The Advantages and Challenges of Anticancer Dendritic Cell Vaccines and NK Cells in Adoptive Cell Immunotherapy
Abstract
:1. Introduction
2. Dendritic Cells Vaccines
3. Interaction of DCs and NK Cells
4. Characteristics of NK Cells
5. Generation NK Cells Ex Vivo
5.1. Methods of NK Cell-Based Immunotherapy
5.2. Interaction between NKG2D Receptor and Its Ligands for NK Cell Therapy
6. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, J.S.; Soignier, Y.; Panoskaltsis-Mortari, A.; McNearney, S.A.; Yun, G.H.; Fautsch, S.K.; McKenna, D.; Le, C.; Defor, T.E.; Burns, L.J.; et al. Successful Adoptive Transfer and In Vivo Expansion of Human Haploidentical NK Cells in Patients with Cancer. Blood 2005, 105, 3051–3057. [Google Scholar] [CrossRef] [Green Version]
- Ribas, A.; Wolchok, J.D. Cancer Immunotherapy Using Checkpoint Blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, Y.; Naito, M.; Yamada, T.; Aisu, N.; Kojima, D.; Mera, T.; Tanaka, T.; Naito, K.; Yasumoto, K.; Kamigaki, T.; et al. Clinical Study on the Medical Value of Combination Therapy Involving Adoptive Immunotherapy and Chemotherapy for Stage IV Colorectal Cancer (COMVI Study). Anticancer Res. 2017, 37, 3941–3946. [Google Scholar]
- Myers, J.A.; Miller, J.S. Exploring the NK Cell Platform for Cancer Immunotherapy. Nat. Rev. Clin. Oncol. 2021, 18, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Li, L.; McCarty, J.; Kaur, I.; Yvon, E.; Shaim, H.; Muftuoglu, M.; Liu, E.; Orlowski, R.Z.; Cooper, L.; et al. Phase I Study of Cord Blood-Derived Natural Killer Cells Combined with Autologous Stem Cell Transplantation in Multiple Myeloma. Br. J. Haematol. 2017, 177, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Galat, V.; Galat, Y.; Lee, Y.K.A.; Wainwright, D.; Wu, J. NK Cell-Based Cancer Immunotherapy: From Basic Biology to Clinical Development. J. Hematol. Oncol. 2021, 14, 7. [Google Scholar] [CrossRef]
- Fan, J.; Shang, D.; Han, B.; Song, J.; Chen, H.; Yang, J.-M. Adoptive Cell Transfer: Is It a Promising Immunotherapy for Colorectal Cancer? Theranostics 2018, 8, 5784–5800. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, Y.; Mittra, A.; Naqash, A.R.; Takebe, N. A Review of Mechanisms of Resistance to Immune Checkpoint Inhibitors and Potential Strategies for Therapy. Cancer Drug Resist. 2020, 3, 252–275. [Google Scholar] [CrossRef]
- Roberts, E.W.; Broz, M.L.; Binnewies, M.; Headley, M.B.; Nelson, A.E.; Wolf, D.M.; Kaisho, T.; Bogunovic, D.; Bhardwaj, N.; Krummel, M.F. Critical Role for CD103+/CD141+ Dendritic Cells Bearing CCR7 for Tumor Antigen Trafficking and Priming of T Cell Immunity in Melanoma. Cancer Cell 2016, 30, 324–336. [Google Scholar] [CrossRef] [Green Version]
- Vitale, M.; Cantoni, C.; Della Chiesa, M.; Ferlazzo, G.; Carlomagno, S.; Pende, D.; Falco, M.; Pessino, A.; Muccio, L.; De Maria, A.; et al. An Historical Overview: The Discovery of How NK Cells Can Kill Enemies, Recruit Defense Troops, and More. Front. Immunol. 2019, 10, 1415. [Google Scholar] [CrossRef] [Green Version]
- Veluchamy, J.P.; Lopez-Lastra, S.; Spanholtz, J.; Bohme, F.; Kok, N.; Heideman, D.A.M.; Verheul, H.M.W.; Di Santo, J.P.; de Gruijl, T.D.; van der Vliet, H.J. In Vivo Efficacy of Umbilical Cord Blood Stem Cell-Derived NK Cells in the Treatment of Metastatic Colorectal Cancer. Front. Immunol. 2017, 8, 87. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.J.; Kang, W.Y.; Yoon, Y.; Jin, J.Y.; Song, H.J.; Her, J.H.; Kang, S.M.; Hwang, Y.K.; Kang, K.J.; Joo, K.M.; et al. Natsural Killer (NK) Cells Inhibit Systemic Metastasis of Glioblastoma Cells and Have Therapeutic Effects against Glioblastomas in the Brain. BMC Cancer 2015, 15, 1011. [Google Scholar] [CrossRef] [Green Version]
- Rezvani, K.; Rouce, R.; Liu, E.; Shpall, E. Engineering Natural Killer Cells for Cancer Immunotherapy. Mol. Ther. 2017, 25, 1769–1781. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, N.; Ishikawa, T.; Kokura, S.; Okayama, T.; Oka, K.; Ideno, M.; Sakai, F.; Kato, A.; Tanabe, M.; Enoki, T.; et al. Phase I Clinical Trial of Autologous NK Cell Therapy Using Novel Expansion Method in Patients with Advanced Digestive Cancer. J. Transl. Med. 2015, 13, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubnitz, J.E.; Inaba, H.; Ribeiro, R.C.; Pounds, S.; Rooney, B.; Bell, T.; Pui, C.-H.; Leung, W. NKAML: A Pilot Study to Determine the Safety and Feasibility of Haploidentical Natural Killer Cell Transplantation in Childhood Acute Myeloid Leukemia. J. Clin. Oncol. 2010, 28, 955–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iliopoulou, E.G.; Kountourakis, P.; Karamouzis, M.V.; Doufexis, D.; Ardavanis, A.; Baxevanis, C.N.; Rigatos, G.; Papamichail, M.; Perez, S.A. A Phase I Trial of Adoptive Transfer of Allogeneic Natural Killer Cells in Patients with Advanced Non-Small Cell Lung Cancer. Cancer Immunol. Immunother. 2010, 59, 1781–1789. [Google Scholar] [CrossRef]
- Saxena, M.; van der Burg, S.H.; Melief, C.J.M.; Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 2021, 21, 360–378. [Google Scholar] [CrossRef]
- Guo, C.; Manjili, M.H.; Subjeck, J.R.; Sarkar, D.; Fisher, P.B.; Wang, X.Y. Therapeutic cancer vaccines: Past, present, and future. Adv. Cancer Res. 2013, 119, 421–475. [Google Scholar] [CrossRef] [Green Version]
- Fares, C.M.; Van Allen, E.M.; Drake, C.G.; Allison, J.P.; Hu-Lieskovan, S. Mechanisms of Resistance to Immune Checkpoint Blockade: Why Does Checkpoint Inhibitor Immunotherapy Not Work for All Patients? Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 147–164. [Google Scholar] [CrossRef]
- De Sousa Linhares, A.; Leitner, J.; Grabmeier-Pfistershammer, K.; Steinberger, P. Not All Immune Checkpoints Are Created Equal. Front. Immunol. 2018, 9, 1909. [Google Scholar] [CrossRef] [Green Version]
- Seliger, B.; Massa, C. The Dark Side of Dendritic Cells: Development and Exploitation of Tolerogenic Activity That Favor Tumor Outgrowth and Immune Escape. Front. Immunol. 2013, 4, 419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cifuentes-Rius, A.; Desai, A.; Yuen, D.; Johnston, A.P.R.; Voelcker, N.H. Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nat. Nanotechnol 2021, 16, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Hart, D. The Delivery of Effective Therapeutic Cancer Vaccination. Asian J. 2011, 13, 183–184. [Google Scholar] [CrossRef] [Green Version]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; et al. Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2010, 363, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Fearnley, D.B.; Whyte, L.F.; Carnoutsos, S.A.; Cook, A.H.; Hart, D.N.J. Monitoring Human Blood Dendritic Cell Numbers in Normal Individuals and in Stem Cell Transplantation. Blood 1999, 93, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Sallusto, F.; Lanzavecchia, A. Efficient Presentation of Soluble Antigen by Cultured Human Dendritic Cells Is Maintained by Granulocyte/Macrophage Colony-Stimulating Factor plus Interleukin 4 and Downregulated by Tumor Necrosis Factor Alpha. J. Exp. Med. 1994, 179, 1109–1118. [Google Scholar] [CrossRef] [Green Version]
- Verdijk, P.; Aarntzen, E.H.J.G.; Lesterhuis, W.J.; Boullart, A.C.I.; Kok, E.; van Rossum, M.M.; Strijk, S.; Eijckeler, F.; Bonenkamp, J.J.; Jacobs, J.F.M.; et al. Limited Amounts of Dendritic Cells Migrate into the T-Cell Area of Lymph Nodes but Have High Immune Activating Potential in Melanoma Patients. Clin. Cancer Res. 2009, 15, 2531–2540. [Google Scholar] [CrossRef] [Green Version]
- Bottcher, J.P.; Bonavita, E.; Chakravarty, P.; Blees, H.; Cabeza-Cabrerizo, M.; Sammicheli, S.; Rogers, N.C.; Sahai, E.; Zelenay, S.; Reis e Sousa, C. NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell 2018, 172, 1022–1037. [Google Scholar] [CrossRef] [Green Version]
- Barry, K.C.; Hsu, J.; Broz, M.L.; Cueto, F.J.; Binnewies, M.; Combes, A.J.; Nelson, A.E.; Loo, K.; Kumar, R.; Rosenblum, M.D.; et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat. Med. 2018, 24, 1178–1191. [Google Scholar] [CrossRef]
- Cursons, J.; Souza-Fonseca-Guimaraes, F.; Foroutan, M.; Anderson, A.; Hollande, F.; Hediyeh-Zadeh, S.; Behren, A.; Huntington, N.D.; Davis, M.J. A gene signature predicting natural killer cell infiltration and improved survival in melanoma patients. Cancer Immunol. Res. 2019, 7, 1162–1174. [Google Scholar] [CrossRef] [Green Version]
- Fehniger, T.A.; Shah, M.H.; Turner, M.J.; VanDeusen, J.B.; Whitman, S.P.; Cooper, M.A.; Suzuki, K.; Wechser, M.; Goodsaid, F.; Caligiuri, M.A. Differential Cytokine and Chemokine Gene Expression by Human NK Cells Following Activation with IL-18 or IL-15 in Combination with IL-12: Implications for the Innate Immune Response. J. Immunol. 1999, 162, 4511–4520. [Google Scholar] [PubMed]
- Gerosa, F.; Baldani-Guerra, B.; Nisii, C.; Marchesini, V.; Carra, G.; Trinchieri, G. Reciprocal Activating Interaction between Natural Killer Cells and Dendritic Cells. J. Exp. Med. 2002, 195, 327–333. [Google Scholar] [CrossRef]
- Ma, D.Y.; Clark, E.A. The role of CD40 and CD154/CD40L in dendritic cells. Semin. Immunol. 2009, 21, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.L.; Berk, E.; Edwards, R.P.; Kalinski, P. IL-18–Primed Helper NK Cells Collaborate with Dendritic Cells to Promote Recruitment of Effector CD8+ T Cells to the Tumor Microenvironment. Cancer Res. 2013, 73, 4653–4662. [Google Scholar] [CrossRef] [Green Version]
- Bödder, J.; Zahan, T.; van Slooten, R.; Schreibelt, G.; de Vries, I.J.M.; Flórez-Grau, G. Harnessing the cDC1-NK Cross-Talk in the Tumor Microenvironment to Battle Cancer. Front. Immunol. 2021, 11, 631–713. [Google Scholar] [CrossRef] [PubMed]
- Martinet, L.; Smyth, M.J. Regulation of Immune Cell Functions through Nectin and Nectin-Like Receptors. Encycl. Immunobiol. 2016, 2, 404–414. [Google Scholar] [CrossRef]
- Dougall, W.C.; Kurtulus, S.; Smyth, M.J.; Anderson, A.C. TIGIT and CD96: New checkpoint receptor targets for cancer immunotherapy. Immunol. Rev. 2017, 276, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zheng, Q.; Xin, N.; Wang, W.; Zhao, C. CD155, an onco-immunologic molecule in human tumors. Cancer Sci. 2017, 108, 1934–1938. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, J.S.; Madore, J.; Li, X.Y.; Smyth, M.J. Tumor intrinsic and extrinsic immune functions of CD155. Semin. Cancer Biol. 2020, 65, 189–196. [Google Scholar] [CrossRef]
- Zhou, X.; Mo, X.; Qiu, J.; Zhao, J.; Wang, S.; Zhou, C.; Su, Y.; Lin, Z.; Ma, H. Chemotherapy Combined with Dendritic Cell Vaccine and Cytokine-Induced Killer Cells in the Treatment of Colorectal Carcinoma: A Meta-Analysis. Cancer Manag. Res. 2018, 10, 5363–5372. [Google Scholar] [CrossRef] [Green Version]
- Shin, M.H.; Kim, J.; Lim, S.A.; Kim, J.; Kim, S.-J.; Lee, K.-M. NK Cell-Based Immunotherapies in Cancer. Immune Netw. 2020, 20, e14. [Google Scholar] [CrossRef]
- Campbell, K.S.; Hasegawa, J. Natural Killer Cell Biology: An Update and Future Directions. J. Allergy Clin. Immunol. 2013, 132, 536–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abakushina, E.V.; Kozlov, I.G. Immunotherapy with the natural killer cells in the treatment of cancer. Russ. J. Immunol. 2016, 10, 131–142. (In Russian) [Google Scholar]
- Long, E.O.; Kim, H.S.; Liu, D.; Peterson, M.E.; Rajagopalan, S. Controlling Natural Killer Cell Responses: Integration of Signals for Activation and Inhibition. Annu. Rev. Immunol. 2013, 31, 227–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinet, L.; Smyth, M. Balancing natural killer cell activation through paired receptors. Nat. Rev. Immunol. 2015, 15, 243–254. [Google Scholar] [CrossRef]
- Kim, S.; Poursine-Laurent, J.; Truscott, S.; Lybarger, L.; Song, Y.J.; Yang, L.; French, A.R.; Sunwoo, J.B.; Lemieux, S.; Hansen, T.H.; et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 2005, 436, 709–713. [Google Scholar] [CrossRef]
- Bauer, S.; Groh, V.; Wu, J.; Steinle, A.; Phillips, J.H.; Lanier, L.L.; Spies, T. Activation of NK Cells and T Cells by NKG2D, a Receptor for Stress-Inducible MICA. Science 1999, 285, 727–729. [Google Scholar] [CrossRef]
- Ferris, R.L.; Jaffee, E.M.; Ferrone, S. Tumor Antigen–Targeted, Monoclonal Antibody–Based Immunotherapy: Clinical Response, Cellular Immunity, and Immunoescape. J. Clin. Oncol. 2010, 28, 4390–4399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stringaris, K.; Sekine, T.; Khoder, A.; Alsuliman, A.; Razzaghi, B.; Sargeant, R.; Pavlu, J.; Brisley, G.; de Lavallade, H.; Sarvaria, A.; et al. Leukemia-Induced Phenotypic and Functional Defects in Natural Killer Cells Predict Failure to Achieve Remission in Acute Myeloid Leukemia. Haematologica 2014, 99, 836–847. [Google Scholar] [CrossRef] [Green Version]
- Pasero, C.; Gravis, G.; Granjeaud, S.; Guerin, M.; Thomassin-Piana, J.; Rocchi, P.; Salem, N.; Walz, J.; Moretta, A.; Olive, D. Highly effective NK cells are associated with good prognosis in patients with metastatic prostate cancer. Oncotarget 2015, 6, 14360–14373. [Google Scholar] [CrossRef] [Green Version]
- Tarazona, R.; Lopez-Sejas, N.; Guerrero, B.; Hassouneh, F.; Valhondo, I.; Pera, A.; Sanchez-Correa, B.; Pastor, N.; Duran, E.; Alonso, C.; et al. Current Progress in NK Cell Biology and NK Cell-Based Cancer Immunotherapy. Cancer Immunol. Immunother. 2020, 69, 879–899. [Google Scholar] [CrossRef]
- Buddingh, E.P.; Schilham, M.W.; Ruslan, S.E.N.; Berghuis, D.; Szuhai, K.; Suurmond, J.; Taminiau, A.H.M.; Gelderblom, H.; Egeler, R.M.; Serra, M.; et al. Chemotherapy-Resistant Osteosarcoma Is Highly Susceptible to IL-15-Activated Allogeneic and Autologous NK Cells. Cancer Immunol. Immunother. 2011, 60, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Alici, E.; Sutlu, T.; Björkstrand, B.; Gilljam, M.; Stellan, B.; Nahi, H.; Quezada, H.C.; Gahrton, G.; Ljunggren, H.-G.; Dilber, M.S. Autologous Antitumor Activity by NK Cells Expanded from Myeloma Patients Using GMP-Compliant Components. Blood 2008, 111, 3155–3162. [Google Scholar] [CrossRef] [Green Version]
- Barkholt, L.; Alici, E.; Conrad, R.; Sutlu, T.; Gilljam, M.; Stellan, B.; Christensson, B.; Guven, H.; Björkström, N.K.; Söderdahl, G.; et al. Safety Analysis of Ex Vivo-Expanded NK and NK-like T Cells Administered to Cancer Patients: A Phase I Clinical Study. Immunotherapy 2009, 1, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Abakushina, E.V.; Gelm, Y.V.; Pasova, I.A.; Bazhin, A.V. Immunotherapeutic Approaches for the Treatment of Colorectal Cancer. Biochem. Mosc. 2019, 84, 720–728. [Google Scholar] [CrossRef]
- Hamilton, G.; Plangger, A. The Impact of NK Cell-Based Therapeutics for the Treatment of Lung Cancer for Biologics: Targets and Therapy. Biologics 2021, 15, 265–277. [Google Scholar] [CrossRef]
- Bachanova, V.; Burns, L.J.; McKenna, D.H.; Curtsinger, J.; Panoskaltsis-Mortari, A.; Lindgren, B.R.; Cooley, S.; Weisdorf, D.; Miller, J.S. Allogeneic Natural Killer Cells for Refractory Lymphoma. Cancer Immunol. Immunother. 2010, 59, 1739–1744. [Google Scholar] [CrossRef] [Green Version]
- Decot, V.; Voillard, L.; Latger-Cannard, V.; Aissi-Rothé, L.; Perrier, P.; Stoltz, J.F.; Bensoussan, D. Natural-Killer Cell Amplification for Adoptive Leukemia Relapse Immunotherapy: Comparison of Three Cytokines, IL-2, IL-15, or IL-7 and Impact on NKG2D, KIR2DL1, and KIR2DL2 Expression. Exp. Hematol. 2010, 38, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Basar, R.; Daher, M.; Rezvani, K. Next-generation cell therapies: The emerging role of CAR-NK cells. Blood Adv. 2020, 4, 5868–5876. [Google Scholar] [CrossRef]
- Granzin, M.; Wagner, J.; Köhl, U.; Cerwenka, A.; Huppert, V.; Ullrich, E. Shaping of Natural Killer Cell Antitumor Activity by Ex Vivo Cultivation. Front. Immunol. 2017, 8, 458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knorr, D.A.; Bachanova, V.; Verneris, M.R.; Miller, J.S. Clinical Utility of Natural Killer Cells in Cancer Therapy and Transplantation. Semin. Immunol. 2014, 26, 161–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, S.A.; Lotze, M.T.; Muul, L.M.; Leitman, S.; Chang, A.E.; Ettinghausen, S.E.; Matory, Y.L.; Skibber, J.M.; Shiloni, E.; Vetto, J.T.; et al. Observations on the Systemic Administration of Autologous Lymphokine-Activated Killer Cells and Recombinant Interleukin-2 to Patients with Metastatic Cancer. N. Engl. J. Med. 1985, 313, 1485–1492. [Google Scholar] [CrossRef] [PubMed]
- Reindl, L.M.; Albinger, N.; Bexte, T.; Müller, S.; Hartmann, J.; Ullrich, E. Immunotherapy with NK Cells: Recent Developments in Gene Modification Open up New Avenues. OncoImmunology 2020, 9, 1777651. [Google Scholar] [CrossRef]
- Lee, D.A. Cellular Therapy: Adoptive Immunotherapy with Expanded Natural Killer Cells. Immunol. Rev. 2019, 290, 85–99. [Google Scholar] [CrossRef]
- Ferlazzo, G.; Carrega, P. Natural Killer Cell Distribution and Trafficking in Human Tissues. Front. Immunol. 2012, 3, 347. [Google Scholar] [CrossRef] [Green Version]
- Zotto, G.D.; Marcenaro, E.; Vacca, P.; Sivori, S.; Pende, D.; Chiesa, M.D.; Moretta, F.; Ingegnere, T.; Mingari, M.C.; Moretta, A.; et al. Markers and Function of Human NK Cells in Normal and Pathological Conditions. Cytom. Part B Clin. Cytom. 2017, 92, 100–114. [Google Scholar] [CrossRef] [Green Version]
- Moretta, A.; Bottino, C.; Vitale, M.; Pende, D.; Cantoni, C.; Mingari, M.C.; Biassoni, R.; Moretta, L. Activating Receptors and Coreceptors Involved in Human Natural Killer Cell-Mediated Cytolysis. Annu. Rev. Immunol. 2001, 19, 197–223. [Google Scholar] [CrossRef] [PubMed]
- Marcenaro, E.; Augugliaro, R.; Falco, M.; Castriconi, R.; Parolini, S.; Sivori, S.; Romeo, E.; Millo, R.; Moretta, L.; Bottino, C.; et al. CD59 is physically and functionally associated with natural cytotoxicity receptors and activates human NK cell-mediated cytotoxicity. Eur. J. Immunol. 2003, 33, 3367–3376. [Google Scholar] [CrossRef] [PubMed]
- Claus, M.; Meinke, S.; Bhat, R.; Watzl, C. Regulation of NK cell activity by 2B4, NTB-A and CRACC. Front. Biosci. 2008, 13, 956–965. [Google Scholar] [CrossRef] [Green Version]
- Sangiolo, D.; Martinuzzi, E.; Todorovic, M.; Vitaggio, K.; Vallario, A.; Jordaney, N.; Carnevale-Schianca, F.; Capaldi, A.; Geuna, M.; Casorzo, L.; et al. Alloreactivity and Anti-Tumor Activity Segregate within Two Distinct Subsets of Cytokine-Induced Killer (CIK) Cells: Implications for Their Infusion across Major HLA Barriers. Int. Immunol. 2008, 20, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Chen, Y.; Xiao, W.; Sun, R.; Tian, Z. NK Cell-Based Immunotherapy for Malignant Diseases. Cell Mol. Immunol. 2013, 10, 230–252. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Y.; Sun, Q.; Yan, J.; Huang, J.; Zhu, S.; Yu, J. Identification of MicroRNA Transcriptome Involved in Human Natural Killer Cell Activation. Immunol. Lett. 2012, 143, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Spanholtz, J.; Preijers, F.; Tordoir, M.; Trilsbeek, C.; Paardekooper, J.; de Witte, T.; Schaap, N.; Dolstra, H. Clinical-Grade Generation of Active NK Cells from Cord Blood Hematopoietic Progenitor Cells for Immunotherapy Using a Closed-System Culture Process. PLoS ONE 2011, 6, e20740. [Google Scholar] [CrossRef]
- Parrish-Novak, J.; Dillon, S.R.; Nelson, A.; Hammond, A.; Sprecher, C.; Gross, J.A.; Johnston, J.; Madden, K.; Xu, W.; West, J.; et al. Interleukin 21 and Its Receptor Are Involved in NK Cell Expansion and Regulation of Lymphocyte Function. Nature 2000, 408, 57–63. [Google Scholar] [CrossRef]
- Sivori, S.; Cantoni, C.; Parolini, S.; Marcenaro, E.; Conte, R.; Moretta, L.; Moretta, A. IL-21 Induces Both Rapid Maturation of Human CD34+ Cell Precursors towards NK Cells and Acquisition of Surface Killer Ig-like Receptors. Eur. J. Immunol. 2003, 33, 3439–3447. [Google Scholar] [CrossRef] [PubMed]
- Rochman, Y.; Spolski, R.; Leonard, W.J. New Insights into the Regulation of T Cells by Γc Family Cytokines. Nat. Rev. Immunol. 2009, 9, 480–490. [Google Scholar] [CrossRef]
- Ni, J.; Miller, M.; Stojanovic, A.; Garbi, N.; Cerwenka, A. Sustained Effector Function of IL-12/15/18–Preactivated NK Cells against Established Tumors. J. Exp. Med. 2012, 209, 2351–2365. [Google Scholar] [CrossRef]
- Glienke, W.; Esser, R.; Priesner, C.; Suerth, J.D.; Schambach, A.; Wels, W.S.; Grez, M.; Kloess, S.; Arseniev, L.; Koehl, U. Advantages and Applications of CAR-Expressing Natural Killer Cells. Front. Pharmacol. 2015, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Xie, G.; Dong, H.; Liang, Y.; Ham, J.D.; Rizwan, R.; Chen, J. CAR-NK Cells: A Promising Cellular Immunotherapy for Cancer. EBioMedicine 2020, 59, 102975. [Google Scholar] [CrossRef]
- Marofi, F.; Al-Awad, A.S.; Sulaiman Rahman, H.; Markov, A.; Abdelbasset, W.K.; Ivanovna, E.Y.; Mahmoodi, M.; Hassanzadeh, A.; Yazdanifar, M.; Chartrand, M.S.; et al. CAR-NK Cell: A New Paradigm in Tumor Immunotherapy. Front. Oncol. 2021, 11, 2078. [Google Scholar] [CrossRef]
- Shimasaki, N.; Jain, A.; Campana, D. NK Cells for Cancer Immunotherapy. Nat. Rev. Drug Discov. 2020, 19, 200–218. [Google Scholar] [CrossRef]
- Biederstädt, A.; Rezvani, K. Engineering the next Generation of CAR-NK Immunotherapies. Int. J. Hematol. 2021, 114, 554–571. [Google Scholar] [CrossRef]
- Fuertes, M.B.; Domaica, C.I.; Zwirner, N.W. Leveraging NKG2D Ligands in Immuno-Oncology. Front. Immunol. 2021, 12, 2881. [Google Scholar] [CrossRef]
- Chitadze, G.; Bhat, J.; Lettau, M.; Janssen, O.; Kabelitz, D. Generation of Soluble NKG2D Ligands: Proteolytic Cleavage, Exosome Secretion and Functional Implications. Scand. J. Immunol. 2013, 78, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Zingoni, A.; Vulpis, E.; Nardone, I.; Soriani, A.; Fionda, C.; Cippitelli, M.; Santoni, A. Targeting NKG2D and NKp30 Ligands Shedding to Improve NK Cell− Based Immunotherapy. CRI 2016, 36, 445–460. [Google Scholar] [CrossRef]
- Chaaben, A.B.; Ouni, N.; Douik, H.; Ayari, F.; Abaza, H.; Mamoghli, T.; Harzallah, L.; Fortier, C.; Boukouaci, W.; Krishnamoorthy, R.; et al. Soluble MICA and anti-MICA Antibodies as Biomarkers of Nasopharyngeal Carcinoma Disease. Immunol. Inv. 2020, 49, 498–509. [Google Scholar] [CrossRef]
- Dhar, P.; Basher, F.; Ji, Z.; Huang, L.; Qin, S.; Wainwright, D.A.; Robinson, J.; Hagler, S.; Zhou, J.; MacKay, S.; et al. Tumor-Derived NKG2D Ligand SMIC Reprograms NK Cells to an Inflammatory Phenotype through CBM Signalosome Activation. Commun. Biol. 2021, 4, 905. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, J.; Liu, D.; Li, G.; Staveley-O’Carroll, K.F.; Li, Z.; Wu, J.D. Nonblocking monoclonal antibody targeting soluble MIC revamps endogenous innate and adaptive antitumor responses and eliminates primary and metastatic tumors. Clin. Cancer Res. 2015, 21, 4819–4830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jinushi, M.; Hodi, F.S.; Dranoff, G. Therapy-Induced Antibodies to MHC Class I Chain-Related Protein A Antagonize Immune Suppression and Stimulate Antitumor Cytotoxicity. Proc. Natl. Acad. Sci. USA 2006, 103, 9190–9195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, N.; Regge, M.V.; Secchiari, F.; Friedrich, A.D.; Spallanzani, R.G.; Iraolagoitia, X.L.R.; Núñez, S.Y.; Sierra, J.M.; Ziblat, A.; Santilli, M.C.; et al. Restoration of Antitumor Immunity through Anti-MICA Antibodies Elicited with a Chimeric Protein. J. Immunother. Cancer 2020, 8, e000233. [Google Scholar] [CrossRef]
- The Third Affiliated Hospital of Guangzhou Medical University. (January 2018–December 2019). Pilot Study of NKG2D-Ligand Targeted CAR-NK Cells in Patients with Metastatic Solid Tumors. Identifier: NCT03415100. Available online: https://clinicaltrials.gov/ct2/show/NCT03415100 (accessed on 18 November 2021).
- Nkarta Inc. (September 2020–July 2038). A Phase 1 Study of NKX101, an Activating Chimeric Receptor Natural Killer Cell Therapy, in Subjects with Hematological Malignancies or Dysplasias. Identifier: NCT04623944. Available online: https://clinicaltrials.gov/ct2/show/NCT04623944 (accessed on 18 November 2021).
- Ma, M.; Badeti, S.; Geng, K.; Liu, D. Efficacy of Targeting SARS-CoV-2 by CAR-NK Cells. BioRxiv 2020. [Google Scholar] [CrossRef]
- Chongqing Public Health Medical Center. (February 2020–August 2022). A Phase I/II Study of Universal Off-The-Shelf NKG2D-ACE2 CAR-NK Cells Secreting IL15 Superagonist and GM-CSF-Neutralizing scFv for Therapy of COVID-19. Identifier: NCT04324996. Available online: https://clinicaltrials.gov/ct2/show/NCT04324996 (accessed on 18 November 2021).
- Sutlu, T.; Alici, E. Natural Killer Cell-Based Immunotherapy in Cancer: Current Insights and Future Prospects. J. Intern. Med. 2009, 266, 154–181. [Google Scholar] [CrossRef] [PubMed]
- Lapteva, N.; Durett, A.G.; Sun, J.; Rollins, L.A.; Huye, L.L.; Fang, J.; Dandekar, V.; Mei, Z.; Jackson, K.; Vera, J.; et al. Large-Scale Ex Vivo Expansion and Characterization of Natural Killer Cells for Clinical Applications. Cytotherapy 2012, 14, 1131–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, O.; Jung, M.Y.; Hwang, Y.K.; Shin, E.-C. Present and Future of Allogeneic Natural Killer Cell Therapy. Front. Immunol. 2015, 6, 286. [Google Scholar] [CrossRef] [Green Version]
- Gras Navarro, A.; Björklund, A.T.; Chekenya, M. Therapeutic Potential and Challenges of Natural Killer Cells in Treatment of Solid Tumors. Front. Immunol. 2015, 6, 202. [Google Scholar] [CrossRef] [Green Version]
- Fang, F.; Xiao, W.; Tian, Z. NK Cell-Based Immunotherapy for Cancer. Semin. Immunol. 2017, 31, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhang, A.Z.; Ren, Y.L.; Wang, X.L.; Jiang, C.H.; Yang, L.; Liu, C.X.; Liang, W.H.; Pang, L.J.; Gu, W.Y.; et al. Cytokine-Induced Killer Cells/Dendritic Cells and Cytokine-Induced Killer Cells Immunotherapy for the Treatment of Esophageal Cancer: A Meta-Analysis. Medicine 2021, 100, e24519. [Google Scholar] [CrossRef] [PubMed]
- Garofano, F.; Gonzalez-Carmona, M.A.; Skowasch, D.; Schmidt-Wolf, R.; Abramian, A.; Hauser, S.; Strassburg, C.P.; Schmidt-Wolf, I.G.H. Clinical Trials with Combination of Cytokine-Induced Killer Cells and Dendritic Cells for Cancer Therapy. Int. J. Mol. Sci. 2019, 20, 4307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trial ID | Enrollment | Condition | Interventions | Trial Phase | Date |
---|---|---|---|---|---|
NCT00703105 | 36 | Ovarian cancer | Ontak (anti-CD25), DC 1 vaccine + ontak | II | 2008–2018 |
NCT01204684 | 60 | Glioma, astrocytoma, astro-oligodendroglioma, glioblastoma | AT 2 TL 3-pulsed DC + 0.2% resiquimod, DC vaccination + polyICLC 4 | II | 2010–2018 |
NCT01803152 | 56 | Sarcoma, soft tissue sarcoma, bone sarcoma | DC vaccine, TL, gemcitabine, imiquimod, leukapheresis | I | 2014–2019 |
NCT01885702 | 25 | Colorectal cancer | Neoantigen-loaded DC vaccination | I/II | 2010–2016 |
NCT01946373 | 10 | Melanoma | Cyclophosphamide, fludarabine, T cells, interleukin-2, DC vaccine | I | 2013–2018 |
NCT01957956 | 21 | Newly diagnosed glioblastoma | TL-pulsed AT DC vaccine + temozolomide | I | 2013–2016 |
NCT01983748 | 200 | Uveal melanoma | AT DC loaded with AT tumor RNA | III | 2014–2022 |
NCT02301611 | 120 | Melanoma | AT TL + YCWP 5 + TLPLDC 6 Vaccine, placebo | II | 2015–2019 |
NCT02496520 | 10 | Advanced solid tumors, sarcoma, central nervous system tumor | DC, surgery as needed, chemotherapy as needed, radiation therapy as needed | I/II | 2014–2018 |
NCT02503150 | 480 | Metastatic colorectal cancer | Antigen pulsed DC + chemotherapy, chemotherapy | III | 2015–2019 |
NCT02678741 | 45 | Metastatic melanoma | TLPLDC vaccine in addition to ICPI 7 of choice | I/II | 2016–2019 |
NCT02718391 | 120 | Melanoma | DC pulsed with autologous TL | II | 2015–2019 |
NCT02775292 | 12 | Adult solid neoplasm, childhood solid neoplasm, metastatic neoplasm | Nivolumab, NY-ESO-1 reactive TCR 8 retroviral vector transduced AT PBL 9, NY-ESO-1(157-165) peptide-pulsed AT DC vaccine | I | 2017–2019 |
NCT03014804 | 30 | Recurrent glioblastoma | AT DC pulsed with TL, nivolumab | II | 2018–2020 |
NCT03300843 | 86 | Melanoma, gastrointestinal, breast, ovarian, pancreatic cancer | DC vaccine loaded with neoantigen coding peptide | II | 2018–2027 |
NCT03360708 | 20 | Recurrent glioblastoma | CIK 10 cells, TL-pulsed AT DC vaccine | I | 2018–2022 |
NCT03395587 | 136 | Newly diagnosed glioblastoma | AT DC pulsed with AT TL | II | 2018–2022 |
Trial ID | Enrollment | Condition | Interventions | Trial Phase | Date |
---|---|---|---|---|---|
NCT01212341 | 18 | Malignant lymphomas, solid tumors | Allogeneic NK 1 cells | I | 2010–2013 |
NCT02030561 | 29 | Breast, gastric cancer | Autologous NK cells + trastuzumab | I/II | 2014–2018 |
NCT02100891 | 15 | Neuroblastoma, rhabdomyosarcoma | Allogeneic NK cells with HLA 2-HCT 3 | II | 2014–2021 |
NCT02118415 | 90 | NSCLC 4 Stage IIIA/B | Hsp70-peptide TKD/IL-2 activated, autologous NK cells | II | 2014–2019 |
NCT02839954 | 10 | Hepatocellular carcinoma, non-small-cell lung cancer, pancreatic carcinoma | Allogeneic anti-MUC1 CAR 5-pNK cells | I/II | 2016–2018 |
NCT02843126 | 30 | Breast cancer recurrent | Trastuzumab combined with NK cells | I/II | 2016–2019 |
NCT02843581 | 60 | Metastatic esophageal cancer | Cryosurgery combined with NK cells | I/II | 2016–2019 |
NCT02843607 | 30 | Metastatic renal cell cancer | Cryosurgery combined with NK | I/II | 2016–2019 |
NCT02843815 | 30 | Non-small-cell lung cancer metastatic | Cryosurgery combined with allogeneic NK cells | I/II | 2016–2019 |
NCT02844335 | 60 | Breast cancer recurrent | Cryosurgery combined with NK cells | I/II | 2016–2019 |
NCT02845856 | 30 | Recurrent non-small-cell lung cancer | Cetuximab combined with NK cells | I/II | 2016–2019 |
NCT02845999 | 9 | Gastrointestinal metastatic cancer | Allogeneic NK cells with cetuximab | I | 2009–2013 |
NCT02849314 | 30 | Recurrent laryngeal cancer | Cryosurgery combined with NK cells | I/II | 2016–2019 |
NCT02849327 | 30 | Pharyngeal cancer | Cryosurgery combined with NK cells | I/II | 2016–2019 |
NCT02849353 | 30 | Recurrent ovarian cancer | Cryosurgery combined with NK cells | I/II | 2016–2019 |
NCT02849379 | 30 | Recurrent tongue cancer | Cryosurgery combined with NK cells | I/II | 2016–2019 |
NCT03358849 | 9 | Advanced biliary tract cancer | Allogeneic NK Cell (“SMT-NK”) | I | 2017–2018 |
NCT03410368 | 120 | Small cell lung cancer | Autologous NK cells | II | 2018–2020 |
NCT03415100 | 30 | Solid tumors | CAR-NK cells targeting NKG2D ligands | I | 2018–2019 |
NCT03656705 | 5 | Non-small-cell lung cancer | CCCR 6-modified NK92 cells | I | 2018–2022 |
NCT03662477 | 10 | Advanced lung adenocarcinoma | Autologous NK cells | I | 2018–2021 |
NCT03882840 | 30 | Cancer lack of MHC 7-I expression | Autologous-induced T cell-like NK cells | I/II | 2019–2022 |
NCT03931720 | 20 | Malignant tumor | ROBO1 specific BiCAR-NK/T cells | I/II | 2019–2022 |
NCT03941457 | 9 | Pancreatic cancer | ROBO1 CAR-NK cells | I/II | 2019–2022 |
NCT04324996 | 90 | COVID-19 | NK cells, IL15-NK cells, NKG2D CAR-NK cells, ACE2 8 CAR-NK cells, NKG2D-ACE2 CAR-NK cells | I/II | 2020–2022 |
NCT04385641 | 18 | Gastric cancer | Allogeneic UCB-NK cells | N/A | 2019–2021 |
NCT04623944 | 64 | AML 9 | CAR NK cells | I | 2020–2038 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abakushina, E.V.; Popova, L.I.; Zamyatnin, A.A., Jr.; Werner, J.; Mikhailovsky, N.V.; Bazhin, A.V. The Advantages and Challenges of Anticancer Dendritic Cell Vaccines and NK Cells in Adoptive Cell Immunotherapy. Vaccines 2021, 9, 1363. https://doi.org/10.3390/vaccines9111363
Abakushina EV, Popova LI, Zamyatnin AA Jr., Werner J, Mikhailovsky NV, Bazhin AV. The Advantages and Challenges of Anticancer Dendritic Cell Vaccines and NK Cells in Adoptive Cell Immunotherapy. Vaccines. 2021; 9(11):1363. https://doi.org/10.3390/vaccines9111363
Chicago/Turabian StyleAbakushina, Elena V., Liubov I. Popova, Andrey A. Zamyatnin, Jr., Jens Werner, Nikolay V. Mikhailovsky, and Alexandr V. Bazhin. 2021. "The Advantages and Challenges of Anticancer Dendritic Cell Vaccines and NK Cells in Adoptive Cell Immunotherapy" Vaccines 9, no. 11: 1363. https://doi.org/10.3390/vaccines9111363
APA StyleAbakushina, E. V., Popova, L. I., Zamyatnin, A. A., Jr., Werner, J., Mikhailovsky, N. V., & Bazhin, A. V. (2021). The Advantages and Challenges of Anticancer Dendritic Cell Vaccines and NK Cells in Adoptive Cell Immunotherapy. Vaccines, 9(11), 1363. https://doi.org/10.3390/vaccines9111363