA StyleLaliberté-Gagné, M. -E., Bolduc, M., Garneau, C., Olivera-Ugarte, S. -M., Savard, P., & Leclerc, D. (2021). Modulation of Antigen Display on PapMV Nanoparticles Influences Its Immunogenicity. Vaccines, 9(1), 33. https://doi.org/10.3390/vaccines9010033